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In this paper, the existence and attractivity results are proved for nonlinear first order ordinary random di-
fferential equations. An example is indicated to demonstrate a realization of the abstract theory developed
in the present paper.

Викладено результати про iснування та атракторнiсть розв’язкiв нелiнiйних стохастичних
диференцiальних рiвнянь першого порядку. Наведено приклад реалiзацiї абстрактної теорiї.

1. Introduction. Let R denote the real line and R+ the set of nonnegative real numbers, that
is, R+ = [0,∞) ⊂ R. Let C(R+,R) denote the class of real-valued functions defined and
continuous on R+. Given a measurable space (Ω,A) and, for a measurable function x : Ω →
→ C(R+,R), consider the initial value problem of nonlinear first order ordinary random diffe-
rential equations (in short RDE)

x′(t, ω) + k x(t, ω) = f(t, x(t, ω), ω) a.e. t ∈ R+,
(1.1)

x(0, ω) = q(ω)

for all ω ∈ Ω, where k ∈ R+ \ {0}, q : Ω → R and f : R+ × R× Ω → R.
By a random solution of the RDE (1.1) we mean a measurable function x : Ω → AC(R+,R)

that satisfies the equations in (1.1), whereAC(R+,R) is the space of absolutely continuous real-
valued functions defined on R+.

The initial value problems of ordinary differential equations have been studied in the li-
terature on bounded as well as unbounded intervals of the real line for different aspects of the
solutions. See, for example, Banas and Dhage [2], Burton and Zhang [3], Burton and Furumochi
[4], Dhage [5] Hu and Yan [8], and the references therein. Similarly, the initial value problem of
random differential equations have also been discussed in the literature for existence theorems
on bounded intervals, however, the study of such random equations has not been made on
unbounded intervals of the real line for any aspects of the random solutions. Some results along
these lines appear in Itoh [9], Bharucha-Reid [1] and Dhage [6].

Therefore, the nonlinear random differential equations on unbounded intervals need to be
considered for existence as well as for different characterizations of the random solutions. The
present paper proposes to discuss the existence and attractivity results for random differential
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equations (1.1) on the right half R+ of the real line R. The random fixed point theory, in parti-
cular, a random version of Schauder’s fixed point theorem will be employed to prove the main
result of this paper. Our results generalize the stability results of Burton and Furumochi [4]
in some sense and we claim that the results of this paper are new to the literature on random
differential equations.

2. Auxiliary results. Let E denote a Banach space with the norm ‖ · ‖ and let Q : E → E.
ThenQ is called compact ifQ(E) is a relatively compact subset ofE. Q is called totally bounded
if Q(B) is totally bounded subset of E for any bounded subset B of E. Q is called completely
continuous if it is continuous and totally bounded on E. Note that every compact operator is
totally bounded, but the the converse may not be true. However, both the notions coincide on
bounded sets in the Banach space E.

We further assume that the Banach spaceE is separable, i.e.,E has a countable dense subset
and let βE be the σ-algebra of Borel subsets of E. We say a mapping x : Ω → E is measurable
if for any B ∈ βE ,

x−1(B) = {ω ∈ Ω | x(ω) ∈ B} ∈ A.

Note that a continuous map f from a Banach spaceE into itself is measurable, but the converse
may not be true. Let Q : Ω × E → E be a mapping. Then Q is called a random operator if
Q(ω, x) is measurable in ω for all x ∈ E and it is expressed as Q(ω)x = Q(ω, x). In this case
we also say that Q(ω) is a random operator on E. A random operator Q(ω) on E is called
continuous (resp. compact, totally bounded and completely continuous) if Q(ω, x) is conti-
nuous (resp. compact, totally bounded and completely continuous) in x for all ω ∈ Ω. Details
completely continuous random operators on Banach spaces appear in Itoh [9]. We employ the
following random fixed point theorem in proving the main result of this paper.

Theorem 2.1 [9]. LetX be a non-empty, closed convex bounded subset of a separable Banach
spaceE and letQ : Ω×X → X be a compact and continuous random operator. Then the random
equation Q(ω)x = x has a random solution, i.e., there is a measurable function ξ : Ω → X such
that Q(ω)ξ(ω) = ξ(ω) for all ω ∈ Ω.

The following theorem is often times used in the study of nonlinear discontinuous random
differential equations. We also need this result in the subsequent part of this paper.

