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1t is predicted that in systems with pairing of spatially separated electrons and holes the planar

vortices, in which the electron-hole pairs rotate in the plane of the structure, can become energy-advan-

tageous in a nonuniform magnetic field. In this case the vortices should form an ordered, though

translation-noninvariant, structure.

PACS: 67.20.+k

The possibility of Bose condensation of real exci-
tons, i.e., excitons whose size is smaller than the
distance between them, was first pointed out in
Ref. 1. Later, this subject was discussed in connec-
tion with exciton insulators [2], in which the exci-
tons are large compared with the electron-electron
distance. By analogy with He-II and superconduc-
tors, it was assumed that Bose condensation of
excitons would lead to the appearance of superfluid
properties in exciton system. Since an exciton is an
electroneutral excitation, it cannot transfer either a
charge or mass. There is, however, the possibility of
a nondissipative transfer of energy and possibly of
dipole and magnetic moments. This statement does
not imply the true superfluidity. It only means that
dissipation of the energy flow (or polarization) does
not occur below the Bose condensation temperature
during times shorter than the electron-hole recombi-
nation time T, . It was shown later [3] that the
interband transitions responsible for the value of T,
lift the degeneracy of phase of the order parameter
and cause a gap in the excitation spectrum, bringing
the system from the superfluid state to the insulator
state. Since it takes about T, for gap to form, the
later statement is true for times longer than T, . As
a result, steady superfluidity in the exciton gas does
not take place.

The problem of superfluidity of electron-hole gas
was approached from a new standpoint in the pub-
lications [4,5], which called attention to the possi-
bility of pairing of spatially separated electrons and
holes (PSSEH). In systems with PSSEH the inter-
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band transitions coincide with the interlayer transi-
tions and the probability of interlayer transitions
can be easily changed by varying the thickness d of
a dielectric layer, which separates layers with elec-
tron and hole conductivities. Since the probability
of interlayer transitions decreases exponentially
with increasing d, and since the binding energy of
electrons with holes falls off algebraically with d,
the binding energy can reach 102 K, at d = 1076 cm,
but interband transitions can be completely disre-
garded. As a result, in systems with PSSEH, elec-
tron-hole pairs can go into a truly superfluid state.
Moreover, in systems with PSSEH there is no local
compensation of the electron current by a hole
current, which makes it possible to observe super-
currents equal and opposite in direction, in layers
with electron and hole conductivities. This means
that in systems with PSSEH, a rather unusual
superconductivity mechanism can be realized. In
this connection, it was proposed to call superfluid-
ity of electron-hole pairs in such systems «condenser
superconductivitys [6].

The predictions made in Refs. 4—6 became of great
interest when the progress in microelectronics re-
sulted in the creation of the required structures.
Many experimental [7—11] and theoretical [12—16]
studies, in which the systems with PSSEH were
analyzed, were published. However, in contrast to
the 3D systems, in which a considerable progress in
obtaining degenerate gas of excitons, and perhaps
Bose condensation of excitons [17] has recently
been achieved, for systems with PSSEH it is im-



possible at present to say with confidence that
condenser superconductivity is realized under ex-
perimental conditions. Additional difficulties in re-
cording of this superconductivity stem from the
electrical neutrality of the pairs and the impossibil-
ity of using a traditional technique of measurement
of the transport phenomena.

In the present paper we describe a new phenome-
non in condenser superconductors, the observation
of which is perhaps a more simple experimental
problem than direct measurement of conductivity
currents in electron and hole layers. We show that
a nonuniform magnetic field can lead to the appear-
ance of quantized vortices in the system in which
electron-hole pairs rotate in the plane of the struc-
ture. We also show that although these vortices are
very similar to the Onsager—Feynman and Abri-
kosov vortices, under certain conditions the struc-
ture formed by them differs radically from the
structures formed by Onsager—Feynman and Abri-
kosov vortices.

