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A consistent theory of superconductive tunneling in single-mode junctions within a scattering formulation of
Bogolyubov-de Gennes quantum mechanics is presented. The dc Josephson effect and the dc quasiparticle transport
in the voltage-biased junctions are considered. Elastic quasiparticle scattering by the junction determines the equi-
librium Josephson current. The origin of Andreev bound states in tunnel junctions and their role in equilibrium
Josephson transport are discussed. In contrast, quasiparticle tunneling in voltage-biased junctions is determined by
inelastic scattering. A general expression for inelastic scattering amplitudes is derived and the quasiparticle current is
calculated at all voltages with emphasis on a discussion of the properties of subgap tunnel current and the nature of

subharmonic gap structure. -
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1. Introduction

The tunnel Hamiltonian model {1] has for many
years been a main theoretical tool for investigation of
tunneling phenomena in superconductors [2]. How-
ever, interpretation of recent experiments on trans-
missive tunnel junctions {3-5)] and complex super-
conductor-semiconductor structures [6,7] requires
more detailed knowledge of the mechanisms of the
superconductive tunneling than the tunnel model is
able to provide. Particularly informative are experi-
ments on superconducting quantum point contacts with
controlled number of transport modes and transpa-

rency, such as controllable superconducting break

junctions [8 ] and gate-controlled superconductor-se-
miconductor devices [9]. Since only a few transport
modes with controlled transparency are involved in
the tunnel transport, the experiments provide precise
and detailed information which can be directly com-
pared with theory.

The first attempts to develop a theory of supercon-
ductive tunneling beyond the tunnel Hamiltonian mo-
del [10-13 ] were made in generalization of methods
applied to SNS junctions [14,15] and superconduct-
ing constrictions [16,17 ] based on the Green’s func-
tion methods. In these theories, the junction Green’s
functions are directly found from the Green’s func-
tion equations which are supplemented by special bo-
undary conditions representing the tunnel barrier or
by matching the superconductor and insulator Green’s
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functions at the superconductor-insulator boun-
daries.

In the first studies of the Josephson effect in SNS
junctions [18,19 ] another method of calculation, ba-
sed on expansion over eigenstates of the Bogolyubov-
de Gennes (BdG) equation, has been used [20]. A
similar method has been also applied to SIS tunnel
junctions [21] and superconductor-semiconductor
junctions [22]. In the absence of inelastic scattering
the method of using the BdG equation gives the same
results as the Green’s function method [21]. One
might then expect that the Josephson effects in super-
conducting junctions can be explained on a rather
simple quantum-mechanical level. Following this
idea, the quantum-mechanical approach has been
successfully applied to calculation of the direct
Josephson current in different kinds of mesoscopic
weak links [24-28] and tunnel junctions [29-31].
This method was applied for the first time to voltage-
biased junctions by Blonder, Tinkham, and Klapwijk,
who considered quasiparticle tunneling in SIN junc-
tions as a scattering problem in BdG quantum
meghanics {23 ]. Later, the quantum-mechanical ap-
proach has been found helpful in investigations of
more complex phenomena of quasiparticle transport
and ac Josephson effect in voltage-biased SNS junc-
tions {321, mesoscopic S/S tunnel junctions [33]
and mesoscopic constrictions [34].

The quantum-mechanical approach based on the
BdG equation is adequate for describing the physical
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Fig. 1. SIS tunnel constriction.

situation in mesoscopic junctions,'where the inelastic
scattering effects are weak and most important is the
coherent electron dynamics. Because of the quantiza-
tion of transverse electron modes in mesoscopic junc-
tions [24,35], 1.D models for the current transport
through the junction may be appropriate.

In this paper we present a consistent quantum-me-
chanical theory of superconductive tunneling in a
one—mode quantum constriction (Fig. 1). We consider
the dc Josephson effect and also dc quasiparticle tun-
neling in the voltage-biased junctions. In the latter
case we focus attention on a detailed calculation of the
subharmonic gap structure (SGS) of the tunnel cur-
rent [331].

Following the Landauer approach [36], we con-
sider superconducting electrodes as equilibrium re-
servoirs which emit quasiparticles into the constric-
tion. Scattering by the junction goes into two
channels: (i) the normal channel in which the outgo-
ing quasiparticles remain in the same branch of the
quasiparticle spectrum, and (ii) the Andreev channel
in which quasiparticles change branch due to elec-
tron-hole conversions. The current in such a picture
results from the imbalance of currents carried by scat-
tering states originating from the left and the right re-
servoirs. Here the magnitude of the current is pro-
portional to the ‘transmission coefficient D of the
tunnel barrier.

The imbalance of currents in superconducting
junctions can be created in two ways: by establishing
a difference in the phases of the order parameters in

the left and right electrodes or by applying a voltage.

bias. The basic fact concerning the flow of equilibrium
current in the presence of a phase difference, which
was established by Furusaki and Tsukada {291}, is
that a bulk supercurrent is, upon approaching the
tunnel interface, transformed into a current that
flows through the superconducting bound states
which appear at the tunnel interface in the presence of
the phase difference [37] and which provide trans-
mission of the Cooper pairs through the tunnel bar-
rier, The balance among currents of different scatter-
ing states is not violated, although the scattering
amplitudes depend strongly on the phase difference.
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Application of a voltage bias gives rise to more far-
reaching consequences than just the imbalance of the
elastic scattering modes: the scattering states them-
selves are modified in a nontrivial way. This follows
from the fact that the scattering amplitudes, which

- are phase-dependent at equilibrium, become time-de-

pendent in accordance with the Josephson relation [38 ],
dp/dt = 2eV, when voltage is applied. Thus, in the
presence of a constant voltage the superconducting
junction behaves as an effective nonstationary scat-
terer, whose transmissivity oscillates. This property
of the superconducting junctions gives rise to ac Jo-
sephson effect; however, it is also significant for dc
quasiparticle transport, because the quasiparticle
transmission through such a scatterer is inelastic.
The physical mechanism of inelastic quasiparticle
transmission through voltage-biased superconduct-

- ing junctions has been first considered in SNS junc-

tions [32], where it has been explained in terms of
multiple Andreev reflections (MAR): the normal
quasiparticles, which are confined between supercon-
ducting walls, are permanently accelerated by the
static electric field due to sequential electron-hole
conversions at the NS interfaces, similarly to ac-
celeration of the electrons in an ordinary potential

-well by a time-dependent electric field. Similar argu-

ments can be extended to the tunnel juactions [39 ).
However, in tunnel junctions the scattering theory
approach is more appropriate because of the quantum
nature of quasiparticle transmission through the
atomic-size tunnel barrier. This introduces a side
band spectrum of scattered waves where the side
band energies are shifted with respect to the energy of
the incident wave by integer number of quanta of the
scatterer frequency [33). Such an approach is
familiar in the theory of quantum scattering by oscil-
lating potential barriers in normal tunnel junctions
(see, e.g., Refs. 40 and 41 and the references cited
there).

The tunneling through all the inelastic channels
(normal and Andreev channels) constitutes a com-
plete picture of superconductive tunneling in biased
Josephson junctions — the incoherent part of the side
band currents, which correspond to the direct
quasiparticle current, and the side band interference
currents, which correspond to the alternating Joseph-
son current. An important aspect of this picture is that
the Andreev bound states are involved in the current
transport together with the extended side band
states, which give a multiparticle character to the su-
perconductive tunneling in the subgap voltage region.
This multiparticle origin of the subgap tunnel current
was first pointed out by Schrieffer and Wilkins [42 ].
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The structure of the paper is as follows. After for-
mulation of the problem and discussion of the qua-
siclassical approximation in Sec. 2, we consider the
problem of elastic scattering in Sec. 3 as a starting
point for construction of inelastic scattering states in
biased junctions. The solution of the elastic scattering
problem allows us to calculate the dc Josephson cur-
rent, which is done for completeness in Sec. 4. In Sec.
5 we construct inelastic scattering states and derive a
continued-fraction representation for the scattering
amplitudes. In Sec. 6 we derive the nenequilibrium
current. In Sec. 7 we discuss the origin of the excess
tunnel current in the large bias limit. In Sec. 8 we
present a general analysis of the subgap taanel cur-
rent. Finally, the SGS is analyzed in Sec. 9.