Theorem 2.2 (Carathéodory). Let Q : Ω × E → E be a mapping such that Q(·, x) is
measurable for all x ∈ E andQ(ω, ·) is continuous for all ω ∈ Ω. Then the map (ω, x) 7→ Q(ω, x)
is jointly measurable.

3. Characterizations of random solutions. We seek the random solutions of RDE (1.1) in the
Banach spaceBC(R+,R) of real-valued functions defined, continuous and bounded on R+.We
equip the space BC(R+,R) with the supremum norm ‖ · ‖ defined by

‖x‖ = sup
t∈R+

|x(t)|.

It is known that the Banach space BC(R+,R) is separable. By L1(R+,R) we denote the space
of Lebesgue measurable real-valued functions defined on R+. By ‖ · ‖L1 we denote the usual
norm in L1(R+,R) defined by

‖x‖L1 =

∞∫
0

|x(t)| dt.
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In order to introduce the further concepts used in this paper, let us denoteE = BC(R+,R) and
let S be a non-empty subset of E. Let Q : Ω×E → E be a mapping and consider the following
random equation:

Q(ω)x(t, ω) = x(t, ω) (3.1)

for t ∈ R+ and ω ∈ Ω. A measurable function x : Ω → E is called a random solution of the
random equation (3.1) if it satisfies (3.1) on R+. Below we give different characterizations of
the random solutions for the random equation (3.1) on R+.

Definition 3.1. We say that random solutions of the random equation (3.1) are locally attracti-
ve on R+ if there exists a closed ball Br(x0) in the space BC(R+,R) for some x0 ∈ BC(R+,R)
and for some real number r > 0, such that for arbitrary random solutions x = x(t, ω) and
y = y(t, ω) of the random equation (3.1) belonging to Br(x0) ∩ S we have that

lim
t→∞

(x(t, ω)− y(t, ω)) = 0 (3.2)

for all ω ∈ Ω, where S is a non-empty subset of BC(R+,R). In this case when the limit (3.2) is
uniform with respect to the set Br(x0) ∩ S, that is, when for each ε > 0 there exists a T > 0 such
that for all t ≥ T,

|x(t, ω)− y(t, ω)| ≤ ε (3.3)

for all ω ∈ Ω and for all x, y ∈ Br(x0) ∩ S being the random solutions of (3.1), we will say that
the random solutions are uniformly locally attractive on R+.

Definition 3.2. We say that random solutions of the random equation (3.1) are globally attracti-
ve on R+ if for arbitrary random solutions x = x(t, ω) and y = y(t, ω) of the random equation
(3.1) belonging to S the condition (3.2) is satisfied. In the case when (3.2) is satisfied uniformly
with respect to the set S in E, that is, for ε > 0 there exists a T > 0 such that t ≥ T, the inequality
(3.3) holds for all x, y ∈ S being the random solutions for the random equation (3.1), we will say
that the random solutions of the random equation (3.1) are uniformly globally attractive on R+.

Definition 3.3. Let c ∈ R be fixed. A line y(t, ω) = c for all t ∈ R+ and ω ∈ Ω, is called an
attractor for the random solution x : Ω → E to the random equation (3.1) if limt→∞[x(t, ω) −
−c] = 0 for all ω ∈ Ω. In this case, the random solution x to the random equation (3.1) is called
asymptotic to the line y = c and the line is called an asymptote for the random solution x on R+.

Definition 3.4. The random solutions for the random equation (3.1) are said to be locally
asymptotically attractive if there exists an a closed ball Br(x0) in E for some x0 ∈ E and for
some real number r > 0 such that for any two random solutions x = x(t, ω) and y = y(t, ω) to
the random equation (3.1) belonging to Br(x0) ∩ S, there is a line which is a common attractor
to them on R+. When x and y are uniformly locally attractive and there is a line as a common
attractor, we will say that the random solutions of the random equation (3.1) are uniformly locally
attractive on R+.

Definition 3.5. The random solutions for the random equation (3.1) are said to be globally
asymptotically attractive if for any two globally attractive solutions x and y of (3.1) there is a
line which is a common attractor to them on R+. Furthermore, if the random solutions for the
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random equation (3.1) are uniformly globally attractive, then they are called uniformly globally
asymptotically attractive on R+.