Note that the behavior of the systems with PSSEH
in a uniform field normal to a structure plane was
considered many times. It was observed for the first
time in Ref. 18, then in a series of studies [19], and
quite recently in Refs. 20 and 21. In all those
studies, the influence of a strong magnetic field H
on the pairing of electrons with holes was consid-
ered for the case in which the cyclotron radius
(cfi/e H)'/? is lower than the Bohr radius €%%/mé* .
The possibility of inducing planar vortices by a
nonuniform magnetic field has not been considered
until now. We consider here the case of weak
magnetic fields [(c%i/e H)'/? >> €7i/me?)] in which
the effect of the field on pairing can be ignored.

The system under consideration is a three-layer
structure: two conducting two-dimensional layers
are separated by a thin insulator layer. For definite-
ness, we assume that the lower layer has electron
conductivity and the upper layer has hole conduc-
tivity. The Coulomb interaction leads to electron-
hole pairing, and the pairs form Bose gas which
becomes superfluid below T, [6]. In the coherent
phase the supercurrent is j, = —env®(z + d/2) in
the electron layer, and j, = envd(z — d/2) in the
hole layer. Here n_ is the two-dimensional super-
fluid density and —e is the electron charge. We
assume that the conducting layers are infinitely
thin, which leads to a & function dependence of the
current density on the z coordinate. The superfluid
velocity of the electron-hole pairs, in general, is [4]

%
vo=o 00— (A, - A) . (1)
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Here m is the pair mass; ¢ is the order parameter
phase; A, and A, are the vector potentials in the
electron and hole layers, respectively.

Here we assume that the thickness of the insulator
layer, d, is small in comparison with the distance in
which the vector potential A changes, so that the
difference A;, - A is

A -A =2y (2)

¢ o0z
On the other hand, we consider d large enough to
ignore the tunnel transitions of the electrons be-
tween the conducting layers.

Our primary interest is in the velocity field of the
planar vortex and the magnetic field created by the
vortex. For the vortex, whose center is at p = 0, the
phase is

_ Y
o= arctan” . 3)

Because of the spatial separation of the electrons
and holes, the rotation of the pairs generates a
magnetic field in the surrounding space. To find the
magnetic field, we must solve a Maxwell’s equation

DxH:%T[j(z). (4)

Substituting the corresponding currents in the
electron or hole layer instead of j in Eq. (4),
writing H as H =0 x A, and using the condition
0 OA =0, we obtain

Ay A 25[5(2 —d/2) -8z +d/2)]=0.

‘0 )

Here the vector S =7c O¢/e has only the 6th

component for the phase ¢ from Eq. (3) and

Sg =Tic/ep. We also introduce the dimensionless
quantity y = 4me?d /mc* .

To solve Eq. (5), we take the Fourier-transforma-
tion of the vector potential

Alp, 2) = I A(q, k) exp ligp + ikd] d%q dk/(2n)3( o

Substitution of Eq. (6) into Eq. (5) gives the inte-
gral equation

d
(@ + K)A@, k) = 2y[ 3F psinl(p - Bd/21A, p) =
=-2i % sin ? S(q) . (D

Its solution is
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2iy sin kd /2 S(q)

Alg, k) == .
@RB="" g* + B 1+ (y/2) exp - gds

8
Before finding the potential A(p, 2) from Eq. ((8)),
it is useful to estimate y numerically. It is y=
=~ 2m 107 for the electron density n = 1012 cm~2,
the insulator layer thickness d = 1078 c¢m, and the
effective mass of the pair m = 0.1 m , where m is
the free electron mass. The y value is even lower for
smaller » and larger m. The condition y<<1 is
therefore oversatisfied for the experimental condi-
tions. Equation (8) can therefore be restricted to
the terms of the order of y. Substituting the
A(q, k), calculated with this accuracy from Eq. (8),
into Eq. (6), we obtain

We can now easily find the magnetic field excited
by the planar vortex. The projection of the mag-

ehng

z=-d/2

netic field normal to the conducting layers is

H, =p'0(pAg)/0p, i.e.,

ehn
H, =2mn- = x
xHp2+ @ = d/ 22 = [+ 2+ d /DT

(10)
It is evident that H, is an odd function of z. The
maximum value of H, is attained in the conducting
layers, i.e., at z = +d /2. The magnetic flux through
the z = d /2 plane, which is related to the electron-
hole vortex, is

ATehin Sa'

dJEJ-HZpdpdezTEyqao. (11)

The flux is not universal and depends on the super-
fluid density n, and the insulator thickness d.
It constitutes only a small part of the flux quan-
tum, ®, = hc/2e, produced by a vortex in ordinary
superconductors.