2. Formulation of the modet

We consider a superconducting quastum constric-
tion with adiabatic geometry [43 ]: the cross section
varies smoothly with the coordinate x on the scale of
the Fermi electron wavelength 1/p, , and the sige of
the cross section is comparable with the Fermi ele-
ctron wavelength (Fig. 1). The length L of the con-
striction is assumed to be smaller than the supercon-
ducting coherence length §0 T '

U/pp<<L<<§,. Q.1

The Hamiltonian of the constriction is assused to
have the form

. |[(P-oeAq t))2

H= o™ + U(F) —p| o, +

+ [V(x) + ep(r, t)] o, + 3(%, B,

where U(r) is the potential which coafines the ele-
ctrons within the constriction; V(x) is the potemdial of
the tunnel barrier; A (r, ?) and ¢(r, f) are electro-
magnetic potentials; A (r, #) is the off-diagenal saper-
conducting order parameter given by the matiix

~ ix/2

A= 0 . Ae
Ae” ix/2 0

‘We assume that the junction is symmetric. The choice

of the units correspondstoc = A = 1.

.2

Q2.3

It is convenient to eliminate the phase of the syper-

conducting order parameter x(r, t) in Eq. (2.3) by
means of a gauge transformation:

exp (io, x/2) Il}exp (- io,x/2) ~H , (2.4
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which allews.us to introduce a gauge-invariant super-
fluid momentum, P, = Vx/2—eA, and an electric
potential ® = /2 + ep.

There are different scales of change of potentials in
Eq. (2.2): one is an atomic scale over which the con-
fining potential U(r ) and the potential of the tunnel

barrier V(x) change. Other scales are related to the
changes in the superconducting order parameter, the
electromagnetic field penetration lengths and the
length of the contact: all these lengths are large in
comparison with the atomic length. It is convenient to
separate these two scales by introducing quasiclassi-
cal wave functions [44 ], which vary slowly on an ato-
mic scale, and by including rapidly varying potentials
in a beundary condition for quasiclassical wave func-
tions. "To this end, we assume that the solution
W (r, 1) of the Bogolyubov-de Gennes equation [20] -

() = HY(), Q.5

with-the Hamiltonian of Eq. (2.2), has a quasiclassical
form

e, 0= 9,600 mexn (B pdnvP(sy,
B v

(2.6)
where ¥, is the normalized wave function of the qu-

antized-transverse electron motion with the energy E

(5,
(7,*; Yy, x))m =E,(9, ,

'/}_L(rl=m’x)=0’

and p is the longitudinal momentum of the quasiclas-
sical electron, p(x) = [2m(pu — E (x))1"/2;f==
indicates the direction of the electron motion. We as-
sumye that the constriction has only one transport mo-
de; an-extension to the case of several unmixed modes
consists -of additional summation over all transport
mod¢és in the equation for the current. The coeffi-
cients 2 in Eq. (2.6) describe the wave functions
which vary slowly in the x direction and which satisfy
the reduced BdG equation :

ivlﬁL‘R =(pvpo, +Y<I)L‘R¢:rz +upy gt A"x)'/’f,R

Q.7
in the left (L) and the right (R) electrodes; v = p/m.
The potentials p; and ® describe the distributions of
the electromagnetic field and supercurrent in the
electrodes. In the point contact geometry these quan-
tities are small due to the effect of spreading out of the
current [16,45). We will therefore omit them,
p, =® =0. For the same reason, deviation of the

spatial distribution of the module of the order
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Fig. 2. Quasiparticle spectrum and position of the incoming 'states:
1(3) — hole (electron)-like quasi-particle incident from left; 2(4)
~— hole (electron)-like quasiparticie incident from right.

parameter A from constant value is small in the point
contacts; we will therefore ignore it, A = const.
The functions 1/}2 g are matched at the constriction

by the boundary condition {31 ] (see also Appendix A):

- +
YL 7% arx=o0, 2.8
¥R YR :
with a matching matrix V
R io, ¢/2
vel o | e
de * r

The quantities 4 and r are the normal electron trans-
mission and reflection amplitudes due to the barrier.
Here and further ¢ is a gauge-invariant difference in

the superconducting phases of the right and left

electrodes: ¢ = xx(0) — x;(0). The matching matrix
in Eq. (2.9) satisfies the unitarity condition

AN

vwt=1. (2.10)

The boundary condition in Egs. (2.8) and (2;9) is
analogous to the boundary condition used in the qua-

siclassical Green’s function methods (see, e.g., Refs.

11 and 46). This is a very simple equation for coupling
of superconducting electrodes, while retaining the
main features of the Josephson effect, except for ef-
fects of the resonant tunneling [30, 47, 48 1.

3. Elastic scattering

In the absence of time dependence in the phase
difference at the junction, ¢ = 0, Egs. (2.7) and (2.8)
describe elastic scattering of quasi-particles. The
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scattering states can be constructed by using station-
ary solutions of Eq. (2.7), which correspond to ele-
mentary propagating waves with energy |E| >A:

9 = exp (— Bt + Pa(tlvx) 1, (.1a)

edylz

-1/2
ae—&y/Z) v @b

“615 = (2cosh y)

where

o=signE,a==%x, and éd = ao. 3.2)

The vector function ug is normalized, (4, &) = 1; the

brackets mean that the scalar product is in the elec-
tron-hole space. In Eq. (3.1) there are four elemen-
tary waves, which correspond to the same energy, as
illustrated in Fig. 2, and which are labeled by quan-
tum numbers S (direction of the Fermi electron mo-
mentum) and a = sign (|p| — p.) (the electron or

hole-like branch of the quasiparticle spectrum). The
direction of propagation of each elementary wave is
determined by the sign of the probability current.
The probability current density jp , which is defined

by the conservation law (the continuity equation)
0|t/1[2/at+6jp /ax=0 for the BdG equation

[Eq. (2.7)], has the form jp= (,o0,9). For the

elementary waves in Eq. (3.1), we obtain the explicit
result Jp= B4 tanh y. According to this formula, the

relation & = § is satisfied for the waves propagating
from left to right, and the relation 8 = —@ is satisfied
for the waves propagating from right to left. There-
fore, the incoming waves from the left (L) and the
right (R) have the form
L: exp (i a(E/v)x) u% , Riexp (— ia(E/v)x) ugp .
3.3

while the outgoing waves have the form

Liexp (— ia(S/v)x) uEﬂ, R: exp (i a(é’/v)x)u%.

3.4

Correspondingly, the incoming quasiparticle can be
scattered into four outgoing states: two forward-scat-
tering states and two backscattering states. One of the
reflected waves belongs to the same (electron-like or
hole-like) branch of the quasiparticle spectrum as the
incoming wave and constitutes the normal scattering
channel, while the other reflected wave changes the
spectrum branch and constitutes the Andreev chan-
nel. In a similar way, transmitted waves constitute
normal and Andreev channels. The structure of the
scattering states then becomes

Fizika Nizkikh Temperatur, 1997, v. 23, Ne 3
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n d. . .
lpﬁ = (éj;) e"’(g/”)xug+ (Z) e~ o/ ”)xug ,(3.53)
Ji j

v _ (8
L _ (a{,i) oGt (,f) e~ X~ (3.5b)
b J

(for brevity we have omitted the time-dependent fac-
tors exp (— iEt)). In Egs. (3.5) the index j= 1(2)
corresponds to a hole-like quasiparticle that comes
from the left(right), while the index j= 3(4) cor-
responds to an electron-like quasiparticle that comes
from the left (right). According to the structure of the
matching matrix [Eq. (2.9) ], the symmetry between
the scattering states j = 1 and 2 is

=Bl [l oo

Analogous symmetry exists also for the scattering
states j = 3, 4. Using the unitarity of the matching
matrix [Eq. (2.9) ], we can find the following relation
between the scattering states j = 3 and 1:

@5””"‘“ (f)l(*y’r',d*),
(fc’)s(y’r’d)= (Z)l("’”*,d*)- 3.7

These symmetry relations allow us to find all the
scattering amplitudes if one of the scattering states is
known.

