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The two-orbital Hubbard model is used to obtain formulas for the fermion excitation spectrum in the
energy bands hybridized by Anderson’s interaction. A transition to the Hubbard operators, which
diagonalizes the one-site part of the Hamiltonian, allows us to use the Green's temperature function
technique to take into account the interstitial jump term while studying the superconducting properties
of the model. An analysis of the lower part of the energy spectrum leads to a formula for the
superconducting transition temperature 7' associated with the pairing of quasiparticles in one of the
correlated bands. The dependence of T on electron concentration and energy parameters determining the
intraatomic correlation is studied. Proposing a simple relation between the value of pressure (P) and
width of the correlated band, the dependence of T on the pressure was defined. Good agreement between
the theoretical calculation of the dependence of T on the pressure and the experimental results for
Y,_Pr Ba,CuO, ; is found. Comparison of the theoretical and experimental results for the dependence
of T and its derivative d(In T)/dP on Sr and Bi-content (x) in La, Sr CuO, has been made. It is
concluded that the model under consideration can be used for the description of the shift in T under

pressure for a number of superconductors.
PACS: 74.20.-z

1. Introduction

The theoretical investigation of transition metal
compounds is greatly complicated by the need to
take into account not only the band effects but also
the atom-like behavior of d and f states. Neverthe-
less, investigations of strongly correlated systems
have increased during the last few years [1,2]. The
enhanced interest in this problem is due to the
conviction of many researches that strong electron
correlations in the d (f)-electron subsystem ensure a
comparatively high superconducting transition tem-
perature T, in  cuprate compounds like
La,_,Sr.CuO, , YBa,Cu 0, 5, leBazCuOy , and
others. Investigation of the mechanisms of super-
conductivity of such systems is closely connected
with the high-pressure investigation of these sub-
stances. One of the advantages of using high pres-
sure technique is to change atomic distance without
any substitution of components, which often causes
some side effects [3,4].
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One of the popular models, which is used for the
description of a strongly correlated system, is the
Hubbard model [5]. Recently, Kosov and Shilov
showed [6] that Hubbard’s two-orbital degenerate
model is quite promising for studying the supercon-
ducting transition in narrow-band materials. In
contrast with Hubbard’s classical single-orbit
model [5], the two-orbit modification has a greater
potential and can describe the behavior of two
groups of strongly interacting electrons, i.e., con-
duction electrons and electrons localized at crystal
lattice sites.

This work is devoted to the theoretical study of
the superconducting transition and the high pres-
sure effect in compounds, described by a unified
Hamiltonian containing operators of Hubbard’s
two-orbital model and Anderson’s interaction. Such
unification considerably enhances the possibilities
of Hubbard’s two-orbital model and allows a more
consistent analysis than, say, that in Refs. 7-9, of
the interaction of nonlocalized and localized elec-



trons by proceeding from the mixing of their one-
particle states. In order to develop the paper [6] we
include here the Coulomb repulsive interaction of
conduction electrons on the one site U, . Taking
into account the potential U, allows us to compare
the results of the investigation of T, , which were
obtained here, with well-known results of others
models.

In sec. 2 we derive the energy spectrum of a
system described by the Hubbard-Anderson two-or-
bit model. In Secs. 3 and 4 we use the Green’s
temperature functions to study the energy spectrum
in disperse bands. We obtained the operator respon-
sible for superconducting pairing in the strong-
coupling approximation and analyzed its energy
dependence. On the basis of a numerical analysis we
show that there exists an optimal range of variation
of energy parameters, which corresponds to the
maximum value of T, . Special attention is focused
on the dependence of T, on the potentials U, and
V, (Anderson’s hybridization) and on the single-
particle energy E. In Sec. 5 we calculate the effect
of pressure on the superconducting transition tem-
perature. A comparison of theoretical and experi-
mental results for the dependence of T, on pressure
in Y,_.Pr _Ba,Cu30,_5, and for the dependence of
T, and its derivative d(In T,)/dP on Sr- and Bi-con-
tent x in La,_ Sr CuO, and Ban Bi,.Og has
been made.