We note that the global attractivity and global asymptotic attractivity implies respectively
the local attractivity and local asymptotic attractivity of the random solutions. The same is also
true for uniformly globally attractivity and uniformly globally asymptotic attractivity of the
random solutions for the random equation (3.1). However, the reverse implication may not
hold.

4. Attractivity results. We need the following definition in the sequel.

Definition 4.1. A function f : R+ × R× Ω → R is called random Carathéodory if
(i) the map ω 7→ f(t, x, ω) is measurable for all t ∈ R+ and x ∈ R;

(ii) the map (t, x) 7→ f(t, x, ω) is jointly continuous for all ω ∈ Ω.

We consider the the following set of hypotheses in what follows.
(H1) The function q : Ω → R is measurable and bounded. Moreover,

ess sup
ω∈Ω
|q(ω)| = c1

for some real number c1 > 0.

(H2) The function f(t, x, ω) is random Carathéodory.
(H3) There exists a continuous function h : R+ → R+ such that

|f(t, x, ω)| ≤ h(t) a.e. t ∈ R+

for all ω ∈ Ω and x ∈ R. Moreover,

lim
t→∞

e−kt
t∫

0

eksh(s) ds = 0.

Remark 4.1. If the hypothesis (H3) holds, then the function w : R+ → R+ defined by

w(t) = e−kt
∫ t

0
eksh(s) ds is continuous and the number

W = sup
t≥0

w(t) = sup
t≥0

e−kt
t∫

0

eksh(s) ds

exists. Hypothesis (H3) has been considered in a number of papers in the literature. See for
example, Banas and Dhage [2], Burton and Furrumochi [4] and the references therein.

Our main result is the following theorem.

Theorem 4.1. Assume that the hypotheses (H1) through (H3) hold. Then the RDE (1.1)
admits a random solution. Moreover, random solutions are uniformly globally asymptotically
attractive to the zero random solution on R+.
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Proof. Now RDE (1.1) is equivalent to the random equation

x(t, ω) = q(ω) e−kt + e−kt
t∫

0

eksf(s, x(s, ω), ω) ds (4.1)

for all t ∈ R+ and ω ∈ Ω.

Set E = BC(R+,R) and, for every function ω 7→ x(ω) ∈ E, define a mapping Q on Ω× E
by

Q(ω)x(t, ω) = q(ω) e−kt + e−kt
t∫

0

eksf(s, x(s, ω)ω) ds (4.2)

for all t ∈ R+ and ω ∈ Ω. For the sake of convenience, we write Q(ω)x(t, ω) = Q(ω)x(t) for
omitting the double appearance of ω and we merge it into Q(ω).

Clearly, Q defines a mapping Q : Ω × E → E. To see this, let x ∈ E be arbitrary. Then for
each ω ∈ Ω, the continuity of the map t 7→ Q(ω)x(t) follows from the fact that the exponential
e−kt and the indefinite integral

∫ t
0 f(s, x(s, ω), ω) ds are continuous functions of t on R+. Next,

we show that the function Q(ω)x : R+ → R is bounded for each ω ∈ Ω. Now by hypotheses
(H1) and (H2),

|Q(ω)x(t)| ≤ |q(ω)| e−kt + e−kt
t∫

0

eks|f(s, x(s, ω), ω)| ds ≤

≤ c1 e
−kt + e−kt

t∫
0

eksh(s) ds ≤ c1 +W (4.3)

for all ω ∈ Ω. As a result, Q : Ω× E → E.
Define a closed ball Br(0) in the Banach spaceE centered at the origin of radius r = c1+W.

From (4.3),
‖Q(ω)x‖ ≤ c1 +W

for all ω ∈ Ω and x ∈ E. Hence Q : Ω × E → Br(0), and in particular, Q defines a map
Q : Ω × Br(0) → Br(0). Now we show that Q satisfies all the conditions of Theorem 2.1 with
X = Br(0).

First we show that Q is a random operator on Ω × Br(0). By hypothesis (H2), the map
ω 7→ f(t, x, ω) is measurable by the Carathéodory theorem. Since a continuous function is
measurable, the map t 7→ ekt is measurable and so the product ektf(t, x(t, ω), ω) is measurable
in ω for all t ∈ R+ and x ∈ R. Since the integral is a limit of the finite sum of measurable

functions, we have that the function ω 7→
∫ t

0
eksf(s, x(s, ω), ω) ds is measurable. Similarly, the

mapping

ω 7→ q(ω) e−kt + ekt
t∫

0

eksf(s, x(s, ω), ω) ds
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is measurable for all t ∈ R+. Consequently, the map ω 7→ Q(ω)x is measurable for all x ∈ E
and that Q is a random operator on Ω× Br(0).

