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The diffusion coefficient D and the thermal diffusion ratio kr, for dilute *He in liquid YHe, are
calculated from Fermi liquid theory. The collision integral assumes a scattering amplitude a* expanded
in scalar combinations of the quasiparticle momenta. As T — 0, D varles as 1 /T and &r /c, where ¢ is
the concentration, approaches a constant. As shown previously, the limits for DT and kr /¢ are
determined by thermodynamic properties, the *He effective mass. and partial volume, and properties of-
pure 3He. We have decreased kr /c by a few percent, by including “the effect of VT on the 3He
distribution function. The temperature dependence of DT and kr /c is linear and related to the
coefficients in the expansion of a™. Two coefficients can be found from thermodynamics. A conjecture

about the remainder suggests that DT may have a maximum between 0 and 0.5 K.

PACS: 67.60.Dm, 51.10.+y, 67.55.Lf, 67.55.Hc

1. Introduction

In this paper we calculate the. diffusion coeffi-
cient D and the thermal diffusion ratio k. for very
dilute solutions of 4He in normal (non-superfluid)
liquid 3He. The quantities D and kp are defined [1]
by the equation for the impurity mass current i in
terms of the gradients of the 4He mass concentra-
tion, ¢ = Nym,/(Nysm, + Nym3), and the tempera-
ture T:

i=-p D [Vc+(ky /TIVT).  (1.1)

When the total mass current pv is zero, i is simply
the 4He mass current; otherwise [1] the 4He current
is pcv+i and the 3He current is (1 —c)pv - i.
When there are no currents, (Vc)/c=
= (~ky /cXVT)/T.

The low temperature behavior of D and Ay is
“determined by Fermi liquid theory from the Boltz-
mann transport equation of Zharkov and Silin {2].
In the dilute limit, the diffusion coefficient D is
proportional [3] to 1/T and k; /c tends to a con-
stant number when T — 0. As shown in Ref. 4,
k; /c and DT tend to values determined solely by
the /=0 forward scattering amplitude {5,6] ag“
which can be obtained from thermodynamic meas-
urements. The limit for DT is (4]
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Here mj and m} are the “He and 3He quasiparticle
effective masses and T is the 3He Fermi tempera-
ture, given by kg Tr=pk /2mj . Equation (1.2)
uses the relation between a3* and thermodynamic
properties derived by Saam and Laheurte [5,6):

a%‘ = (V3/v3)/V0) .

In Egs. (1.2) and (1.3) uj is the partial volume
of a 4He atom dissolved in liquid 3He. The 3He
atomic volume is vy.and V(0) = 3/(2vzkg T) is the
3He density of states.

The limit for k. /c was given as 0.3823 in Ref. 4,
but we find a value a few percent smaller. We

(1.2)

(1.3)

" include the effect of the temperature gradient on

the 3He distribution function which was neglected
in Ref. 4. The correction, which depends on pres-
sure, can be calculated from mj and v} and known
properties of pure liquid 3He. The limit for DT is
unchanged. " .
Equation (1.2) implies a “He collision time {2],
t =3mD/(2kg T), that varies as 1/T2. For Fermi
liquid theory to be valid, the energies of the “He
quasiparticle states must be well defined; this im- .
plies 7/t <<kgT which is equivalent to
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D >> 2fi/(3m,). This criterion is well satisfied pro-
vided T << Tf.

As remarked in Ref. 4, a measurement of ky /cor
a comparison between measurements of the limit for
DT and Eq. (1.2) would provide a stringent test of
the underlying Fermi liquid theory. In this respect,
“He in 3He is qualitatively different from other
applications of the theory. For example, to relate
the kinetic coefficients to the thermodynamic prop-
erties in pure 3He or 3He in liquid 4He, some
assumptions about the dependence of the 3He—3He
scattering amplitude on the momentum transfer are
necessary {7]. For 4He in 3He at low T, because the
“He is dilute, only 4He—3He collisions need to be
considered. Since the 4He obeys Boltzmann statis-
tics, the 4He momentum and energy are small com-
pared to the Ferimi momentum and energy. In addi-
tion, the Pauli principle excludes large energy or
momentum transfer from the 3He. Therefore, as
T — 0, the 3He is restricted to forward scattering,
determined by ag“.