2. Wave functions

In order to describe the properties of the strongly
correlated electron system we start from the Hamil-
tonian

}[_ 1nt z%-'-zt C ; (1)

ijs
%i = _l"l(niaT + nial + nicT tn wl) E(nzaT zal) -
- H(ntm - ial + nicT zcl) + In ial +
+ U(nzaT zal)(nicT zcl) + U e icl +
+ +
+ Vg, Cyy +a;, € +He),
where C:“S , C; and aw , a;; are the field operators

correspondmg to free and localized electrons at the
site i with spin projection s; . =aj, a;; and

n;,s = Ci, C, are the operators of the electrons; W is
the chemlcal potential; H is the applied magnetic
field; E is the one-particle energy of a-electrons; I,
U, and U, are the energy parameters defining
intraatomic correlation; I is Hubbard interaction of
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localized electrons; U is the interorbital Coulomb
interaction of ¢- and a-electrons; U is the repulsive
interaction of c-electrons at one site; V|, is the
matrix element responsible for hybridization of c-
and a-electronic states (Anderson constant); and
%t describes the interstitial tunneling of c-elec-
trons with transport integral ¢,; .

Diagonalization of the single-cell Hamiltonian
%i and transition to the Hubbard operators Xq
lead to the following results for the wave funct1on
and the energy spectrum:

E,=0,%, =0, 00— vacuum state ;

E,p=-W+(E-2H)/2+ E*/4+ V)2,

W

4p = cOSQ | +, 00+ sin a |0, +0;

Ecp=-u+(E+2H)/2 (E2/4 + V12
Wep =cosa |-, 00%sin o [0, -0

Is, 00= a, [0, 00J; [0, +00= C?, |0, 0C;

cos a =Z/(Z*+ VY%,

sina =V, /(2% + V)%,
E(EZ/4 +VH2+E2 if E>0;

E(E2/4 +VH2-E/2 if E<0.

It was mentioned in the introduction that the
one-particle states A, B, C, and D depend on the
energy V, :

Epg=U-2u+E+2H;
e+ A0 W= -0
E =U-=-2u+E;
W, = 27124, O | - 40
| +, +0= a; C;“T [0, 000; |-, -O=at CJ'l |0, 00J;
| +, -0=a; C], |0, 00
The energy of the remaining two-particle states,

Er, E; , and E,,, can be obtained by using the
cubic equation

X3+ AX?2+BX+C=0; (2)
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A=-(I+U+U, +3E);
B=(I+2E)I +U)+U,BE+U+1I)-4V3;

C=2VI +2E+U,) - U(E+U)QE+1) .

The roots X = {X, } of Eq. (2) define the energy
Egpps Xy =20+ E, )y - The wave func-
tions Wy , W, , and W,, , which correspond to the
energy states Ep , E; , and E,, , are presented in
the Appendix. It must be emphasized that a consi-
deration of two-particle states is the most signifi-
cant aspect of this research, which distinguishes it
from the widely discussed calculation of T, in the ¢-J
model [10], which does not directly take into
consideration the two-particle electron states at a
single site.

After exact diagonalization of the single-lattice
part of the Hamiltonian (1), it can be represented
in terms of Hubbard diagonal operators Xg in the
following form [6]:

%i:ZEPXP ; (3
P

P=0,A,B,..,K,L,M.

The operator %t which is responsible for inter-
stitial electron jumps can be represented as the
quadratic form of nondiagonal Hubbard operators:

Hoe =Yty 9iX) g;4X) (4)
ifs
The operators C, and C,; in %t are expressed

using the matrix defined in Eq. (A1) in terms of the
Hubbard operators, and are given in terms of the
operator functions Cj, = giDS(X) and C,; = g,(X),
whose explicit form is given in the Appendix by
Egs. (A2) and (A3).

Since it is difficult to analyze operators (3) and
(4) directly, we restrict our analysis to certain
conditions for preliminary calculations. We assume
that I, U >> U, , |E|, |ul, and V. Also, we need
to check our results according to two separate
conditions: E > 0 and E < 0. For this reason, we
use the intermediate symbols:

_ B if E>0;
Q=54 if E<o0;
D if E>0;

S=hc if E<o.

This means, for example, that for the value RI%
we have
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o RR if E>0;
Rk =lre it E<0
O

After the satisfaction of these conditions we need
to consider the one-particle states W, and W, , the
two-particle state W, , and the vacuum state W,
only. Furthermore, based on consideration of the
low-lying part of the energy spectrum, we will
obtain the formula for the superconducting transi-
tion temperature 7', resulting from the paired quasi-
particles in one of the correlated bands.