Let us find the explicit scattering amplitudes for the
scattering state j= 1. After substituting Egs. (3.5)
into Eq. (2.8), it is convenient to split the resulting
equation, using the orthogonality condition,
(u+, o,u ) =0, into two independent equations for

the normal scattering amplitudes ¢, f and for the
Andreev scattering amplitudes a, b :

(u,0,u”) ((1)) =(u,0, /I>u—) (;) , (3.82)

1
(u+, o, u+) (Z) = (u"" o, ,I>u_) (;) . (3.8b)
1 1

‘ Calculating the scalar products in Egs. (3.8), we
find the explicit expression for the Andreev ampli-
tudes in terms of the normal amplitudes,
(a) _ idsin (p/2) ( /) 3.9)
. -

b sinh y c 1'

The solution of the first equation in Eq. (3.8) is given by
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o= rsinh®y /= _ dsinhysinh (v +ip/2)
l‘— ’ ]" ’
z . 2 3.10
where
zZ=- i‘ X
d

x (R sinh?y + D sinh (y+ ip/2) sinh (y — ip/2)) ,
G.11)

D = |d|?is the normal electron transmission coeffi-
cient of the tunnel junction, and R = |r|2=1- Dis
the normal electron reflection coefficient. It follows
from Eqgs. (3.9) and (3.10) that if there is no phase
difference across the junction, ¢ = 0, the Andreev
scattering channel is closed: a =54 = 0. It is worth
mentioning that the Andreev reflection is also absent
if the normal transparency of the junction is equal to
zero, D = 0. If, on the other hand, the junction is
completely transparent for normal electrons, D = 1,
there is no Andreev forward scattering, b=c = 0.

In the presence of a phase difference at the junction
the quasiparticle scattering is accompanied by the ap-
pearance of superconducting bound states [37]. One
can establish the existence of bound states by inves-
tigating the poles of the scattering amplitudes,
Eq. (3.10), at imaginary y corresponding to energies
lying inside the gap |E| <A . Assuming y - iy in
Eq. (3.11), we have the dispersion equation Z(fy) = Qor

sin?y = Dsin? p/2. 312

The bound states correspond to a positive value of
siny:Asiny =Im£>0. This condition has two
roots:

¥ =7y = arccos ‘(\/ﬁ sin p/2), ¥ —n— 7o (3.13)
or ‘

1-Dsin%p/2. G149

Elp)=xA
The wave functions of the bound states can be cox‘l"-
structed from elementary solutions of Eq. (2.7) with
|E| <A , whichdecayatx = + o

o p = exp (= iEf = Ex/v) iy,  (3.152)
(//é‘L =exp (= iEt + {x/v) ug”,  (3.15b)
where ’ ‘
/2
v _ 1 fe
E= -2l
VI |, o™ 3.16)

eiy:JEIAlg,§= VAZ—Ez,v=ﬁa.
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Vg N\ .
L>> &g
' E
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Fig. 3. Spatial configuration of the edges of the superconducting
energy bands in a long constriction: Ey., , Epyy = A + p(x)v .

A potential well appears in upper (lower) band for electrons moving
in a direction opposite to (along) the supercurrent.

The bound state ansatz has a form similar to the
outgoing part of the scattering states [Eq. (3.5) ] with
the coefficients satisfying the homogeneous equations
in (3.8). These coefficients are

f=— dsin (y + ¢/2)

7 siny c, (3.17a)

-2z,

b sin y 3.17b)

where y is given by Eq. (3.12). We note that the bound
state spectrum is nondegenerate. The coefficient ¢ in

Eqgs. (3.17) is obtained from the normalization condi-
tion for the bound state wave function,

fdzrlfdxl‘wz:
—00

.
=g(al®+ (8 + e+ |71 =1,

which yields
-1
s 2
2 = Asi sin” (y +9/2)
|.,|2—Asmy[l+~g—sm — D Gas
sin“y
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What is the origin of the bound states in a tunnel
junction? According to Eq. (3.8), one can regard these
states as resulting from hybridization of the bound
states in the short ballistic constriction [24 ] due to
the normal electron reflection by the barrier (cf. effect
of impurities in the SNS junction [25,26]). Let us
consider a smooth constriction with the length ex-
ceeding the coherence length, L >> Eo . In such a con-

striction the supercurrent density and the superfluid
momentum are related by the local equation,
J(x) = (e/m) N p(x), and they are both enhanced
in the neck of the constriction due to current con-
centration (for simplicity we disregard the effect of
suppression of the superfluid electron density N, by

the supercurrent). The local quasiparticle spectrum in
the presence of supercurrent has an additional con-
tribution = v () [20], which gives rise to a shift of
the local energy gap (Fig. 3). The spatial bending of
the gap edges forms the potential wells at

E <0 (E > 0) for quasiparticles with electron velocities

directed along (opposite) the current. The bound sta-
tes in these potential wells are similar to the Andreev
bound states in the SNS junctions [49]. The diffe-
rence is that here the bound states are caused by the
spatial inhomogeneity of the phase of the order pa-
rameter, while the original Andreev states are caused
by the spatial inhomogeneity of the modulus of the
order parameter. With decreasing length of the con-
striction, the number of the bound states in the well
decreases. The short Josephson constriction cor-
responds to an infinitely narrow and deep J-potential
well which contains only one Andreev level [24].

4, Direct Josephson current

A convenient expression for the tunnel current re-
sults from statistical averaging of the current operator
written in the Nambu representation [50 ]:

.I(x,t)=ﬁ{(;;-—;;')fd2rl %

X [6(r—r')Tr({f‘(r,t){f’+(r’,t))]} ,

. where W is a two-component field operator

',/\’1 (r.9

~ ) 4.2
HO! @2

{I\'(r, nH=

and Tr is a trace in electron-hole space. The angular
brackets in Eq. (4.1) denote a thermal average of the
one-particle density matrix of the superconductor {51 ).
At equilibrium this matrix has the form
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(¥ T (@) = ; W, (), (- EY¥ () 14.3)

where W,(r) are the eigenstates of the steady-state

BdG equation [Eq. (2.5) ] with the quantum numbers
A. We note that the definition of Fermi distribution
function n, here corresponds to the distribution of

holes in the normal metal: in the ground state all
energy levels above the Fermi level (£>0) are oc-
cupied, while energy levels below the Fermi level
(E < 0) are empty (see also the discussion in the next
section). In the quasiclassical approximation [Eq. (2.6) ]
the average tunnel current calculated at the middle of
the junction has the form

=—e§linp(—31)§ﬁ'vf(0)|z

The current in Eq. (4.4) can be calculated either at
the left or the right side of the junction, because the
equality .

4.4

2 _ 2 -2
12— lwz1? = lvg1? - lygl®, @9
due to the unitarity of the matching matrix V in Eq.
(2.10), holds for the each eigenstate. The current in
Eq. (4.4) consists of contributions from the scattering
states and the bound states:
dE|E .
I=— —lflnp(—E)EI.(E) -
|E| >A

= S (= DB 1CE) = e;ﬁlw”w)l’
\El<a 4.6)
When calcudating the contribution from the scattering
states, it is convenient to consider the transmitted
current of each scattering mode:

e3> - 151> j=1,3,
e(le))> - g% j=2,4.