Although measurements [8,9] of D and ky /c
have been made above 0.5 K, experiments to test
the theory must be made at temperatures where
pure 3He obeys Fermi liquid theory. This is below
0.1 K and above the 3He superfluid transition. Here
the solubility ¢S3%(P, T) is very small [10], less than
500 ppm below 0.1 K. The thermodynamic quanti-
ties in the expression for D, UZ and mz , can be
obtained by analyzing measurements of c¢52{(P, T).
Solubility data by Nakamura et al. [10] below
0.1 K and a preliminary measurement [11,12] of D
indicate that such experimental tests are feasible.

In the present paper we find the solution of the
4HeBoltzmann equation with a momentum-depend-
ent scattering amplitude. We prove the assertion
made in Ref. 4, that the momentum dependence
produces terms in DT and ky /c which are of the
order of T/Tg, so that only a‘?)“ appears in the
limiting values of DT and kg /c. Since the Fer-
mi temperature T of liquid 3He is approximately
1.77 K at zero pressure [13], terms of order T/T
are expected to be small below 0.1 K, where Fermi
liquid theory is valid. However, in Sec. 7, we show
. that the temperature dependence of DT could be
quite measurable. Section 2 of the paper deals with
the symmetry and parametrization of the scattering
amplitude; Sections 3 to 6 with the solution to the
Boltzmann equation. Sections 6 and 7 give the
numerical results. Section 7 summarizes the conclu-
sions.

As in Ref. 4, we assume that the 4He quasiparti-
cle spectrum has the conventional, particle-like
form E=-E3+ q2/2m2 , rather than the alterna-
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tive, roton-like,  «bubble  spectrums  [2]
E=-E;+(q - qp)?/2m} . Here E, is the binding
energy of one 4He atom in liquid 3He in the ground
state. A microscopic calculation{14] shows that the
conventional spectrum is  correct, with
my/m; = 1.21 at zero pressure. In Ref. 15, a fit to
the (P, T) data of Nakamura et al. [10] gave
my/my=(1.1 +0.4/-0.1). '

2. Momentum dependent scattering amplitude

In general the scattering amplitude depends on p
and g, the initial momenta of the 3He and %He
quasiparticles, and the momentum transfer
k=p ' -p=q-q'. It is also true that the inverse
collision must have the same amplitude to within a
phase factor {16]

1a34p, q, k)l = 1a3p’, ¢, k)| .

This symmetry has a simpler form when &> is
written as a function of the mean momenta

q,=q-k/2andp,=p+k/2

.10

34

e, , q,, , Kl =1a4D,, . q,, . kI . (2.2)"

We expand a3 in terms of the lowest order scalar
functions of q,, , p,, and k, using the symmetry in
Eq. (2.2). Keeping terms up to and including the
second power in the small momenta q_ and k, the
results are equivalent to expanding |a32|1:

2 P lm 9

Pm
B =a |1+« -1|+a + +
0 =3 2 —p:—F 3zt
P, Q,)° k2 ®,, k)?

+a4~z—+...+a57+a6—T+... .
PFr PF PF

(2.3)

The real coefficients o, , like a%“, depend on the
pressure. We shall find that o only produces terms
of higher order than 7 /T so that it does not appear
in our results for DT or kg /c.

‘The forward scattering amplitude corresponds to
a3 with zero momentum transfer k. In this case,
P, =P and g, =q. Saam derived a relation [5]
between the forward scattering amplitude and the
thermodynamic Landau interaction function f34.
The forward scattering amplitude and the Landau
function differ because the latter includes successive
or multiple scattering events. Saam's equations,
which are analogous to a similar set for the 3He-
3He amplitude [7], link the two functions through
the coefficients of their expansions in Legendre
polynomials of p-q,
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{@k=0)),={34, /1+F/Q+1]. (24

The F § are the symmetric Fermi liquid factors [13]
for pure liquid 3He.