3. The Green’s functions

According to Zyubin et al. [9] and Plakida et
al. [10], who applied and developed the Green’s
function technique for solving such a problem, the
above-mentioned energy levels of single-cell part of
the Hamiltonian, correct wave functions, and fami-
liar commutation relations for Hubbard operators
can be used for finding the spectrum of elementary
excitations of nonlocalized c-electrons in the strong-
coupling approximation and for investigating their
superconducting properties. Using these assump-
tions, we define the vector

W= (X, X9, X%, XQ) .

We then determine the temperature Green’s
functions [11]

G(R, ,GR, ,T)=-[T ¥R, D¥R, B T)0
)

The equations for the components of the Green’s
function G are determined in the Appendix by
Eq. (A4). We obtain these equations by assuming
the existence of the order parameter A{f in the
superconducting phase:

AK = mpK|Xg(Rm)X§§(Rm) + X2(R )XYR,)I0, 00=

= W IX%(R, )0, 0C. (6)

The origin of the parameter A{f is closely related
to the anomalous mean (2, 0|C; . C; [0, 00 which
plays a fundamental role in the classical model of
superconductivity of nonlocalized BCS elec-
trons [12]. This can be verified, firstly, by using
Eq. (A2) for the operators C; . and C;  and, se-
condly, through a detailed analysis of the symmetry
properties of the state Wy . It can be seen from
Eq. (A1) that the wave function W, is a linear
combination of the initial functions [0, 20 |2, 00
[T'Cland, together with them, corresponds to the spin
S =0 of the two groups of electrons, while the spin
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moments described by these states of the two parti-
cles are opposite. If V) = 0 (hybridization of local-
ized and conduction electrons is absent), we have
W = W, = |0, 20 It can be seen from definition (6)
that Ay can be defined in terms of the anomalous
functions F%%(p, w,) and FIS&(p, w,) :

=TS S RSP @) + Fp, o)1 (D)
p n

The main determinant of Eqs. (A4) is
D = (@ + €t A + (Exelt, ) +

+ t; cos? G(R§)2(A§)2[(EK + ES _ EQ)2 + 40);21] ;
(7a)
Er0,10(t,) =M = 8/2 = [cos’ a (ny +np) +

+ (R (ng + mp)lt, /2 %

+(1,/2){[cos” o (ny*+ ng) + (RE(ngt n)lt, + B, +

+ 4 cos® o (RY)*(ng + ng)(ny + n )t2}1/2
A== (Eg+2y);

A, =A+E - sign (E)[E? + 4V2]1/2 .

The quantity &,,,, is the energy spectrum of
dispersed bands in the normal state, and n , ,
ng, and ng are the population densities of the
energy states W, , LIJQ , Wg , and Wy, which satisfy
the condition (ng + ng) + (ny + ng) = 1. For nu-
merical calculations we will use one parameter for
concentration n, where

(ng +ng) =1-n/2 and (ng + ng) =n/2 . (7c)

The conditions (7c) are convenient for the half-
filling of the c-band.

After solving the equation D =0, the following
expression for the energy spectrum in the Anderson
bands at T < T, can be found:

&5 1= €y + &30)/2 £ {[(E3, - &y /21> +

+ cos” A(RRE(OF)[2ET, + &) — (B + E -
~EgP +4cos a (R§)2t,§(a{)<)2]}1/ 2. (7b)

Knowing the Green’s function G(p, w,) and the
electron concentrations for localized states with
zero dispersion and using the completeness condi-
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=t Af cos® A (ng+ np)(iw,+ Eg= Ex)

tion (A5) for occupation numbers, we can deter-
mine the chemical potential p for A(If 0. For this
purpose, we assume that the density of states in the
dispersion region has a rectangular shape [6,8,9]:

p(e) = 2W B(W?> - %),
where 2W is the width of the c-band.
Carrying out calculations similar to those in

Refs. 6 and 9, we obtain the expression for the
chemical potential

A W B,

W= =g + 2Ang + nd WIRE)” -

(8)
P, ={B2W? £ 20 B.W +p31/2;

B, = cos® o (g +ng) = (R )2(”K+”S)

The chemical potential W is determined by the
concentration of electrons in the dispersed corre-
lated band, which equals n, = (RIS<)2(nK +ng). The
dependence of n, and p on V shows different
behavior patterns in the cases £ > 0 and £ < 0. An
increase of the hybridizing parameter V', leads to a
decrease of n, when E > 0 and to its increase when
E<0.