The symmetry relations [Egs. (3.6) and (3.7) ] yield

1 (E) =1 (E) (E) 13(E) 12(5) == 11(5(2 %
The currents of ail the scattermg states with a given
energy therefore cancel each other at equilibrinm [52 ].
Substituting Eqgs. (3.17) and (3.18) into Eq. (4.6),
for, €.g., the right elegtrode, we obtain the following
expression for the current of the bound state:

T R [

LB = @7

4.9

ik )—— Dsm¢

. 2
Loouna(E) = e(18]° -
A useful formula for the current of the single bound
state, which allows direct evaluation of the current
from the bound state spectrum, is given by equation

-
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KE) = 2. 450), (4.10)
.4

where E(p) is the bound  state energy band

{Eq. (3.14) ]. This formula is derived in Appendix B.

Taking into account Egs. (4.9) and (4.6), we write the

total current in the form {10-12, 53}

NG

eADsin p
- Dsin? (p/2)

— Dsin? (p/2)
2T '

I= tanh

w1

4.11)

Thus, the Josephson direct current in tunnel junc-
tions is carried only by the bound states, which is
similar to the situation found in the other kinds of
short weak lihks {24-26,28,30]. It follows from Egs.
(4.6) and (4.9) that the nonvanishing total current
results from the imbalance of the bound state currents
due to a difference in the equilibrium population
numbers. Creation of a nonequilibrium population
makes it possible to control the Josephson transport .
{28, 31, 48].

5. Inelastic scattering

Let us now discuss inelastic scattering in voltage-
biased junctions. According to our assumption ® = 0,
which is explained in Sec. 2, the applied voltage drop V
is confined to the constriction; in order not to compli-
cate the problem, we have also disregarded a small
time-dependent voltage induced across the junction
by the ac Josephson current (self-coupling effect [54 ).
This implies the following dependence on time of the
phase difference:

P =p+ 2eVt. S.1
The appearance of factors with periodic time depend-
ence in the boundary condition [Egs. (2.8) and (2.9) ]
gives rise to a more complex structure of the scatter-
ing states than in Eq. (3.5). In order to satisfy the
boundary condition, the outgoing part of the scatter-
ing states in Eq. (3.5) is to be constructed from the
eigenstates of Eq. (2.7) with different energies
E, = E — neV shifted with respect to the energy E of

lhe incoming wave with an integer — ® <n < o (side
band structure) o

- iEt -iEt
0) = ( ) uge + (a) ut e ",
( ] "’2 £ r21 b jn En

(5.2a)

(, ](0) ( 4) tge-m’*z (;) uEne—iEnt-
I n L

(5.2b)
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For brevity we use the notation u, = uEn. While the
incoming state is itinerant, the outgoing states can be
_ cither itinerant [Eq. (3.1) if |E,| >A) or bound
[Eq. (3.16) if |E, | <A ]. It is convenient to combine
the two equations for the functions «, in a single
analytical form;

:y,,lz
ot =t ¢ " 5.3
n - »
2coshT, ane”n
. E|+
e7n=l_'.%.i’rn=keyn’
E2- A%, |E|>A, .
" " (5.4
£, = :

io, Va* - E | |E,| <A .

To find the scattering amplitudes in Eq. (5.2) we con-
sider the boundary condition Eq. (2.8). It is impor-
tant to mention that this boundary condition was de-
rived without regard for the energy dispersion of the
normal electron scattering amplitudes 4 and r, which
means that now this assumption should be valid for
the entire interval of relevant energies E,, . Let us first

discuss j = 1 (hole-like quas-particle coming frqm the

left):
l.fl

e - d{t+o, 0 f
"(f),,,“"*f[ 0 1o ettt
dl'—az 0 'f _

*2] 0 1+0|]c Unsps 55
z 1,n+1

It is convenient to separate the equations for normal
and Andreev scattering amplitudes in Eq. (5.5) using
a procedure similar to Eq. (3.8). The equation for the
normal scattering amplitudes then becomes

Tn @DV i1 frn41 + Vani1n-1) = g
$5.6)
i+ @IDVi 1€ 41+ Vanci€in-) =05
where the coefficients

(w, "0, x1,u,)

" -
(un ? az un

S.D

+
Vnm_

have the explicit form
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. exp (- (v, +7,)/2) [cosh r, 1/2

mm = ~ sinh ¥ cosh rm] © 5 (5.82)

: ) 1/2
exp ((v, +7,)/2) {cosh T,
nm %%m sinhy, cosh rm . (5.8b)

The equation for the Andreev scattering amplitudes
is
- +
4 n= (d/2)(unn+l fl n+! + Unn—l fr,n—l)’

l n = (dlz)( n+]"| n+l + U,m_ cl,n-l) . (59)
where the coefficients are defined as
+ & —_
u, ,0, % 1, u
Upm = (¥ o W (510
(v, o un)

and have the explicit forms

1/2
+ - exp ((yll - Y"')/z) COSh rn
nm = sinh n cosh I‘m » Gl
. ’ /2
U = exp (= (v, = 7,)/2) (cosh r,
nm = = %9%m sinhy, coshT

(5.11b)

As can be seen from Egs. (5.6) and (5.9), the inelastic
scattering possesses a specific asymmetry: the for-
ward scatteretl waves have odd side band indices and
backward scattered waves have even side band in-
dices, as illustrated in Fig. 4. Correspondingly, bo-
und states with odd or even side band indices are
induced either in the right or in the left electrode. We
note that the scattering to any side band consists of
normal and Andreev components.

It is instructive to compare the superconducting
scattering diagram in Fig. 4 with the scattering dia-
gram of normal junctions. In the normal limit A = 0,
all the Andreev amplitudes in Eq. (5.9) vanish
U =0in Eq. (5. 11)] and Eq. (5.6) split because
v* = 0inEq. (5.8), which yields f, = ¢,_, = Oforall
n = 1. Thus, the side band diagram in Fig. 4 reduces
to the elementary fragment shown in Fig. 5,a. This
fragment corresponds to the scattering of a true hole,
meaning ~ a particle with spectrum E,=
= —(1)2/2m — u), according to the BdG equations
(2.2) and (2.5). In the ground state, T = 0, these
holes fill all positive energy states E >0, while the
negative energy states are empty. For the electrons,
the corresponding diagram is sketched in Fig. 5,5. In
this diagram the chemical potentials in both
electrodes are equal, while the energies of the inci-
dent and transmitted states are shifted by eV. This
diffcrence from the conventional diagram of normal
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=
I
N

Fig. 4. Scattering diagram of voltage-biased superconducting tunnel
junctions. Solid (dotted) arrows indicate scattering in the normal
(Andreev) channel. Filled triangles indicate superconducting bound
states. Transmission (reflection) occurs into side bands with odd
(even) indices.

electron tunneling in Fig. §,c¢ (where the chemical
potentials in the electrodes are shifted relative to each
other, while the scattering is elastic) appears after
separating out the superconducting phase in Eq.
(2.4); the conventional picture with shifted chemical
potential can be restored by means of the gauge trans-
formation of the normal electron wave function
Y - exp (— ieViy.

When superconductivity is switched on, A # 0, the
incoming quasi-particle consists of both electron and
hole components, and therefore the scattering
diagram is a combination of the diagrams in Figs. 5,a
and 5,b. The electron-hole conversion, which leads to
the appearance of electron and hole components in
the upper and lower transmitted states, must also be
taken into account. Continuation of this process
creates the whole superconducting scattering diagram
in Fig. 4.