~ Using Galilean invariance [17] and invariance
with respect to the reference system [5,6,15], some
properties of the Landau function f34 have been
directly related to thermodynamic quantities such
as vy and my . As a result one finds the following
relations between a%“ and the o and the corres-
ponding known coefficients f 34 5, 4y and 4f in a
similar expansion for f 34 in Ref. 15:

ra v 2

34 = = =x kg Tp U
%o (1+F) v3v(0) 3% F
3a P vy m
1 F 3 4
o = 3+Fs a3t 7(1_—7]' (2.5)
( ) 0 ‘04\ m4)
a'l' pf,, 3 03 m§ 1 dlogmy

The first relation is the same as Eq. (1.3). Since
(1 + F = 10.6 in liquid 3He at zero pressure [13],
and m, = m4 [14,15], both o, and ay are smaller
than one. The rest of the o, are undetermined. In
Sec. 7 we find that the og k2 term in @34 has the

’ ¥ ’ 2 ’
JiA@) = (2n /) x I |a34n o1 = nIngg(y; - v+ @ - @) de+E-¢-E) i dpdq’.

The factor of 2 multiplying dp allows for the sum
over the initial 3He spin states. Refs. 18 and 19
have a factor of 4, which implies that the SHe
quasiparticle may change its spin orientation during
a 4He—3He collision. As explained in Ref. 4, we
think this is incorrect. Our equation agrees with the
original formulation by Zharkov and Silin.

In the collision integral, p’ is related to the other
momenta by conservation of momentum:

pP-P=q-q=k. (3.9)

The Fermi functions n, and ng’ are the equilibrium
occupation numbers {c())r the initial and final 3He
states, that have energies € and €. The initial and
final 4He energies are E and E’, so that the delta
function 8(e + E - ¢’ ~ E’) enforces conservation of
energy.

In Eq. (3.3), the quantities y; = ~8n; /n,y and
y; = -dn} /n}y are the negatives of the small frac-
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largest effect on the temperature dependence of
DT and kg /c.

3. The *He Boltzmann equation

In setting up and solving the Boltzmann equa-
tion, we follow the work of Zharkov and Silin [2],
Leggett and ter Haar [3], Dandache et al. [18] and
Geilikman and Chechetkin [19]. The notation is
nearly the same as in Ref. 4. According to Zharkov
and Silin, the linearized He Boltzmann equation in
the dilute limit (negligible 4He~*He scattering) for
small temperature and concentration gradients and
v = 0 has the form

q) Ve ¢ 3\vrl_
A3 PP
' (3.1)

Here n;, is the equilibrium 4He quasiparticle occu-
pation number:

. 32
] ol
"io = mgkp T J 2mgkp T )

\
(3.2)

where pc/m, is the 4He number density. The colli-
sion integral is [2,18]

3.3

tional deviations from the equilibrium 4He distribu-
tion function. Because they are linear in the concen-
tration and temperature gradients, w; and y; depend
on q and q’ according to the equation [2]

v{q) = a(9)qVc + ar{(q)q VT .

The functions a.(q) and a;{(q) are found by solving
the 4He Boltzmann equation (3.1).

The deviations from equilibrium of the 3He occu-
pation number are related to ¢, and (p in Eq. (3.3)
by 8n =—Qckg T ong /0t. ’l{hey are determined
from the known solution [7] of the Boltzmann
equation for a temperature gradient in pure 3He.
The effect of the 4He on ¢ is negligible because, in
the dilute limit, the numﬁer of 3He at the Fermi
surface- and available for scattering is much larger
than the number of 4He. When VT = 0, as in the
calculation of the diffusion coefficient, ¢,and ¢} are
negligible. In previous works [2,4,18,19], 9 and

3.5)
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(p’, were incorrectly omitted in the calculation
of ky .

We divide the collision integral (3.3) into two
contributions. The first, J(q), is from the term
proportional to (y; — ), the deviations from equi-
librium in the 4He distribution function. The sec-
ond, J ,(q), is from the term in ((pf— (p}).

4. Calculation of the collision integral J (q)

We first evaluate J(q). This is all that is needed
to calculate the diffusion coefficient D. We put
VT = 0 and, using Eq. (3.5), J(q) becomes

Ji@=C- J lqa(q9) - qa 9V (g, ¢) dq' (4.1)
where

Jq, q) = I |a34|2nﬂ)(1 ~ng) 8+ E-¢ - E') dp
(4.2)
and

C = (8n%/h"yn Ve . 4.3)
To calculate ky /c, we set Vc = 0 and J(q) has the
same form as (4.1) except that a_ is replaced by a,
and the vector C has VT instead of Vc.