4. Temperature of the superconducting
transition

Before solving Eq. (7) for T,, we must de-
termine the Green’s functions F%%(p, w,) and
F%(p, w,) with the help of Eq. (A4). We write the
following expression for these functions:

F()Q%(p’ wn) =

iy ~E +E ~B_t
= ~t AK(RE) (nye+ ng)(ieo,~ Eg) — QQ K=,
0

F}%%(P, 0)”) =

iwn+E +B_t »

Q,

Qy = (& + WH(E + ), (9)

where &, and &, are given in Eq. (7b).
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Taking the relation (7) into account and consi-
dering that AIO<(TC) = 0, we obtain the equation for
the critical temperature T,

w
t1(2) tanh [&,,()/2T,] dt

=I4WR%w—%dmaw)’

-W

J(t) = cos® (@)(ng + n)(Eo(t) +

+E¢ = Ep)(&of) + Eg+ B_ tp) +

+ (R]S<)2(n[< + ns)(zm(t) - EQ)(Em(t) -

~Eq+Eg=B_t);

here &, ,(t) and &,,(t) are determined by Eq. (7a).
In order to solve Eq. (10) approximately, we
determine the value of ¢, from the equation

Eiolty) =0 (W <t, < W):
Qu +n)? -
fo = 2[8,B_ + B,u + )]

The approximate formula for T, following from
Eq. (10) and &,(¢,) = 0 has the form

1,2
Tc _ O 210(_W)E10(W)D )
W 0.575- Tg exp [-1/A(n, ty)];

(11)

Em(_W) _2(R ) (n[( + nS)W
B,W-P, -
510(W) i - 37

A(n, ty) =T(n, ty)/Nn, t;);

M(n, t,) = t, [cos® o (ny+ nolEs~ Ex)(Egt B_t,) +

+ (RY)(ny + ng)Eo(Eq = Ex + B_t))];

A, ty) = WIB,(2u+48) + B_A2u +A-B, t,) .

The quantity A(n, t,) plays the role of the quasi-
particle scattering amplitude with different spin
orientations. The attraction between quasiparticles
in a correlated band takes place under the condi-
tions

Am, t) >0; -W<t, <W; & (W)20.(12)

208

The conditions (12) can be used to determine the
concentrations ngy <n < ng,, for which T, #0.
Solving the equation &, ,(W) = 0 gives the following
value for ng, :

Ngy =2 cos? o/[cos® o + (R%)z] . (12a)

The condition A(n, t;) =0 gives the following
result for ng, :

2 cos? a (12b)
ng, =———— 192
U cos? o + Z(RIS<)2

In particular, if we set Vi, =0 and E >0 in
(12a) and (12b), we obtain ng; =2/3 and ng, = 1.
This result has been obtained in Ref. 7 in the frame
of the one-orbit Hubbard model (the so-called
«kinematics mechanism of superconductivity» ).

3. Pressure effects

Many investigations of high-T, superconductors
have been performed at high pressure [3,4,13,14].
The application of pressure usually strongly affects
the crystal structure of materials. High-pressure
investigations of elastic properties often give impor-
tant information about the relation between T, and
crystal symmetry. Applying the two-orbit Ander-
son-Hubbard model to describe the pressure de-
pendence of T, we chose to study the energy
parameters, which more sensitively depend on the
pressure P. Since U, I, U, V, and E are on-site
properties, their pressure dependence can be ig-
nored. The transport integral ¢ depends on the
spatial distribution of atoms and can be changed by
the applied pressure. Let us consider the region
where W depends linearly on t (W ~t,). Accord-
ing to Ref. 15, the transport mtegra? in metal
oxides can be expressed in terms of the lattice
parameters of the CuO, planes a, b, and ¢ by the
formulas

= hz/(Zm” @) ty=h/2mg %),

where m| and mg are the respective effective
masses.

Disregarding pressure dependence of the effec-
tive masses, we estimate the magnitude of d W ,/dP:

dW/dP - dt, /dP ~ -2W(d In a/dP) =2Wk, .

(13)

Here k,, k,, and k, are the compressibility
components along each crystallographic direction as

defined by
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k,=-dIna/dP; k,=-dInb/dP;

and k,=-dInc/dP .