The magnetic field component H p =~ 04y 0z is

z+d)2 g U2

d
H_=2m 3ign @ — 5~
P mep % 2

Far from the vortex center or, more exactly, at
p >> d, the field H 0 between the conducting layers
decreases as 1,/p. As a result, the H_ contribution to
the superfluid velocity v, in Eq. (1) and the term
proportional to O¢ decrease as 1/p. The 1,/p de-
crease in the velocity v, implies that the energy U
of the interaction between the vortices of opposite
circulations is proportional to In |p, = p,|, where p,
and p, are the vortex coordinates. We can show
that the renormalization of the proportionality coef-
ficient in U due to the spatial electron-hole separa-
tion is about y. But the energy U, determines the
T, at which the pairs of vortices of opposite circula-
tion dissociate, i.e., the temperature of the super-
fluid Berezinskii—Kosterlitz—Thouless transition.
For this reason, the renormalization of T, is of the
same order of magnitude. The spatial electron-hole
separation therefore has virtually no effect on the
temperature of the superfluid transition of the elec-
tron-hole pairs.

It is very important that because of the spatial
electron-hole separation, the pairs which are as a
whole electroneutral interact with the external
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magnetic field. As a result, the external field can
lead to the vortex formation. The appearance of
vortices in the external magnetic field H,, is control-
led by the energy

2

Ur N Oy2 HME,O O
Ezj-dng—;z%iﬂ¢+idz><HH+ Em—C L)
0 0o oon  4mpgg

(13)

The local field H consists of the external field H,,
and the field created by the moving electron-hole
pairs. In Eq. (13) we take into account that the
main part of the energy of the field created by the
pairs is concentrated in the space between the
conducting layers. In this region the field H may be
assumed equal to H,, + 4T[ensi x v./c [cf. Eqs. (10)
and (12)]. Using this expression and discarding the
corrections on the order of V2, we obtain the follow-
ing expression from Eq. (13):

) |]22ns ) Tined . O

E= [ d0 Dy OO+~ 06 G B
(14)
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Fig. 1. Schematic diagram with two-dimensional azimuthal cur-
rent
It can be concluded that with an appropriate
strength and direction of the field H, , the second
term can compensate for the vortex-related energy
loss, I (h2ns/2m)(D¢)2d2p. The vortex generation in
the system thus becomes energy advantageous, as in
the case of type-II superconductors at H, > H 4
The magnetic field excited by the two-dimensional
current that circulates around the origin of coordi-
nates is perhaps the most favorable field for genera-
tion of vortices. A schematic representation of this
field is shown in Fig.1. If the two-dimensional
density of the azimuthal current is 7, then the
magnetic field which is generated by the current at
some distance from the edge of the structure is

21/2 [
21‘[[% z - 1)*0 |z -1
Hy, =— +( )D

0= < : - Tgmgn(z—l).
(15)
Here [ is the distance to the plane with the current
I reckoned from the midpoint of the insulator layer
in the electron-hole structure.
Substituting the phase

¢ =% arctan [(y - y;)/(x - x;)]

(x;, y, are the coordinates of the ith vortex) into
Eq. (14), we find the energy E of the vortices in the
field H,, . The energy E depends essentially on the
size and shape of the system as the velocity o,
decreases slowly from the vortex center. If the
condenser superconductor is a three-layer disk of
radius R, whose center coincides with the center of
the structure shown in Fig. 1, and if the distance [
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between this structure and the disk is much shorter
than R, then the vortex energy will be

N N
1
E= zEv(pz) +§ Z U(Dl ) p]) (16)
i=1 izj

Here E_ is the energy of one vortex, and U is the
energy of interaction between the vortices:

Tm2ns R2 - p2 R - pd
o O

E (p) = o, Un
o R Ao
U(pl ’ p]) =
Wi?n,  R* - 2p,p; cos (6, - 8)) + pfpf./R2

m " p? - 2p.p. cos (8, — B)) + p? '

i it i 7N (18)
The first term in Eq. (17) is the intrinsic vortex
energy in the absence of the external magnetic field
and the second term is the vortex-field interaction
energy. Here we have introduced the notation

A1 = 41ded

Tic? (9

Equation (18) takes into account the direct interac-
tion between the vortices and their interactions
with the images whose presence turns the v, compo-
nent normal to the disk bound into zero.