In J(q,q) the energy transfer E-E'=
=(¢*- q*/2m; and momentum transfer k=
=q=q are fixed by q and ¢. Since |34 in
Eq. (2.3) is written in terms of p,, , q,, and k, we
transform the integral in Eq. (4.2) by replacing dp
by dp, . We choose an axis along k and write
dp,, = p2, dp,, d cos 0, do,, .
contains the vector q,, .

The integration with respect to ¢,, is elementary
and performed first. Using

€ -e=kp,cos®, /my (4.4)
in the delta function, we integrate over cos 6, :

J(q, Q) = 2nmy/k x

xj (|a34|2)n,0(sm- A/t~ n,o(sm+ A/D)p, dp,, -

4.5)

Here {|la®*?) is [a%*| averaged over all values of @, .
The Fermi function ng(s) is (e + 1)",' and s, =
=¢,,/(kg T). The mean energy €, = (P2 + k2 /4 -
- p%)/2m} is measured from the Fermi energy.
To order T, the Fermi energy is the same as
the 3He chemical potential. Note that A=
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The ¢, =0 plane

=(E - E)/(kg T) does ot depend on p, . The
integration over the delta function gives cos 6, a
definite value that depends on p,, :

cos 8, = my(E - E')/(p,, k) . (4.6)

Thus the factors of P, cos 8, in ({342 are simply
functions of q and ¢'.

The right-hand side of Eq. (4.6) is of the order of
q/p or (T/Tp)!72. This means that, usually, the
momentum transfer k is very nearly perpendicular
to p and p,. From Eq. (4.6), the condition
-1 < cos 6,, < 1 gives the lower limit for p, in the
integral (4.5):

Py 2 ImYE - EY /b = (m}/mlq,, k. (4.7)

When T << T, so that ¢ and %k are small com-
pared to pp , replacing this lower limit by zero has
an exponentially small effect on the integral, of
order exp (-Tg /T). Therefore we evaluate J(q, q')
using the relation

I 1S 8/D= ngls,+ A/D) ds,, = /(1= ).
o (4.8)

As in Ref. 4, the replacement of the lower limit
(4.7) by zero is the crucial approximation in finding
the collision integrai. Since the integrand in
Eq. (4.5) is always positive, by using p, 20 (or
S, 2 —=) instead of Eq. (4.7), we have overesti-
mated the effect of collisions with large k. Because
g is small at low T (due to the Boltzmann distribu-
tion), large k corresponds to large negative values
of A, and therefore ¢’ must be large if k is large. The
collision rate, which is proportional to (4.8), is very
small when A << -1, so the approximation is self-
consistent.

The final result for J(q, q°), to second order in g
and ¢’, is

A

J@q, Q) =2r Mm@k, T ———x
+a FO7TB T p ~ ety
Q-9°  @+q)P (¢ -q?H?
"1+71q2q +Yzq2q ryy ?22
p Pr (‘I‘Q)Pf
4.9)
where
Y, =205-0,/2,
567
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oy oy 0 my |0, Oy o

WETYTTE BT LT TR
(4.10)
As noted in Sec. 2, o does not appear in
Eq. (4.10); it does not affect DT or ky /c to.order
T/Tg. .
From symmetry, the vector integral in Eq. (4.1)
is parallel to q. Therefore we choose a new axis
along q, so that the collision integral (4.1) becomes

Ji(q)=C~<ix

w*

o~

XI[qac(q) - ¢’ cos 8a(q)V(q, q)q? dq’ dcos & d¢’

4.1

where 6 is the angle between q and q'.

After integrating over ¢’, and then cos €', and
introducing the dimensionless variables
x= qz/(2m2 kgT), y= ¢]'2/(2mf1 kg T), the result
is

J{@ = no(q/my)(Ve)/c J' F(z, y) dy (4.12)
.0
where
3
Fx, y) = Fo(x, y) + (my/m(T/Tp) 3, v; Fx, ),
= 413)
Fx,y) =

= (x~y)/(1- ¥ )gx, y) f(x) - hfx, y) [P];
i=0,..,3. (4.14)

The function f(x) is a dimensionless form of
a(q) = f(x)/cC, where the constant C, is

C, = (mymj ky T a3¥y?/2n%n7) . (4.15)
The quantities g,(x, ) and hfx, y) are the simple
algebraic functions of x and y shown in Table I.