In order to simplify the numerical estimation of
these quantities, we consider the case k, =k, =k, .
Using the relations (13), we obtain the expression
for the dependence of the band width on the pres-
sure P

W(P) = W(P = 0) exp (2k, P) . (14)

Equations (11) and (14) allow us to express T,
as a function of pressure. Using the expression (13),
it is possible to obtain equations for dT, /d P and
dInT, dP:

dT, /dP =T, (dIn T, /dP) ~ 2Wk,, (dT, /dW) ;

(15)
dT, T

4 4

dwW —2W

5+ 2WIB_ + (BXP, - P)W -
0

IW dA(n, to)%
An, t) AW
0O

-A B(P,+P))/2P _P_]+

dA(n, t) A(n, t,)
aw  ~—~ w ¢

D2 + B) - 2B, £,

+ A, t) 5
s NCTEVEY ViR

X

x [cos? a(n, + nQ)(ES —E)Eg+2B_t) +
+ (R (ng + ng)E(E = Ex +2B_t)) +

+ A(n, t))B, W(B,2u +L0) + A B))] -

O
d
g el
= 2WA (n, 192821 + 8 + & B_ = Bitol gy
O
du o B, WBHB -AB_
aw = AR (e +mg) =57 = —5p

6. Discussion

Superconducting transition

Expression (11) has the standard form of the
BCS theory. It should be noted that the amplitude
A(n, ty) directly depends on the values cos? a and
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(RY)? [see (A3)], which determine, according to
(A3), the efficiency of the transition between states
LIJQ , Wo, Wr, and W, . As was mentioned above,
in the cases Vy=0 (hybridization of @ and ¢ elec-
trons is absent) and E > 0, Eq. (11) describes the
results of the well-known kinematics mechanism of
superconductivity [7]. If we insert U, =0 into (11),
we obtain the results of Kosov and Shilov [6]. In
order to simplify the analysis of the dependence of
T, on the parameters of the problem, we carried out
detailed numerical calculations on the basis of
Eq. (11). The results are shown in Figs. 1,a—f. As
expected, the concentration dependence of T, /2W
shown in Figs. 1,a—f is bell-shaped with two critical
concentrations  ng, and ng, (TC z0 for
ng <n< n52). As shown in Fig. 1,a4, an increase
in V, when E > 0 leads to a decrease of the super-
conducting transition temperature and to a decrease
of the concentrations ng, and ng, . In this case
Anderson’s hybridization partly localizes the elec-
trons and decreases the concentration of carriers in
the correlated band n, = (R%)Z(nK +ng). It contri-
butes to the decrease of T, and shifts the curve
T, =T (n,) to the region of small concentration. If
E <0, Anderson’s hybridization partly delocalizes
electrons and increases the concentration of carriers
in the lower correlated band n, = (R§)2(nK +ng). In
this case (Fig. 1,b), the maximum of the curve
T, =T (n,) increases sharply with increasing value
of V, /W. Such behavior of T (n,) is just the
opposite when E > 0.

The dependence of T (n;) on E/W (E >0 in
Fig. 1,c and E <0 in Fig. 1,d can be seen in
Fig. 1,c,d. Figurel,e,f shows the dependence of T
on U, in different cases, E > 0 (a) and E <0 (b).

Pressure Effects

To study the capability of the model presented
here to describe the pressure effect on T,, we
attempted to explain the results of a high pressure
study of Y,_,.Pr.Ba,Cu;0,_ by Neumeier et
al. [14] According to Ref. 16, the substitution of
Pr#* for Y decreases the number of in-plane holes in
Y1_xPpra2Cu3C)7_y . In order to take into account
this argument we therefore must change the popula-
tion densities in Eq. (7¢):

(ng +ng) =n/2 ~ R, - xp) ,

were xp, is the concentration of Pr#* ions.

Using Egs. (7c), (11), (14), and (15), we obtain
an expression which allows us to find the depend-
ence of T, =T (P, xp). Initial compressibility data
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Fig. 1. Dependence of the function 7, /2W on the carriers concentration n, for the following values of the parameters:
E/W=20,U/W=6.0,U,/W =30, I/W =10.0 at different values of V,,/W: 0.5 (1), 0.7 (2), 0.9 (3), 1.1 () (a);
E/W=-3.0,U/W=6.0, U /W =4.0,I/W =10.0 at different values of V /W: 1.0 (1), 1.2 (2), 1.4 (3), 1.5 (4) (b);
Vy/W=1.0,U/W=6.0,U,/W=25,1/W=10.0 at different values of E/W: 1.0 (1), 1.5 (2), 2.0 (3), 2.5 (4) (¢);
Vy/W=12 U/W=60, U, /W=20, /W =8.0 at different values of E/W: 1.5 (1), =2.0 (2), =2.5 (3), ~2.8 (4) (d);
E/W=1.0,V,/W=02 U/W=6.0, /W =10.0 at different values of U /W: 0.5 (1), 1.0 (2), 1.5 (3), 2.0 (4) (e);
E/W=-15,V,/W=1.0, U/W =6.0,1/W = 8.0 at different values of U /W: 1.5 (1), 2.0 (2), 3.0 (3), 4.0 (4) ().
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0 04 08 12 16 20
P GPa