From a mathematical point of view, Eqs..(5.6) and
(5.9) for the scattering amplitudes are second-order
difference equations which cannot be solved exactly,
except in specfal cases, e.g., a fully transparent con-
striction (r = 0), where Eq. (5.6) reduces to a binary
-relation {34 ]. In general, it is possible to find asymp-
totic solutions using a small parameter. In the present

cas¢ of a tunnel junction, there is a natural small

parameter - the traflsparency of the tunnel barrier:
D<< 1. However, a siraightforward perturbation ex-
pansion with respect to this parameter gives rise to
divergences, which are similar to the difficulties en-
countered in of the multiparticle tunneling theory
(MPT) [42,57,58 1. In order to formulate an improved
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Fig. 5. Scattering diagrams of voltage-blased normal tunnet junctibns:
scattering of normal holes with spectrum Ej, =« — (p2/ 2m); repre-
sents an elementary fragment of the diagram in Fig. 4 for j =1 (a);
scattering of the normal electrons with spectrum E, = p2/2m (a);

conventional diagram of elastic electron scattering in biased tunnel
Junctions; the local chemical potentials in the electrodes are then shifted
by eV (o).

perturbation procedure, it is convenient to rewrite
Egs. (5.6) and (5.9) in terms of the parameter
A = D/4R, the true small parameter of the theory, as
will be seen later. Accordmgly, we introduce new scat-
tering amplitudes :

At ' Akq*

Cra2 =7 s J1,eh41) = IR Sr k1)

=tka, , b _¥d,
ay sk =0 by s2ka1y = 57 Orakery O-12)

which satisfy equations

AV ifar t V:n-lf— =0,

fu= AV 1Cns1 = Vane1€a—1 =0 (5.13a)
@y =AWy ifyay ¥ Upneifuey
By =AU Cpay + Un_yCoy  (5.13b)

forn>0.Forn<0itis necessary to make the change

V’-;l-m—) V—n m’ U; -U* —n— m,(n"n>0) in the
above equations. The equation for n = 0 can then be

written as

c() +;"( lfl + V+ |f_1) =1. (5.13C)
Let us now turn to the second scattering case in
Eq. (5.2), j=2 (hole-like quasi-particle incoming
from the right). According to the symmetry relations
of Eq. (3.6), the scattering amplitudes j = 2 differ
from the scattering amplitudes j=1 by ¢ » ~ ¢,
which -in our time-dependent case means that
n*1-nF 1. Taking into account this symmetry
and also the property of the scattering amplitudes in
Eq. (3.6), we introduce new scattering amplitudes
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Ak
fo 2ok =7 Cx 2>
Aka -
€22 2k+1) = 3R Tx@h+1) > D252 =24a,.

(5.14)

which satisfy the following equations (for n > 0):

Gt AVt Tt * Vi1 Iy =0,
Fu = WY s1Cpir = Vaue €1 =05 5.150)
@y =AUy Fpis + Uy Fucy
b, =AUy, (Epiy + UppoiCyey s (5.15b)
Co+A(Vg [+ Voo ToD=1. (5150
Equations (5.15) differ from Egs. (5.13) by
VEavE Ut Ut (5.16)

In the case of electron-like quasi-particles incoming
from the left, j = 3, the symmetry of Eq. (3.7) invol-
ves transformation y - -y, which means trans-
formation of the coefficients ¥V* -~ -g,0, V¥,

U*=-g,0, UT in Egs. (5.6) and (5.9). This

transformation allows us to relate the scattering
amplitudes of this case to the solutions of Egs.(5.5):

L
43,226 = [ Tx2k Cx2k
Ak
by e h+1) = = TR Ta(h+1) e @he1) -
k -
3,02k =4 OpopGuggs G.I7
_ g 3
F3x@eety ™ = 5 Txake1) Pxqrsny -

In a similar way the scattering amplitudes of electron-
like quasi-particles incoming from the right, j = 4, are
related to the solutions of Egs. (5. 13):

/].k
by s2 = "5 %ok Carir
Y
@y +2k+1) = ~ 3R Cx@h+1) Fr@he1)

Foe2k = M52k Drop

Akg*
2~ Cx(2k+1) by(ak+1y -

5.18)

Ca,x(2k+1) =~
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According to the symmetry of the coefficients in
Egs. (5.13) and (5. 1),

+ + * + +
Vnm(— E)= Vo nem (E), Unm(— E)y=U y

—n-—m(E) ’
5.19)

all scattering amplitudes with positive and negative

incoming energies are related by the relation

an(—E) = E—n *(E) ’

and similarly for the other amplitudes.
Let us now formally solve Eq. (5.13) for n > 0 in the
form [551]

(5.20)

2k+1
farr = O[] 8,¢, 5.2
i=0
where the quantities S, are defined as
2 Soke1
52k=-f2k—_1, Sope1 = o , (5.22)
and satisfy the recurrence relations
+
s = Vak,26-1
2k~ ’
1+ Vo aks 152641
5.23)

s - Vak+1,2
%+l = .
1+ AV3 00 24425242

The quantity ¢, in Eq. (5.27) is given by

. 1 3.24)
0~ 1+A(Vo, S, + Vo S_p)

It is convenient to express the functions S,

Eq. (5.23) in terms of the relation S, = V& n+l/ z ,

where the denominators Z, (n # 0) satisfy the recur-
rence relation

* + +
4y Ay gt =€ n .25
] - ot ’ .
Zyyy ' n 7 sinhy,

Z,=1+1

(% corresponds to even/odd n), and to define Z; as
the denominator of ¢, , Eq. (5.24):

+ + - -
- 49 4y Gpa-y
Zy=1+i=gl+ig—. (526

Using the above notation, we can express the coef-

ficients of the normal forward scattering, |/, | 2 inthe

form
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Y0 r n
|2=—£—ze"coshl‘n —1—-—2

cosh y,| Z,| =1 1Z,;sinhy,|
5.27)

/s

The equation for the coefficients of the normal back-
ward scattering, |c,|?, differs from Eq. (5.27) by

exp (T',) »exp (—T,). The relation between the

amplitudes of the Andreev and normal forward scat-
tering in Eq. (5.13) taking into account Egs. (5.22),
(5.23), and (5.25), has the form

2 “Tn+l

-
b=-e "|l-Aog—"0—
" ° [ smhyn+lzn+l

] f,. 628

In a similar way, one can express the solution of
Eq. (5.15) for n > 0 in the form
-% .
- e n
|7 )2 =—"———c¢
" cosh y,| Z,|?
n

1
X cosh I I l———-———_
. 20
"=t Z,sinhy,|

) eyni-l
1+14 —_— fn ,
sinh Yr+1 Zn+l (5.29)

where

Znt1 (5.30)
- - + 4
— a, a a, a.
Zy=1+A—L 4321
Z, Z_,

We note that Egs. (5.29) and (5.30) differ from Egs.
(5.27).and (5.28) by y, - — v, everywhere.
Equations for the scattering amplitudes with nega-

tive side band indices, n < 0, can be derived in a simi-
lar way, and the result differs from the above equa-

tions for positive side band indices ({Egs.
(5.25)—(5.30),] by the substitution
Ya> =Y_in» %0, (5.3

which is introduced everywhere except in Z, and 20

6. Quasiparticle current

In the nonstationary problem under consideration,
the density matrix determining the current
[Eq. (4.1) 1is time dependent, and its dynamic evolu-
tion can be described by an equation similar to
Eq. 4.3),
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(Ve 0T 0)=S W 0,049 @D, 6D
A

W, are now solutions of the time-dependent problem,

Eg. (2.5), whose initial conditions correspond to the
eigenstates of the initial Hamiltonian with the eigen-
values A, and occupation numbers f; of these initial

states. We consider the inelastic scattering states,
[Egs. (2.6) and (5.2) ] as the propagators W,(?) in

Eq. (6.1) with A corresponding to the complete set of
the incoming states A = (E, j) ; according to the as-
sumption about local equilibrium within the
electrodes, the incoming states possess the Fermi dis-
tribution of occupation numbers, ij =ng(-E) .