3. Solution of the Boltzmann equatioh

After substituting (4.12) in (3.1) one arrives at a
dimensionless form of the Boltzmann equation for
the situation where VT = 0,

jF(x.y)dy=1.
0

G.1)

Equation (5.1) is a one-dimensional integral equa-
tion for f(x) = ¢C,a (q).

In the same way the integral equation for the
situation where V¢ = 0 becomes

JF(x, Ydy=x-3/2-b3n). (5.2)
0

~ In this case, f(x) = TC,ar(q). The «driving» terms,

x - 3/2 and 1 on the right-hand sides of Eqgs. (5.2)
and (5.1), come from the left-hand side of the
Boltzmann equation. The additional driving term
bs(x) in Eq. (5.2) is the dimensionless form of the
collision integral J (D). The calculation of J () and
the derivation of b4(x) are described in Sec. 6.

The numerical solution of the integral Egs. (5.1)
and (5.2) at T = 0, neglecting the term in by(x), is
given in Ref. 4. At T =0, substitution from
Eqgs. (4.13) and (4.14) in (5.1) gives :

Table 1

The functions g (x, ¥) and h(x, y) in Eq. (4.14), and the integral I(x - 1 - g (x, y) dy for P(x) in Eq. (5.4). The Riemann
T .

zeta function §(3) = 1.2020...

ysx y2x
i -
@/ g, 9) /)" iz, y) 9%, ) hx, 9) fe-pi1-lg . y) dy

X

0 1 y/3x 1/3 /6

1 x+y/3 -y/3+ y’/th y+x/3 -y/3+x/15 253) + 2n%x/9

2 x +5y/3 y + 3y /5¢ y+5x/3 y+3x/5 2(3) + 4n’x/9

3 x-y y-9/x y-x y-x 24(3)
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fx)Py(x) - J Myx, @) dy =1 (5.3)
0 .

-where we have defined the functions

' Pi(x)EJ. r-y
0

, ev_x 9{x, y) dy ,

i=0,..,3 (5.4)
-y
g hyx, y) .

Mfx, y) = 1x

In Ref. 4, Eq. (5.3) and the similar one for V¢ =0
were solved in terms of the variables ¢ and ¢
defined by t =exp (-x/g), ' =exp (-y/g), where
g ~ 3 is a dimensionless scale factor. The equations
were discretized over a one-dimensional lattice of
N points evenly spaced in £. As a result, f and P,
became vectors and M|, a square matrix. The inte-
gral for Py from y = 0 to x was evaluated numeri-
cally. The other part, from y =x to infinity, is
listed in Table 1, with the companion formulas for
P,, P, and P5. Rather than inverting M, , the
equations were more efficiently solved by iteration.
An approximate form was used for f(y), giving a
new estimate for f{x) and so on. Accurate solutions
were obtained with N = 100 or 200, iterating up to
15 times.

At all temperatures, the impurity current i, and
thus the diffusion coefficient D and thermal diffu-
sion ratio ky /c, are found from the appropriate
integration over the 4He occupation number. As
explained in Ref. 4, we calculate i from the 4He
particle current:

i=m, I&ni (q/my) do/h . (5.5)
In this equation, g¢/mj = V, E is the “He quasipar-
ticle velocity. Previous authors [2,18) have used
i=[8n;q dg,/h3, the momentum density associated
with the 4He. The two formulas differ by a factor of
m/my . Using Eqs. (5.5) and (3.2), the expression
for D, in Eq. (1.2) in terms of the function f(x) for
VT =0is

D, = 16/(37%?) J. et ds.  (56)

If the flx) for Vc =0 is called fi{x), then ky /C is
diven by
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T /¢ -J‘fT(x)x"/z * dx /f fx3/ e dx |
(5.7)

To obtain Dy and k- /c at finite temperature, we
use the fact that (my/m3)(T/Tp) in Eq. (4.13) is a
small quantity. Therefore the solutions to the inte-
gral Egs. (5.1) and (5.2) may be expanded in the
form

f(0) = %) + (my/mYT/TRf ') + ... (5.8)

Here, f9%x) is the solution of the integral equation
at T = 0. The term in f ! gives the finite temperature
correction to f © ‘toorder T/T . As a result of (5.8)
we may write the F;in (4.14) as

Fx, y) = F(x, y) + (my/mT/T)Fl(x, y) + ...
(5.9)

where Fo(x, y) means Fo(x ¥) = (x-y)/(1- e¥ " )x

x[g(x, y)f %x) - hyx, y)f o(y)] etc. Substituting in

(5.1) and retamlng terms up to T/Tg gives, for
VT =0.