Secondly, we show that random operator Q(ω) is continuous on Br(0). Let ω ∈ Ω be fixed.

Since limt→∞w(t) = limt→∞ e−kt
∫ t

0
eksh(s) ds = 0, there is a real number T > 0 such that

w(t) <
ε

4
for all t ≥ T. We show continuity of the random operator Q(ω) in the following two

cases:

Case I: Let t ∈ [0, T ] and let {xn} be a sequence of points in Br(0) such that xn → x as
n → ∞. Then, by the dominated convergence theorem,

lim
n→∞

Q(ω)xn(t) = lim
n→∞

q(ω) e−kt + e−kt
t∫

0

eksf(s, xn(s, ω), ω) ds

 =

= q(ω)e−kt + lim
n→∞

e−kt t∫
0

eksf(s, xn(s, ω), ω) ds

 =

= q(ω)e−kt +

e−kt t∫
0

lim
n→∞

[
eksf(s, xn(s, ω), ω)

]
ds

 =

= q(ω)e−kt + e−kt
t∫

0

eksf(s, x(s, ω), ω) ds = Q(ω)x(t)

for all t ∈ [0, T ] and for each fixed ω ∈ Ω.

Case II: Suppose that t ≥ T. Then we have

|Q(ω)xn(t)−Q(ω)x(t)| =

∣∣∣∣∣∣e−kt
t∫

0

eksf(s, xn(s, ω), ω) ds− e−kt
t∫

0

eksf(s, x(s, ω), ω) ds

∣∣∣∣∣∣ ≤

≤

∣∣∣∣∣∣e−kt
t∫

0

eksf(s, xn(s, ω), ω) ds

∣∣∣∣∣∣+

∣∣∣∣∣∣e−kt
t∫

0

eksf(s, x(s, ω), ω) ds

∣∣∣∣∣∣ ≤ 2w(t) < ε

for all t ≥ T and for each fixed ω ∈ Ω. Since ε is arbitrary, one has limn→∞Q(ω)xn(t) =
= Q(ω)x(t) for all t ≥ T and ω ∈ Ω. Now combining the Case I with Case II, we conclude
that Q(ω) is a pointwise continuous random operator on Br(0) into itself. Further, it is shown
below that the family of functions {Q(ω)xn} is an equicontinuous set in E for a fixed ω ∈ Ω.
Hence, the above convergence is uniform on R+ and consequently,Q(ω) is a continuous random
operator on Br(0) into itself.

Next, we show that Q(ω) is a compact random operator on Br(0). Let ω ∈ Ω be fixed
and consider a sequence {Q(ω)xn} of points in Br(0). To finish, it is enough to show that the
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sequence {Q(ω)xn} has a Cauchy subsequence for each ω ∈ Ω. Clearly, {Q(ω)xn} is a uni-
formly bounded subset of Br(0). We show that it is an equicontinuous sequence of functions
on R+.

Let ε > 0 be given. Since limt→∞w(t) = 0, there exists a real number T > 0 such that
w(t) <

ε

4
for all t ≥ T. We consider the following three cases in the sequel.