Thus the current [Eq. (4.1) ] takes the form

I(t) = —¢ f _d_E'zy_Iigl nF (_ E) z eiNth X

x> B E v, EN+). 6D
n=-w;g

The current in Eq. (6.2) consists of a time-inde-
pendent part, N = 0, which is formed by incoherent
contributions from all the side bands (the quasipar-
ticle current) and from a time-dependent part, N = 0,
which results from interference among the different
side bands (Josephson alternating current). The dif-
ference between the side band indices N is an even
number since the side band index is’ either even or
odd, depending on the electrode; therefore, the time-
dependent current oscillates with the Josephson fre-
quency w = 2eV.

In this paper we concentrate on an analysis of the
time-independent quasiparticle current. By analogy
with to Eq. (4.7), we calculate the current using the
transmitted states,

1=%§deJ-?—LnF(—E)x

. |E|>A
2 2 2 2
x> [ S Ul = 1,5+ 2 (lay,l? = el )]
n=-olj=1,3 j=2,4
6.3)
Using the scattering amplitudes introduced in the pre-

vious section through Egs. (5.12), (5.14), (5.17), and
(5.18), we express the current in Eq. (6.3) in the form

l;ﬁdeJ—?—lnF(—E)E(Kn—En), 6.4

|E| >A odd
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where

-1 2 2
Kn=,1inI(R 2= 18,1%), 6.5

- -1y 7 42 I 12
K, =AM@®@R T2 15,1 =K,(-7).

The factor of 2 appears in Eq. (6.4) because of
equality of the currents /, and /, and the currents /,

and /; in Eq. (4.8), which hold also in the nonstation-

ary case. However, there is no balance between the
currents of these two pairs any more. The symmetry
of Eq. (5.20) allows us to reduce the interval of in-
tegration in Eq. (6.4) to the semiaxis E >0,

e E E -
I=Ede-§tanhﬁ%(Kn—Kn). (6.6)
A O

The side band currents K|, in Eq. (6.5) are propor-
tional to the powers of the small parameterd, K, ~ A Inf

Therefore, Eqs. (6.6) and (6.5) present a perturba-
tive expansion of the current, which is convenient for
analysis in the limit of low barrier transparency. In
the following sections we carry out such an analysis of
the structure of the current in Eq. (6.6).

7. Excess current at large bias

To make some useful observations for analysis of
the subgap current, it is instructive first to discuss the
simpler case of large bias eV >> A , which has been
studied extensively in literature [11,12,17,23]. We
derive at the same time the explicit analytical expres-
sion for the current in this limit, which is valid in the
whole range of the junction transparency, 0 <D<,
The asymptotic expansion of the current with respect
to the small parameter A/eV has the form [17 ]

2
e“DV
I= T

A
+1,(D)+ 0(217) . @D

where the first term is the tunnel current of the nor-
mal junction and the second term is a voltage-inde-
pendent excess current which represents the leading
superconducting correction.

A main simplification in this case is that the side
band currents K, and En , |n] > 1 diminish when the

bias voltage increases. This follows from an estimate
of the transmission amplitudes in Egs. (5.27)-(5.29),
which contain products of factors [sinh y,| =2 which
are small at large voltages, |sinh ykl_z ~ A/ eV)z,
because of the large interval of involved energies,
E ~ eV. Furthermore, inspection of the amplitudes
f_, and f, shows that they are also small due to the
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Fig. 6. Three kinds of processes that contribute to the tunnel current
at large bias eV >> A: creation of a real excitation across the gap by
forward scattering (a); excitation of the Andreev bound state due to
creation of a real excitation via backward scattering (dashed arrow)
(b); imbalance of ground state modes due to creation of a real
excitation via backward scaticring (c). Excess current is caused by
processes b and ¢).

factors exp (—y4—7,); therefore, the nonvanishing part
of the current [Eq. (6.6) ] in the limit eV >> A becomes

E E =
,=§deftanh§-T-(Kl k). ap
A

The essential fragments of the scattering diagram in
the large bias limit are shown in Fig. 6.

The structure of the current in Eq. (7.2) is essen-
tially determined by the presence of a gap in the spec-
trum of the side band n = 1; this causes different
analytical forms of the current K, in the regions
|E{ <A and |E| > A. We note that the spectrum of
the side band n = —~ 1 possesses nogap: E_, >A for
E>A . Accordingly, we divide the integral in
Eq. (7.2) into three parts:

I=I_+1,+1,.
The first part corresponds to the current of the states

in the side band n =1, which lie below the gap,
E| < — A. The second part corresponds to the current

of the states of the same side band which lie in the
gap, — A<E, <A. The third part combines contribu-

tions from the remaining states of the side band
n=1,A< E, , and from all the states of the side band

n = — 1. Making use of the approximations

1Z91% = 1Z,1% = |1 + (E + §)/817,
,Z_]|2= |2112= |22|2= |2_2|2z 1, (1.3

1Z,1> = 1Z_j|*= |Z_,|* = |Z,|* = /R,
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it is possible to express the integral /_ in the form

(we restrict the analysis to the limit T = 0):

eV—A ev/2
e LE 8ed E
I<=;Efdﬁ-é'K1— Rfd EZ‘Z—
A
o

_Zfifdgié_:iﬂ(l _4,1R§2), .4
R A 520

where the limit of integration in the last term is ex-
tended to infinity since the main contribution to this
integral comes from the energies E~ A<<eV.
Separating out the normal junction current, we can
express Eq. (7.4) in the form

2 2
e“DV  8él
I, = T T T X

f?E[MR————+ (2R + 1) E(Es' £ 4 E4;R§} :
A

(1.5

We note that this current is always smaller than the
normal current. It is convenient to express the in-

tegral 7, as
2 2
IM de 2 50 (1.6)
) ez,

which is found from the relations between the func-
tions Z, [which result from their definition in

Eq. (5.25)]

eV+ A

de_EK

eV—-A

Z(E+eV)=Z, (E),
Zy(E+ eVZ,(E+ eV) = ZW(E)Z_,(E). (1.7

Inspection of the equation for I

e
> EdefK - de'Z-K 1 (1.%)

shows that the two integrals diverge at the upper limit
E = », which means that the states lying far from the
Fermi level formally contribute to the current, while
the quasiclassical approximation of Eq. (2.6) assumes
that all relevant states lie close to the Fermi level. To
eliminate this forma! divergence, the variable is com-
monly shifted by eV in the first integral in Eq. (7.8).
" Using again the relations (7.7) we express this in-
tegral in the form
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) 2

40l de E__ 8 deEgE 25)
E z,

where the first term has the same analytical form but

the opposite sign compared to the divergent term in

the second integral in Eq. (7.8), '

_i‘ide___E_.._l__z_"ideLE_:Q.
7R A §2,Z_, §Z(2)

After elimination of the divergent terms, the integral
in Eq. (7.8) takes the form

_2a o (E=) E
=R {dE .’;'Zg (1 +41R-g) . (1.9

The positive currents in Eq. (7.9) and Eq. (7.6) over-
compensate the missing part of the current in
Eg. (7.5). Collecting Egs. (7.5), (7.6), and (7.9), we
find after some algebra the following explicit equation
for the excess current in Eq. (7.1):