[F"(x. ) + (my/m T /T Fix, y) +

3 S -
+Y v Fx, y)]} dy=1.

i=1

(5.10)

The integral equation for the situation where
Ve = 0 is the same as (5.10), except that the driving
function on the right-hand side is x — 3/2 - by(x).

When the solution for T = 0 is subtracted from
Eq. (5.10), the result is

3
j Fix, )+ Y. v, FXx, 9)|dy=0. (5.11)

0 i=1
From this equation we see that f'(x) is the sum of

three contributions each linearly proportlonal to
one of the y; :

3
flo=3yfhw.
i=1
Using the functions defined in Eq. (5.4), the ﬂ(x)
are the solutions of the three integral equations

(5.12)
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[L(x)Py(x) - j Myx, iy dy =
0.

= -fA0Px) + I Mx, )y dy;i=1,2,3.
0 (5.13)

These equations differ from the T =0 Eq. (5.3)
only in the driving term on the right-hand side.
This is obtained from the T = 0 solution. We have
solved (5.13) numerically by the method used for
T = 0 in Ref. 4. The results are given in Sec. 7.

6. Calculation of the collision integral J Pl

In this Section we evaluate J ), the part of the
collision integral produced by the temperature gra-
dient in the solvent 3He and equal to the term
proportional to (¢ - ¢") in Eq. (3.3). J [q) is needed
to calculate the driving term —by(x) in the right-
hand side of the ‘He Boltzmann equation (5.2):

JAQ = 2r/h) x

X I ja342n ﬂ)(I—n;o)nio((pf-cp’f)&e-rl:‘-e’—E’) 726 dp dq'.

(6.1)
Using the notation of the review by Baym and
Pethick [7], ;= -v¥(s)(p - VT)/(m:;T), where s is
the reduced energy €/kg T and ¢ is measured from
the 3He chemical potential. The quantity t is a
characteristic relaxation time, defined more pre-
cisely below. The dimensionless function “¥(s) is
odd [7] in s, W(s) = -¥(-s). Although it may be
calculated exactly from an infinite series {7,20], it
is simpler to use the approximate expression due to
Emery and Cheng [7,21]:

2 15sA
5+ G .
+s2 w3 - )

) == (6.2)
r

This formula is accurate enough [21] to give the
3He thermal condr _tivity to about 1%. The pressure
dependent number A, in Eq. (6.2) is a measure of
the angular dependence of the SHe~3He scattering
amplitude [7]. For s-wave scattering, Ay is unity:

Ag = (WY x

X J‘d cos 8 do W(6, @)1 + 2 cos 8)/cos (8,/2) ,
| 6.3)

570

(W) = jd cos 6 J¢ wW(®, @)/cos (6/2) .

Here W(O, ¢) is the 3He—3He scattering probability
at the Fermi surface averaged over spin {7]. The
angle 8 is between the initial quasiparticle momenta
and, thanks to conservation of momentum, between
the final momenta as well. The collision rotates the
plane containing the momenta by ¢. The charac-
teristic relaxation time 1 is determined by the mean
scattering probability (W):

- 8ntnb
e T
my (WX B n

The s- and p-wave approximation [22] gives Ay in
terms of the Landau parameters. The value of t can
also be found [22] from this model, however, the
exact Eqs. (1.2.113a) and (1.2.113c) in Baym and
Pethick [7] relate t to the thermal conductivity and
Ay . Figure 1 shows A and the product T2 in the
s- and p-wave approximation, as well as 172 calcu-
lated from Greywall's thermal conductivity data -
[23]. The T2 from the s- and p-wave approximation
agrees quite well the exact formula. The Landau
parameters, m3 , U5 and the specific heat needed in
these calculations were taken from the review by
Halperin and Varoquaux [13].