Case I: Let t1, t2 ∈ [0, T ]. Then we have

|Q(ω)xn(t1)−Q(ω)xn(t2)| =

≤

∣∣∣∣∣∣q(ω)e−kt1 + e−kt1

t1∫
0

eksf(s, xn(s, ω), ω) ds −

−q(ω)e−kt2 − e−kt2
t2∫

0

eksf(s, xn(s, ω), ω) ds

∣∣∣∣∣∣ ≤
≤ |q(ω)|

∣∣∣e−kt1 − e−kt2∣∣∣+
+

∣∣∣∣∣∣e−kt1
t1∫

0

eksf(s, xn(s, ω), ω) ds− e−kt2
t1∫

0

eksf(s, xn(s, ω), ω) ds

∣∣∣∣∣∣+

+

∣∣∣∣∣∣e−kt2
t1∫

0

eksf(s, xn(s, ω), ω) ds− e−kt2
t2∫

0

eksf(s, xn(s, ω), ω) ds

∣∣∣∣∣∣ ≤
≤ |q(ω)|

∣∣∣e−kt1 − e−kt2∣∣∣+
+
∣∣∣e−kt1 − e−kt2∣∣∣

∣∣∣∣∣∣
t1∫

0

eksf(s, xn(s, ω), ω) ds

∣∣∣∣∣∣+

+ e−kt2

∣∣∣∣∣∣
t1∫

0

eksf(s, xn(s, ω), ω) ds−
t2∫

0

eksf(s, xn(s, ω), ω) ds

∣∣∣∣∣∣ ≤

≤

|q(ω)|+
T∫

0

eksh(s) ds

 ∣∣∣e−kt1 − e−kt2∣∣∣+

+ e−kt2

∣∣∣∣∣∣
t1∫

t2

eks|f(s, xn(s, ω), ω)| ds

∣∣∣∣∣∣ ≤
≤
[
c1 + ekT ‖h‖L1

] ∣∣∣e−kt1 − e−kt2∣∣∣+ |p(t1)− p(t2)|
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for all n ∈ N, where p(t) =

∫ t

0
eksh(s) ds. Since the functions e−kt and p(t) are continuous on

[0, T ], they are uniformly continuous there. Hence,

|Q(ω)xn(t1)−Q(ω)xn(t2)| → 0 as t1 → t2

uniformly for all t1, t2 ∈ [0, T ] and for all n ∈ N.

Case II: If t1, t2 ∈ [T,∞), then we have

|Q(ω)xn(t1)−Q(ω)xn(t2)| ≤

≤

∣∣∣∣∣∣e−kt1
t1∫

0

eksf(s, xn(s, ω), ω) ds− e−kt2
t2∫

0

eksf(s, xn(s, ω), ω) ds

∣∣∣∣∣∣ ≤

≤ e−kt1

t1∫
0

eks|f(s, xn(s, ω), ω)| ds+ e−kt2

t2∫
0

eks|f(s, xn(s, ω), ω)| ds ≤

≤ w(t1) + w(t2) ≤ ε

4
+
ε

4
< ε.

Since ε is arbitrary, one has

|Q(ω)xn(t1)−Q(ω)xn(t2)| → 0 as t1 → t2

uniformly for all n ∈ N.

Case III: If t1 < T < t2, then

|Q(ω)xn(t1)−Q(ω)xn(t2)| ≤ |Q(ω)xn(t1)−Q(ω)xn(T )|+ |Q(ω)xn(T )−Q(ω)xn(t2)|.

As t1 → t2, t1 → T and t2 → T, we have

|Q(ω)xn(t1)−Q(ω)xn(T )| → 0 and |Q(ω)xn(t2)−Q(ω)xn(T )| → 0

as t1 → t2 uniformly for all n ∈ N. Hence,

|Q(ω)xn(t1)−Q(ω)xn(t2)| → 0 as t1 → t2

uniformly for all t1 < T, t2 > T and for all n ∈ N. Thus, in all three cases,

|Q(ω)xn(t1)−Q(ω)xn(t2)| → 0 as t1 → t2

uniformly for all t1, t2 ∈ R+ and for all n ∈ N.
This shows that {Q(ω)xn} is an equicontinuous sequence in Br(0). Now an application of

Arzela – Ascoli theorem yields that {Q(ω)xn} has a uniformly convergent subsequence on the
compact subset [0, T ] of R+. Without loss of generality, call the subsequence to be the sequence
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itself. We show that {Q(ω)xn} is Cauchy in Br(0). Now |Q(ω)xn(t)−Q(ω)x(t)| → 0 as n → ∞
for all t ∈ [0, T ]. Then for given ε > 0 there exits an n0 ∈ N such that

sup
0≤p≤T

e−kp
p∫

0

eks|f(s, xm(s, ω), ω)− f(s, xn(s, ω), ω)| ds < ε

2

for all m,n ≥ n0. Therefore, if m,n ≥ n0, then we have

‖Q(ω)xm −Q(ω)xn‖ = sup
0≤p<∞

∣∣∣∣∣∣e−kp
p∫

0

eks|f(s, xm(s, ω), ω)− f(s, xn(s, ω), ω)| ds

∣∣∣∣∣∣ ≤
≤ sup

0≤p≤T

∣∣∣∣∣∣e−kp
p∫

0

eks|f(s, xm(s, ω), ω)− f(s, xn(s, ω), ω)| ds

∣∣∣∣∣∣+
+ sup

p≥T
e−kp

p∫
0

eks[|f(s, xm(s, ω), ω)|+ |f(s, xn(s, ω), ω)|] ds < ε.