; _leeAX’R |, D’ | 1+VR
exc = x 20+R)VR "T~VR |’
(7.10

which is valid in the whole interval of junction tran-
sparency 0 < D < 1. Asymptotics of this expression
coincide with the results presented in literature
[11,23], both in the limit of fully transparent
(D = 1) constrictions, I, . = 8¢A/3x, and in the limit
of low-transparency (D << 1) tunnel junctions, I_ =
= eAD*/1. :
The above calculation reveals an important diffe-
rence between the structure of the current in normal
and superconducting junctions. In normal junctions,
the current, e.g., in the right electrode (see Fig. 5,¢)
results from scattering states that lie above the local
chemical potential, E>u — eV, while contribution
from the energy interval E <u — eV is equal to zero
due to mutual cancellation of currents of the scatter-
ing states incident from the left and from the right (in
Fig. 5,a the current-carrying energy region corres-
ponds to negative energies, E, <0). Thus, the total

current coincides with the current of real excitations
emitied from the contact, which is consistent with the
nonequilibrium origin of the current in the voltage-
biased junctions. In superconducting junctions, only
«across-the-gap» current /_ is clearly related to the

real excitations emitted at the right side of the junc-
tion where the current is calculated (Fig. 6,a): the
dissipative character of the currents, / A and I ,is not
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obvious. However, the creation of real excitations at
the left side of the junction via backscattering into the
side band. n =2 should be taken into account
(Figs. 6,5 and 6,c). Although the current of this side
band exists only at the left side of the scattering
diagram, it should have an effect at the right side due
to continuity of the current at the interface {Eq.(4.5) ]
and therefore it should be distributed among the
states of the side band n = 1. As our calculations
show, this «kick» current partially flows through the
Andreev bound states, which involve the current /,,

(Fig. 6,b) and which convert this current into a super-
current outside the junction. It is also partially dis-
tributed among the scattering states with positive
energies (current /_ , Fig. 6,0) in the form of im-

balanced ground state currents.

8. Subgap current

In this section we discuss the tunnel current in the
subgap region, eV < 2A . A basic property of the sub-
gap current is the presence of temperature-inde-
pendent structures on the /~V characteristics — the
subharmonic gap structure (SGS). The SGS in tunnel
junctions was discovered in experiments by Taylor
and Burstein [56 ] and the first theoretical explana-
tion was given by Schrieffer and Wilkins [42 ] in terms
of multiparticle tunneling (MPT). Recently, the SGS
has been observed in many experiments on transmis-
sive tunnel junctions [3—5]. Although SGS in planar
junctions can be attributed to normal shorts, the ob-
servation of SGS in superconducting controllable
break junctions [8 ] provided convincing confirmation
of the existence of SGS in the true tunnel regime.

The existence of SGS in tunnel current can be es-
tablished within the MPT theory by means of rather
simple perturbative arguments [42, 57~59]. Assum-
ing a small perturbative coupling between electrodes,
we can calculate, on the basis of the tunnel Hamil-
tonian model, the probability of tunneling in nth
order of perturbation theory. Such a probability is
proportional to a product of filling factors of the initial
and the final states: n (E)[1 — n(E — neV)]. Atzero

temperature this factor is equal to zero outside the
interval A < E< neV — A, which selects the quasipar-
ticle transitions across the gap, i.e., the processes of
creation of real excitations relevant for the tunnel
current. Such a restriction places the threshold of the
nth order current at eV = 2A/n, and a sequence of
current onsets of ~ D" at the voltages eV = 2A/n
forms the SGS of the tunnel current [58, 59].

In our approach, the filling factors of final states do
not enter the equation for the current Eq. (6.6), and
the existence of SGS is therefore not obvious, al-
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though the side band currents [Eq. (6.5) ] gradually
decrease with increasing side band index. However,
attribution of the nonequilibrium tunnel current in
biased junctions to the current of real excitations is a
general physical argument which should be automat-
ically met in any correct theory. In fact, the true tun-
nel current, as we can see from the discussion of the
previous section, is hidden in Eq. (6.9): it results from
partial cancellation of large contribution of different
scattering modes. The cancellation is nontrivial be-
cause of mixture of currents of different side bands,
the odd side bands containing information about the
currents of the even side bands and vice versa. This
means that a finite perturbation expansion of
Eq. (6.6) is not satisfactory and will not adequately
correspond to the perturbative structure of the true
tunnel current. To reveal such a structure one must
rearrange the series in Eq. (6.6).

To this end, we consider a general term K nr > 0

in Eq. (6.6). It follows immediately from the explicit
form of the normal and Andreev transmission coeffi-
cients {Egs. (5.27) and (5.28) ] that the leading term
with respect to A in K, is proportional to a factor
(1 —exp 21, which is equal to zero if |E,| <A.
Having made this observation, we express the quan-
tity K, in the form

2ang g2 _ A2y 2
K,=%A"0(E,~ A% e "sinhy,|f,|* +

2
n+1 -2I f,l
+417 e T Z Foiis 8.1a)
n+1
_ 2
Fn+1 - Izn+1' +
o+l o -y,
€ n+l -1 n+l 8.1b
sinhy, | sinhy, ®.1b)

In Eq. (8.1a) the first term represents the main con-
tribution of the nth side band to the current: it is
proportional to the probability of normal scattering to
the nth side band and it does not contain the con-
tribution of the side band states lying inside the gap
|E,| <A . Using the recurrence relation (5.25) and

recalling that 1 = D/4R, after some algebra the func-
tion F, in Eq.(8.1b) becomes

2
G

Y.
1 e
sinhy, Z, .,

1 2 2 .
F,= ;2_6 (E, — A9 tanhy, - n+1°

(8.2a)

Fizika Nizkikh Temperatur, 1997, v. 23, Ne 3



Scattering theory of superconductive tunneling in quantum junctions

yn-HZ*
_ 2 n+1
Gn+l - ’Zn+l l - Re sinh 7n+1 -
"n+l1
e (8.2b)
sinhy, .,

Substituting Eq. (8.2) into Eq. (8.1a), we find that
the second term in the equation for Kn , which is

proportional to A”H, has analytical structure similar
to the first term in the same equation, proportional to
A", namely, it consists of the probability of normal
scattering to the (n+1)th side band [cf. Eq. (5.22) ]
and it does not include the contribution of the side
band states that lie inside the gap, |E, | <A . This

allows us to associate this term with the effective con-

tribution of the nearest even side band.

4ln+l

6 (E2

n n+1
4An+3

K =21Tn9(Ei—A2)Qn+

0 (E2,,

X exp (-~ I‘n-}-ZFnH) coshT'Q .+

—AYe

A similar transformation of the function G i1 in

Eq. (8.2) yields the recurrence relation

_ 1 2 1
G OBy =AY ——— -
n+l = n+1 'a"h7n+1
2
Exp (_ yn+l) F
sinh yn+l Zn+2 2 ®.3)

Combining of Egs. (8.1a)—(8.3) shows that the next
term of the current K o which is proportional to A" +2,

has the same analytical structure as the leading term
in the current K, .2 of the next odd side band, and

therefore it can be regarded as a renormalization of
that current.

Continuing this procedure by systematic use of the
recurrence relations (8.2) and (8.3), we obtain the
following expansion for the current K, in Eq. (6.5):

where we have introduced the quantity Q, defined for all n as

¥
e0

Q="
n coshyOIZOI2

sinh 7 cosh Fn

41""‘2 2
"coshT,0,., + =0 (E,,,~ &) x
) :
—A%exp(-T +2I -2 )cosh[ Q .+
8.4
n
1 8.5

=1 fleinhyll2

Similar expansions can be derived for the currents E and for the currents of the side bapds with negative

n <0. Expanding each term of the series in Eq. (6.6) wnh use of Eq. (8.4) and collecting the terms with the same

. factor " we can finally express the series in the form

odd

-~

DK, -K)=> (K ~K) (8.6)

n=0

The last summation is done over all odd and even integer n, and the renormalized coefficients have the form

K =1"6(E - A% (4Q /R) [(1/2) +coshT,_exp(-T, ,+2I )+

+2r =2

+ cosh Fn—4 n—4 n—3 n—2

exp(—T

for odd n > 0 and the form

T - qn 2 2 .
K, =1"0(E - A%) (4Q,/R) [cosh r

+coshI' . exp(-=T,

-3 -3 n—2 n—1

for even n > 0.
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+20 -2 )+..