In Eq. (17) the term proportional to A~! makes
the vortex state advantageous for small A (large
currents ). To find the current I, at which the
vortex creation becomes energy advantageous, we
should take the number of vortices N =1 and the
vortex coordinate p, = 0. Setting E, = 0, we have

41T[C1€d 1

)\511 7%02 = p In

£ (20)
Substituting d = 107 ¢m into Eq. (20) and taking
into account that HOp =21 /c at p >> d, we find
HEL =1 Gs for R =1cm.

At I > I the system has a finite number of vor-
tices, which can be easily found for I >>1 ;. In
this case the vortices may be considered continu-
ously distributed. Introducing the vortex density
n,(p), we obtain

E= I E_ (p)n,(p)d%p +

i
+ g I n, (P U, py)n (p,)d%pid%p, . (21)
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Varying Eq. (21) in n,(p) and setting the result
equal to zero, we obtain the equation for the de-
pendence of the vortex density on p. We can solve
the equation exactly and thus show that at p >> [

n.(p) = (4rrp) ! . 22)

The result is drastically different from that known
for neutral superfluid systems and ordinary super-
conductors. In both cases the equilibrium vortex
concentration (Onsager-Feynman and Abrikosov,
respectively) is spatially uniform. We clearly see
from Eq. (22) that », in our case decreases with
increasing p.

It is known that the Onsager-Feynman and Abri-
kosov vortices form a triangular lattice. The ques-

—lnNi+(Ni—1)1n§+ln%—eXpE—ZNiln

(]

This exact expression can be simplified consider-
ably at N, >> 1. In the case the main contribution
to the last sum in Eq. (23) is made by the terms for
which  |In P/ pj <<1. For these terms
|Inp,/pl =@, =P —i/p; . The terms with
In R*/p,;p; may be discarded far from the disk edge.
Varying t{]e resulting expression in N; and p; and
setting the result equal to zero, we obtain a set of
equations for these quantities. The solution for
R>>p,>> \is

Nz (24)
2\

(Pisy = P)* = 40p; .

Both results of Eq. (24) readily follow from
simple physical considerations. The number of vor-
tices on the ith circumference is

pi+1 21

N, = .p[ .0[ n,(p)pdpde . (25)

Substitution of n(p) from Eq. (22) into this
expression gives N; = (p,.4 — P;)/2\A. To obtain the
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tion then arises whether the vortices considered in
this paper also form a lattice. Since n (p), according
to Eq. (22), decreases with increasing distance from
the disk center, it is evident that the vortices cannot
form a structure invariant under translations. Equa-
tion (22), however, admits a structure invariant
against rotations. As such a structure we choose the
structure where vortex cores are situated on the
circumferences whose centers coincide with that of
the disk. The number of vortices on the ith circum-
ference is N, , and its radius is p; . Performing in
Eq. (16) summation over the vortex coordinates on
the ith circumference by the Poisson summation
formula, we obtain the following expression for the
vortex energy:

1 1 —exp E— N, In RQ/pipjﬁH B

+ 7 In
N; 1 —expF N, In pi/pjg ﬁ
O O

Rpl (23)
o oY
0 immQ

0

other result of Eq. (24), we should take into ac-
count that the repulsion forces between the vortices
of the same circulation are isotropic. It is therefore
expected that the spatial distribution of vortices is
locally isotropic. In this case the mean vortex spac-
ing 2mp,;/N, for the particular circumference coin-
cides with the mean vortex spacing p;,4—p; on the
neighboring circumferences. Substituting the value
for N; , we obtain 4TAp,/(p;11 = P;) = Pjsqy — P; >
which coincides with Eq. (24) with an accuracy up
to the multiplier Tt

We have considered thoroughly the case of genera-
tion of planar vortices by the field of two-dimen-
sional circular current. It is inferred that in an
arbitrary magnetic field, within the limit where
vortices are assumed continuously distributed, the
vortex density is n,(p) = (ed/21iic) |0H,/0z. In
summary, a nonuniform magnetic field can, in gen-
eral, excite vortices in the PSSEH systems. The
nature of the vortex distribution in space needs to
be studied.