This shows that {Q(ω)xn} ⊂ Q(ω)(Br(0)) ⊂ Br(0) is Cauchy. SinceBr(0) is complete, {Q(ω)xn}
converges to a point in Br(0). As Q(ω)(Br(0)) is closed {Q(ω)xn} converges to a point in
Q(ω)(Br(0)). Hence Q(ω)(Br(0)) is relatively compact for each ω ∈ Ω and consequently Q
is a continuous and compact random operator on Ω × Br(0) into Br(0). Now an application
of Theorem 2.1 to the operator Q(ω) on Br(0) yields that Q has a fixed point in Br(0) which
further implies that the RDE (1.1) has a random solution on R+.

Next, we show that the solutions are uniformly attractive on R+. Let x, yΩ → Br(0) be any
two random solutions to the RDE (1.1) on R+. Then, for each ω ∈ Ω,

|x(t, ω)− y(t, ω)| ≤

∣∣∣∣∣∣e−kt
t∫

0

eksf(s, x(s, ω), ω) ds− e−kt
t∫

0

eksf(s, y(s, ω), ω) ds

∣∣∣∣∣∣ ≤

≤ e−kt
t∫

0

eks|f(s, x(s, ω), ω)| ds+ e−kt
t∫

0

eks|f(s, y(s, ω), ω)| ds ≤ 2w(t)

(4.4)

for all t ∈ R+. Since limt→∞w(t) = 0, there is a real number T > 0 such that w(t) <
ε

2
for

all t ≥ T. Therefore, |x(t, ω)− y(t, ω)| ≤ ε for all t ≥ T and for all ω ∈ Ω. Hence, all random
solutions of the RDE (1.1) are uniformly globally attractive on R+.

Finally, we prove that random solutions are asymptotically attractive to the line y = 0 on
Ω× R+. Let x : Ω → C(R+,R) be a random solution of the RDE (1.1) on R+. Then, for each
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ω ∈ Ω,

|x(t, ω)| ≤ |q(ω)| e−kt + e−kt
t∫

0

eks|f(s, x(s, ω), ω)| ds ≤

≤ |q(ω)| e−kt + e−kt
t∫

0

eksh(s) ds ≤ c1e
−kt + w(t)

for all ω ∈ Ω. Taking the limit superior in the above inequality as t tends to∞ yields

lim sup
t→∞

|x(t, ω)| ≤ c1 lim sup
t→∞

e−kt + lim sup
t→∞

w(t) = 0

and so, limt→∞ |x(t, ω)| = 0 for all ω ∈ Ω. Therefore, for each ε > 0 there exists a real number
T > 0 such that |x(tω)| < ε for all t ≥ T and ω ∈ Ω. Hence all random solutions of the RDE
(1.1) are uniformly globally asymptotically attractive to the zero random solution on R+.

Example 4.1. Let Ω = (−∞, 0). Given a function x : Ω → C(R+,R), consider the RDE

x′(t, ω) + x(t, ω) =
e−t sinωt x(t, ω)

1 + |x(t, ω)|
,

(4.5)
x(0, ω) = 1

for all t ∈ R+ and ω ∈ Ω.

Here, q(ω) = 1 for all ω ∈ Ω and f(t, x, ω) =
e−t sinωt x

1 + |x|
for t ∈ R+, x ∈ R and ω ∈

∈ (−∞, 0). Clearly, the function f is a random L1-Carathéodory with growth function

h(t) = e−t ≥
∣∣∣∣e−t sinωt x

1 + |x|

∣∣∣∣ = |f(t, x, ω)|.

Again, we have

lim
t→∞

e−t
t∫

0

e−ses ds = lim
t→∞

e−t
t∫

0

ds = lim
t→∞

t

et
= 0.

Thus, both the hypotheses (H1) and (H2) of Theorem 4.1 are satisfied and hence the RDE (4.5)
has a random solution and all random solutions are uniformly globally asymptotically attractive
to the zero random solution on R+.
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