In integrating (6.1) we neglect the momentum
dependence of the ‘He-3He scattering amplitude
la*] and replace it with a3*. This simplification is
justified because the effect of bs(x) on ky /c turns
out to be small, a decrease of about 0.01 or 2.5% of
ky /c. The momentum dependence of a3 would

(6.4)

1-‘ rryvyvjvrrrprrrrrer 3.0

TSN U R i A R TN

0 10 20 30
P, bar

Fig. 1. Plot of the dimensionless factor A, and the product T2,
where T is the characteristic He—"He relaxation time, versus

. pressure in pure JHe. The dash-dot-dot curve is Ay . the solid

curve is tT° calculated from Greywall's thermal conductivity
data and the dashed curve is from the s- and p-wave approxima-
tion.
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Fig. 2. Plot of the predicted thermal diffusion factor for *He in
liquid 3He, k; /¢, versus gressure as T — 0. The solid curve is
calculated using the 3He—"He relaxation time t from the ther-
mal conductivity data of Greywall, while the less accurate
dashed curve uses T from the s- and p-wave approximation.

produce an effect of the order of T/T of this,

which is presumably negligible.

To integrate J{q), we replace dp by dp,, and
choose an axis along k with VT in the xz plane. The
integral over @, is done first and then the integral
over cos 8, . The delta function causes cos 8,, to be
replaced by m3(E - E')/(p,, k), as in Eq. (4.6).
Using the same arguments as in Sec. 4, the lower
limit for s, =€, /kp T is replaced by —o. The
result is

J Q) = B /hhS)a3 P, tm3 x

xJ‘(V.kB T)-knfo( 1- n}u)\‘l" - W)E - E)/k3 ds,, dq'.

(6.5)

Defining a new axis along q, and replacing dq’ by
g% dq’ d cos & d¢’, one can integrate over ¢’ and
cos 8 analytically. We write the final result in
terms of ~bs(x)) on the right-hand side of Eq. (5.2):

by(x) = c3(P) x
oo X
J. I na(l = ng)(¥ - X1 - A/x)V %A /x) dA ds,,

040
(6.6)

where
41: "‘4 'aul
" omy (W)

cy(P) = 6.7
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The 4He-3He scattering amplitude is weak com-
pared to the 3He-3He amplitude. Consequently,
cx(P) is much smaller than one. At zero pressure,
c3(P) = 0.03.

To calculate by(x), we integrated (6.6) numeri-
cally, using the Emery — Cheng ¥(s). The Emery —
Cheng formula (6.2) is the sum of two terms; the
first which does not depend on A, , and the second
which is linear in A /(3 - Ag). Since [(x) in the
integral equation (5.2) is linear in the driving
terms, the effect of each term was evaluated sepa-
rately. The results give the correction to the 7= 0
value of k. /c as

(kr /O)rep =

= 0.3823 — ¢4(P)[0.1045 + 0.391A /(3 - M)l .

(6.8)

The result of using Eq. (6.7) to calculate k. /c at
T =0 as a function of pressure is shown in Fig. 2.
The function c3(P) is uncertain because it contains
my and v}, which are not accurately known, espe-
cially at high pressures. Based on an analysis [15]
of the data of Nakamura et al., we assumed in Fig. 2
that my = m, . Laheurte’s results [24] for v} at
T = 0 were extrapolated above 15 atm.

7. Results and conclusions

The finite temperature correction to DT was
calculated by solving Eq. (5.13) for f1 ), f\ 5 (x),
and f3 (x). The results are shown in Fig. 3,b as a
function of the reduced *He momentum x!/2, The
physically important parts of these functions are in
the region where the Maxwell distribution xe™,
shown in Fig. 3,a, is large. From the f}(x) and
Egs. (5.6), (5.8), and (5.12), the diffusion coeffi-

cient in the Fermi liquid region below 0. 1K, is
given by

DT = (h/m)T (v5/v)*{0.4461 (m3/m}) ~

— (T/TPI2.127 7, + 1.479 1, + 0.337 i3]} (7.1)

where the y; are defined in terms of the a; in
Eq. (4.10). As remarked in Sec. 2, o, and oy are
smaller than 1. The a most likely to be important is
o5 , the coefficient of k2 in ja®4. This also has by far
the largest coefficient in (7.1): it appears as 2a; in