The research described in this publication was
made possible, in part, by Grant U2D200 from the
Joint Fund of the Government of Ukraine and
International Science Foundation.

991



10.

11.

12.

992

S. A. Moskalenko, Fiz. Toverd. Tela 4, 276 (1962);
J. M. Blatt, K. W. Boer, and W. Brandt, Phys. Rev. 126,
1691 (1962).

. L. V. Keldysh and Yu. V. Kopaev, Fiz. Tverd. Tela 6,

2791 (1964); B. I. Halperin and T. M. Rice, Solid State
Phys. 21, 116 (1968).

. R. R. Guseinov and L. V. Keldysh, ZA. Teor. Eksp. Fiz.

63, 2255 (1972) [Soov. Phys. JETP 36, 1193 (1972)].

. S. I. Shevchenko, Fiz. Nizk. Temp. 2, 505 (1976) [Sov. J.

Low Temp. Phys. 2, 251 (1976)].

. Yu. E. Lozovik and V. I. Yudson, Zh. Eksp. Teor. Fiz. 1,

738 (1976) [Sov. Phys. JETP 44, 389 (1976)].

. S. 1. Shevchenko, Phys. Reo. Lett. 72, 3242 (1994).
. J. E. Golub, K. Kash, J. P. Harbison, and L. T. Florez,

Phys. Rev. B41, 8564 (1990).

. U. Sivan, P. M. Solomon, and H. Shtrikman, Phys. Rev.

Lett. 68, 1196 (1992).

. G. D. Gilliland, A. Antonelli, D. J. Wolford, K. K. Bajaj,

J. Klem, and J. A. Bradley, Phys. Rev. Lett. 71, 3717
(1993).

L. V. Butov, A. Zrenner, G. Abstreiter, G. Bohm, and
G. Weiman, Phys. Rev. Lett. 73, 304 (1994).

J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys.
Reo. Lett. 74, 1419 (1995).

L. Swierkowski, J. Szymanski, and Z. W. Gortel, Phys.
Reo. Lett, 74, 3245 (1995).

15.

16.

17.

18.

19.

20.

21.

X. Zhu, P. B. Littlewood, M. S. Hybertsen,
T. M. Rice, Phys. Rev. Lett. 74, 1633 (1995).

. A. B. Dzyubenko and G. E. W. Bauer, Phys. Rev. B31,
14524 (1995).

G. Vignale and A. H. MacDonald, Phys. Rev. Lett. 76,
2786 (1996).

Y. Naveh and B. Laikhtman Phys. Rev. Lett. 77, 900
(1996).

D. W. Snoke, J. P. Wolfe, and A. Mysyrowicz, Phys. Rev.
B41, 11171 (1990); Jia Ling Lin and J. P. Wolfe, Phys.
Rev. Lett. 71, 1222 (1993).

Y. Kuramoto and C. Horie, Solid State Commun. 235, 713
(1978).

I. V. Lerner and Yu. E. Lozovik, Zh. Eksp. Teor. Fiz. 78,
1167 (1980) [Sov. Phys. JETP 51, 588 (1980)];
I. V. Lerner and Yu. E. Lozovik, Zh. Eksp. Teor. Fiz. 80,
1488 (1981) [Sov. Phys. JETP 53, 763 (1981)]; A. B.
Dzyubenko and Yu. E. Lozovik, Fiz. Tverd. Tela (Lenin-
grad) 26, 1540 (1984).

D. Yoshioka and A. H. MacDonald, J. Phys. Soc. Jpn. 59,
4211, (1990).

X. M. Chen and J. J. Quinn, Phys. Rev. Lett. 67, 895
(1991).

and

Fizika Nizkikh Temperatur, 1997, v. 23, No 9



