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The uniaxially anisotropic Heisenberg Hamiltonian H is considered, which describes a simple lattice of spins and
incorporates first-nearest, ..., m-nearest neighbour interactions under the condition that J e 20,j=1,...,m,

where J jrajare the exchange and anisotropy constants of the j-th shell of neighbours, respectively. It is proved that,
there are no bound states in the two-magnon space above the band of the continuous spectrum of H and, for the XY

model, there are no two-magnon bound states at all.

Consider the following Hamiltonian of a simple pe-
riodic lattice of spins s:

H=3Jh() ,
j=1

1

+am 2
h() = ~ 535 2 [S; Si+3’j + "‘j(SizSiz+5’j =s9] .

i,d

where the summation extends over all N lattice vec-
tors i and over the vectors 3, connecting an atom with

its j-nearest neighbours. For convenience, an additive
constant is chosen so that H|0) = 0, where |0) is the
state of total spin alignment (57]0) = s|0) Vi), and

ithe Hamiltonian is divided by s.
The two-magnon space I, , which is invariant un-

der H is made up of the vectors D(i, j) = S; Sj" [0)/ F,

where the norm factor F=2s if i=}j, and

2V s(2s — 1) otherwise.

The subspace of T', corresponding to the momen-
tum k (we denote it by I',,) is spanned by the vectors

p(@) = (1/VN) ) XM D(m, m+q)e*V? |
m

where the summation is carried out over all lattice
vectors m.

The analytical solutions of the spectral problem for
Hin I‘2k are available only in a few simple cases (see,

e.g., Ref. 1,2). In this connection, it appears
interesting to investigate the general properties of the
spectrum of H. The purpose of the present work is to
solve part of this problem by comparing the spectrum
of H with the well-known spectrum of the Hamiltoni-
an J describing noninteracting magnons.

We introduce J as usual (e.g., Ref. 3): Consider the
space Sym I‘f, i.e. the symmetric tensor product of

two one-magnon spaces I'; , spanned by

¥(, i) = (5; 10 ®Sj_|0) + Sj_|0)®Si_|0) )/ 2sM
were M = 2 if i = j and V2 otherwise. Then 3 in
Sym I‘f: S=H QI+ I® H, , where H, is H acting
inI'|, and [ is the unity operator. Lct us classify the

eigenvalues of & by the total momentum k. Then,
accordingly,

I=>e,
k

where 3, has the eigenvalues (which condense into an

interval of the continuous spectrum' as N - )
e(ky) + e(ky), k =k, + k, , and (k) are solutions of

the one-magnon problem. J, acts in the subspace
(SymT xz)k spanned by the vectors

*  Continuous spectrum here is the set of nonisolated points of growth of the resolution of the identity and eigenvalues of infinite multiplicity.
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¢'(@) = (/VN) S *Py(m, m+q)e*V? .
m

We note that I, is isomorphic with P(s)(Sym I'?), ,
where P(s) = I if s>1/2, and P(1/2) is the ortho-
gonal projection on the subspace spanned by vectors
¢'(q) with q # 0. The choice of an isomorphism is
apparent: ¢(q) corresponds to P(s)p’(q).

The main result here is the following theorem,
which holds in the limit as N - .

Theorem. The spectrum of H in each I',, includes a

single interval of the continuous spectrum C(H)' and
is bounded above by the least upper bound of C(H);

for aj=0, j=1,..,m, iec. the XY model, the

spectrum is also bounded below by the greatest lower
bound of C(H). That is, there are no points of the
discrete spectrum above C(H), and, for the XY
model, there is no discrete spectrum.

Proof. Operating with H on basis vectors ¢(q) and
considering the limit as N -+ », we obtain the
following representation for A in I',,:

H=L +BV,+V,, W

were L, coincides with P(s)3, P(s) in the above es-
tablished isomorphism between T, and
P(s)(Sym T, ;

m - ->
Vip(0) = 3 7, 3 2 cos (k3,/2)p(d))

jas ] ’
=t 3

¥, 9(8;) = J; 2 cos (k3;/2)p(0) ,

-
Vip(@ =0 if q=0,3; ;
B=V2-V2(1 -1/2s) (V,=0if s=1/2) ;

Vz ?’(6}) == (Jj a; /s)g)(é;) >

- Vap@=0 if q=9;,

-
where the prime indicates that 6} take values in a

halfspace [since ¢(q) = ¢(~q) }.
Since H coincides with the self-adjoint 3, in the

isomorphism up to a finite-dimensional perturbation,
we see by the Weyl theorem that C(H) coincides with
the spectrum of J; . Thus, taking it into account that,

*  We derive this known fact below for consistency.
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as is easy to show, the spectra of nxn truncated
matrices H, (% ) represented in the basis of vectors
#(@) lp’(a)] converge to the spectrum of H(J,) as
n - «, it remains for us to prove the following state-
ment for n greater than the dimensionality of
BV, + V, : The spectrum of H, is bounded above by
the maximum eigenvalue of I, ; for a = 0,
j=1, ..., m,itis also bounded below hy the minimum
eigenvalueof 3, .

For s=1/2, this statement is proved straight-
forwardly by the variational principle since V; =0
and V, has only nonpositive eigenvalues.

In order to prove the theorem for s > 1/2, we note
first of all that X(V2) = L, , + V2V, isrepresented in
the basis of vectors p(q) as the direct sum of matrices
of two operators, one of which coincides with J,
restricted to the subspace spanned by ¢’(0), the
other, with J,  restricted to the orthogonal comple-

ment of the first subspace to the whole space where
Sy, acts. Hence, the spectrum of X(\/—Z_ ) lies between

the minimum and the maximum eigenvalues of Skn .
Now considering the representation

XB) =Ly, +BV, =L, +yV2V, =
L = XD+ (=L, @
y=,B/\/_2-= 1-V1=1/2s

and again using the variational principle, we see,
since 0 < y < 1, that the spectrum of X(8) lies bet-
ween the minimum and the maximum eigenvalues of
Jy,- he complete proof follows from the fact that

H, = X(@) + V, and eigenvalues of V, are nonposi-

tive.
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