1Ii" |34 is regarded as the Fourier transform of a
distance-dependent potential o©(r), a plausible
length scale in v(r) would be ~ #/p . This implies
an o of ~ 1. Putting a5 =1 in Eq. (7.1) gives a
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Fig. 3. @) The equilibrium Maxwell-Boltzmann distribution,

xe™*, plotted against the reduced 4He quasiparticle momentum,
1% = q/(2mik, T)'%. b) The solutions to the integral equa-

tions (5.3) and (5.13). The function f %) is the T = 0 solution .

to the reduced ‘He Boltzmann equation (5.3) for an isothermal
concentration gradient. The functions f :(x), f ;(x), and f ;(x)
give the corrections to [ %) at finite temperature. ¢) The same
as b, but for a temperature gradient at constant concentration.

decrease in DT of about 15% between 0.05 and -

0.1 K. Such a small variation would be quite diffi-
cult to measure. On the other hand, if the length

scale were as large as 2mh/py , a5 would be 4n2,

The T dependence of DT below 0.1 K would then
be so large as to require careful measurement in
order to extrapolate DT to T = 0. Moreover, terms
higher than T/T . would probably be appreciable at
0.1 K.

We note that a large positive value of og is
plausible because it would represent @34 increasing
at large momentum transfer k towards the much
larger 3He-3He amplitude. With a positive o5 ,
DT decreases with temperature towards the meas-
urements of DT by Vvedenskii and Peshkov [8] at
0.5 K. These are ~ 5 times smaller than the T =0
Fermi liquid predictions [4].

5§72

On the other hand, we may compare @34 to the
3He—3He interaction in dilute solutions of 3He in
superfluid 4He. The original <«BBP» inter-
action [25] has the form V(&) = -V, cos (kR6/H)
with the length §=3.16 A. The quantity Vy is
similar in magnitude to a(3,4, although the interac-
tions are opposite in sign; V= 60 K-cm3/mol as
compared to a%‘ =30 K-cm3/mol, both at zero
pressure. If @34 had the same dependence on k as
V(k), expanding the cosine would give og=
=—{pg 5/M)2/2 = -3.1. If a5 were this negative, the
T /T term would increase DT by 30% between 0.05
and 0.1 K. Since the measdrements of DT by
Vvedenskii and Peshkov at 0.5 K are smaller than
the T = 0 Fermi liquid predictions, there would a
maximum in DT between 0 and 0.5 K. This effect
would be quite measurable.

Similar conclusions apply to the temperature
variation of kK /¢ in the Fermi liquid region. The
results for f %), fii(x), f2’(x), and f3‘(x) when
V¢ =0 are shown in Fig. 3,c. When used to calcu-
late k. /c, the result is :

kp /¢ = (kp /C)pog = (my/m)T/Tp) x -

x [2.194y, + 1.057y, - 0.055v,] (7.2)

where the value at T =0 is given in Eq. (6.8) and
illustrated in Fig. 2. The numerical coefficients in
the T /T term were calculated without the —b3(x)
term in the integral equation for f%(x). This means
that they are subject to a small pressure-dependent
error of ~ 2.5%.

The dominant effect in the T,/Tp term in
Eq. (7.2) is, again, due to o and 7, . We expect a
decrease in k. /c with temperature if og is positive.
The thermal diffusion ratio has been measured by
Dandache and Laheurte [9] between 0.6 to 2 K.
This is well outside the Fermi liquid region but
kr/c was negative, about -10 for ¢ ~ 2%. This is
consistent with a positive a5 or a maximum .in
kr/c between 0 and 0.6 K. Using arguments from
irreversible thermodynamics, Dandache and ‘La-
heurte have linked the negative k1 /c at high tem-
peratures with the dependence of the thermal con-
ductivity on the 4He concentration.

In summary, solutions of 4He in liquid 3He have
a simple relation between the low temperature lim-
its for the kinetic coefficients D and k; and the
thermodynamic properties v and mj . The limit for
DT and its finite temperature corrections are given
in Eq. (7.1) while ky is predicted in Egs. (6.8) and
(7.2) and shown in Fig. 2. If one can overcome the
experimental difficulties in making measurements at
sufficiently low temperatures, where the solubility
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of 4He approaches a few parts per million
[10,12,15,26], these results present a unique oppor-
tunity to test Fermi liquid theory.
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