Fig. 2. Experimental data from Ref. 14 and theoretical curves
for the percentage shift in the superconducting transition tem-

perature T under pressure for Y1_xPpr32Cu307_y compounds.

The solid lines show the results of numerical calculations using
Eq. (15) for the following values of the parameters:
E/W=-20, V,/W=14, U/W=30, I/W=80,
U,/W=20,n =x, k =24007 GPa™".

for polycrystalline YBa,Cu304 45 and
YBa,CugOg ¢ of orthorhombic symmetry were ob-
tained by using a hydrostatic He-gas pressure cell in
a neutron diffractometer. According to Ref. 17, the
values of k, and k, for these compounds are respec-
tively k =2.2200073 GPa™!,  2.400073 GPa™l,
ky=1. 65007 GPa™!, and 2.141103 GPa™. In the
present numerical calculations we used the value
k,=ky= 2.420073 GPa!. Figure 2 shows the de-
pendence of T, = T (P, xp) and the results of a high
pressure study by Neumeier at al. [14] on
Y,_.Pr.Ba,Cus0,_, for a different Pr concentra-
tions. We found tﬁ/at the best agreement between
this model and experimental data takes place when
the intraatomic parameters of energies are U =
=3 eV, U =2¢eV, =8¢V, E=-2¢V, V,=
=1.4¢eV, and W(P =0) =1eV. These values are
typical of metal oxides [18]. In Figs. 3 and 4 we
compare the theoretical and experimental re-
sults [19-21] for the dependence of T, and its
derivative d(In T,)/d P [by using expression (15)]
on Sr and Bi-content x in La,_.Sr CuO, and in
Bz;1Pb1_xBixO3 . An analysis of the dependence of
d(In T,))/dP on the concentration of carriers n,
based on the results presented in Figs. 3 and 4,
indicates that an increase in the band width W
leads to a change of sign of the derivative
d(In T,)/dP from positive at small values of W
(Fig. 3,b) to negative at large values of W
(Fig. 4,b). The results shown in Figs. 3 and 4 are
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T./W-104

dInT./dP(1/(100 GPa))

.
0 ~ 01 02 03
n

(o3

Fig. 3. Experimental data and theoretical curves for the de-
pendence of T, (a) and its derivative d(In T,)/dP (b) on Sr
content x in La, Sr CuO, (electron concentration #n) (@ —
Ref. 19; O — Ref. 20). Solid lines show the results of numeri-
cal calculations using Eq. (15) for the following values of the
parameters: Vo/W=1.25, U/W = 3.0, I/W=5.0,
U,/W=10, n,=x, k, =8.0007 GPa™', P=2GPa at diffe-
rent £/W: —0.5 (1), —0.75 (2), —1.0 (3), —1.25 (4).

basically in accordance with the experimental re-
sults regarding the pressure dependence of the su-
perconducting transition of many metal oxides.The
dependence of T, on the width W of the correlated
band, shown in Fig. 5, also indicates that the An-
derson-Hubbard two-orbital model, in principle, is
able to describe the pressure dependence of T, for
various high-temperature superconductors [22]
(T1,Ba,CaCu,Oq , YBa,Cu,Oq , and others).
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Fig. 4. Experimental data and theoretical curves for the de-
pendence of T, (a) and its derivative d(In T )/dP (b) on Bi
content x in BaPb, Bi O, (electron concentration n) (e —
Ref. 21). Solid lines show the results of numerical calculations
using Eq. (15) for the following values of the parameters:

Vy,/W=1.0, U/W=24, I/W=40, U/W=08, n =x
k,=2.29007° GPa™', P =2 GPa at different E/W: -0.4 (1),
0.6 (2), 0.8 (3), -1.0 (4).
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Fig. 5. Dependence of the function T_,/2W on the width of the

band for the following values of the parameters: E/W = —1.5,

Vy/W=1.0, U/W=60, I/W=80 at different U,/ W:

1.5 (1),2.0 (2), 3.0 (3), 4.0 (4).
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Appendix

1. The wave functions of the two-particle states
K, L, M can be determined by the standard proce-
dure after calculating the roots of the cubic

Eq. (3):

Ay =(Ep —2E - 0n%2vz;
Aq = (E; —2E -D*/(E; -U)?*;
=(1+B},+B3) /7 By =B, B, ;
By =By, B,

(Epp+ 2E = U)Ey - U)
2= V2V, (Ey - Uy)

2
- 2V§

B

By, =V2V, /(Ey - U ;
—(1+C2 +C2)1/2; C1=C13C3

C

5 = Cy3 Cg5

Cyg = [(Eg = E = U)Eg = U)) = 2V31/12V31 5

Coy = (Ex - U)/V2V,y ;

[T0= 272+, -0+ | -, +0; |2, 00=a}, a},|0, OC;

0, 20= C}, C?, |0, 00.

2. Having determined the reciprocal matrix
{a; } ' [the matrix {a ]} was written in Eq. (A 1)]
and using the expressions for the functions W S
we can express the field operators C{| in terms ‘of
Hubbard’s operators:
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a. E>0;

Cl =cosa X9 + RE X2 = g0 (X) ;
Cj, =cosa X9 + REXE = g5 (X) ;
Rg ::Rg:

=cos o (A,B, - A,B,) +sin a (4,B; - A,B,)/V2 .

(A2)
b. E <0;

Cj, =cos a X4 + REXP = g1 (X) ;

v 0 4 PKYB = 0(xY -
i, =cosa Xe+ Ry Xy =g;,(X);

RE =R =

=cos a (C,A; - A;C3)/V2 +sina (CiA, - CA)) .

(A3)

3. After writing the equation of motion for func-
tion (6) using the Hamiltonian expressed by
Egs. (3) and (4), we obtain the following expres-
sions for the components of the Green’s function
[Ggsr(r, )=~ Xg(r)Xg(r')D= - Fg;(r, )] in the
momentum-frequency representation:

KD
(&, +n,[] b1y b1y by3 b14% g}gg(l’, w,)U
E 0 E: %)21 byy byz by Gogp: w,)O
D0 D e e e B dRRe @)
oD
U O g4 742 743 Y44 BTDK(p’ wn)g
(A4)
BO
(3, + n,0 O %2 63 0145 g}gg@: w,)U
E 0 E: %21 Con Co3 Oy (P, w,)0
Ho H %31 €32 C33 ‘3345 2o, wn)g’
U 0
30 8 e e cudoe o))

by, =i, + Ep = Ex = (RE (g + ng) t 5
by, =iw, - Ep - cos® o (ny + ny) tp ;
byy = iw, = Ep+ Ex + (RE ny + mp)

— 2 .
by, =iw, + Ep, + cos” a (n, + ny) t,;
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b,, =cosa RK(n, + npt,
b,, = cos a RK(n, + mt, ;

byy =by, == Cgy =Cpy == cos> @ Agtp ;
byy=byy =—cp=-c3= (RS)ZAStp ;

31 =~ by3 = by =-by5 =

— — - _ — Kpky .
SCyy =TT Cy T Oy = 032—cosaRDA0tp ;
— - - — K .
by, = by =y =cg, =cosa Ry(n, + nk)tp ;

- - - — K .
b3 = by =cyy =45 =cos a Ry(ny, + ny)t, ;

€y =iw, — Ep - cos? a (ny + nb)tp ;
— K2 .
Cyy =i, — Ep + Ey = (Rp)“(n, + nk)tp ;
— K2 .
€33 =10, — Ep + Ep + (Rp)“(n, + nk)tp ;

- 2
Chy =W, + Epy + cos” O (n, + nb)tp ,

where n,, n,, n;, and n, are the population
densities of the energy states under investigation,
which satisfy the condition

my+nytng+tn, =1, (A5)

w,=Q@2n+ )T, T is the absolute temperature;
n=0, 1, 2, ...; and ¢_is the momentum repre-
sentation of the transport integral ¢;; .

In the case E <0 we obtained the same equa-
tions for the Green’s function as (A4), in which we
should make the exchange: Ep - E, , E, - E,
and Rg - Rlé.
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