+2T,_)+...+coshT exp(~T, +2r, -2, + ..+ 21“"_1)]

8.7a)

S n-1
—1€ +

.+ cosh.Fl exp (=T +2I, -2, +..-2T, )

(8.7b)
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Fig. 7. Scattering processes that contribute to the subgap current:
single-particle scattering into the side band n =1 gives the main
contribution at eV > 2A (a); excitation of the Andreev bound state
(n = 1) due to backward scattering into the side band n = 2 gives
the main contribution at eV > A (b); single-particle scattering into
the side band n = 3 and simultaneous excitation of the Andreev
bound state in the side band n = 1 gives the main contribution at
evV>2A/3 (c).

The ;'epresentation of Egs. (8.6) and (8.7) is exact.
A general term of the series can be regarded as an
effective renormalized current of the nth side band. In
fact, this effective current consists of the contribu-
tions of all side bands with odd indices smaller than
n. An important feature of this representation is the
presence of the 8-function in the general term, which
allows us to separate out in Eq. (6.6) that part of the
current which is obviously responsible for the SGS,

o NeV—A

=

e E E ~
lggs = Zl‘,;f dE-E-tanh T K,— K,).- 3.8
n= A

One might expect (cf. Ref. §5) that Eq. (8.8) repre-
sents the subgap tunnel current at zero temperature
and that the remaining part of the current in
Eq. (6.6),

0 .
00
e E E = =
L=1-Igg=> = deftanhﬁ(Kn— K,)+
‘ n= neV+A

E E -~ =
+ de-E-tanhﬁ(K_n— K_,)|, 8.9
A .

corresponds to the current of thermal excitations.
However, this separation is not exact. An analysis
shows that the current in Eq. (8.9) does not vanish
completely at T = 0, but contributes a small residual
part. An important property of this residual current is
that it does not contain any structureless component
but demonstrates behavior similar to the current
Igcsin Eq. (8.8), thus resulting in a small correction

to Eq. (8.8).

9. Subharmonic gap structure

The explicit analytical expressions (8.8) and (8.9)
provide a basis for numerical calculation of the subgap
current for small A (low transparency) with any de-
sirable accuracy. However, they are also convenient
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for qualitative discussion of the SGS. In this section
we will analyze the SGS at zero temperature on the
basis of Eq. (8.8).

The current-voltage characteristic Igq5(V) in

Eg. (8.8) has a complex form consisting of a sum of
renormalized side band currents 7,(V, ) :

IV ) = D 1 (V,2),
n=1

reVA o.1

ln(v,z)=§fd5§(7<n-?n).
A

The partial current-voltage characteristics 7,(V, 1)

are similar to each other, and it is convenient to ana-
lyze them independently.
According to Eq. (9.1) the partial current I, starts

with an onset at the threshold voltage V, = 2A/en. In
the limit A - 0 the onset is infinitely sharp and its
magnitude is

2n_ n*"
42n—l (n!)Z ’

1,(V,,A»0)=eAD" 9.2

The jumps of the current at the thresholds result from
the singular denominators in Egs. (5.27) and (5.29),
which are related to the singular density of states at
the side band energy gap edges, sinhy, = 0. Accu-

mulation of these singularities in the high-order scat-
tering amplitudes leads to a huge increase of the par-
tial currents well above the corresponding thresholds
— this causes the failure of multiparticle tunneling
theory [57-59]. In our theory, the singularities are
regularized by the factors
n
P, =T]12,? 9.3
k=0

in the denominators of the scattering amplitudes,

Eq. (5.27). These factors are expressed in terms of
the continued fractions Z, [Eq. (5.25) ], which there-

fore shouid be calculated with sufficient accuracy to
preserve the singular parts of Z, which provide re-
gularization of the integrals.

The first-order current /| in Eq. (9.1) corresponds

to direct one-particle scattering to the side band
n =1 (Fig 7,@). The explicit form of the current /, is

eV—-A IE '
=22 [p =t (EXE L EoS) g
T A 551 1 Pl
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0V, V, v

Fig. 8. @) Density of states v(E) = | E,, /€, | of the side bands and
Ey,E,,and E; at applied voltage V>V¥; (right), position of

singularities of the side-band density of states plotted as function of
the applied voltage for the current 7o (left), 1*’: E|=zxA,

27:Ep=-A . b Density of states of the side bands
Eg.E|,E;,and E3 at applied voltage Vo<V<V (right),

position of singularities of the side-band density of states plotted ag
a function of the applied voltage for the current I3 (lift),“~\

lt:El =iA,2z:E2=iA,3-:E3=“A.

In the limit A - 0 this current coincides with the qua-
siparticle current of the tunnel Hamiltonian model
[54,60 ). At finite A the threshold onset of the current
at V =V, is washed out. To evaluate the width of the

onset we truncate the continued fraction in P, assum-
ingZ_; = Z, = 1, which yields

- - 2
Py = (1 +Aaga_) (1 +2a; a2)-+-/1a{,"a;F . (9.5)

The function ﬁl has a similar form. The regulariza-
tion effect of the threshold singularity is provided by
the most singular term Aag a in Eq. (9.5). Keeping
this term, we obtain in the vicinity of the threshold,
e(V — V,) <<A, the result

2e AL [eV — eV,
Il(V)= itR f( .y ) l),

a 9.6)

sin? @

ﬂ’“-{”W‘

According to this formula the onset width is
e(V-V)~2A.
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The second-order current /, corresponds to the

creation of a real excitation during quasiparticle back-
scattering into the side band n = 2 (Fig. 7,b) and
appears as the current of transmitted states of the side
band n =1 (cf. the excess current in Sec. 7). In the
vicinity of the threshold, V, <V <V, , this current

exists only in the form of currents through the bound
states and therefore it is completely converted into a
supercurrent far away from the junction. At larger
voltages, V> ¥, the side band n = 1 extends outside

the energy gap (see Fig. 8,a), which also makes the
current /, partially consist of contributions from ex-

tended states. The explicit expression for the second-
order current is

2eV-A
3,2 E
L= 4"]’;‘ de—l-LI;x
)l
“rpth !
X cosh Fl + € — . 9.7
P, P,

Omitting the A-dependence of P, in Eq. (9.7), we

obtain the two-particle tunnel current of Schrieffer
and Wilkins [42,57]. To keep the singular terms in
P, one has to truncate the continued fractions in

Eq. (5.25) assuming Z_, = Z, = 1, which yields
Py = |(1 +1a_ a,) X
-~ 2
x (1 +2ayay) +Aagal (1 +Aaza)|" . (9.8)
The threshold singularity results from the small

product ££, in the denominator of Eq. (9.7). However,

in Eq. (9.8) there are no singular terms proportional
to aya, among the terms linear in A. Such terms are

quadratic in A and they provide, along with the terms
Aay and Aa, , the width of the onset: e(V — V,) ~ A2,

This onset is sharper than the onset of the current 1.
The threshold singularity in the current [, is typi-

cal of all higher-order currents n > 1. The appearance
of the first side band outside the energy gap at
V =V, is manifested through a spike in the current

1, . Indeed, if V= V| , the nodes of §; overlap the
nodes of £ and £, at the lower (E = A) and the upper

(E = 3A) limits of integration in Eq. (9.7), respective-
ly (see Fig. 8,a). This singularity yields an increase of
the current /, when the voltage approaches V, ,

1/2
- 2 A
I, eAA (e(Vl — V)) .
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Fig. 9. Schematic diagram of the partial 7, ~V characterstics.

Regularization of the integral, which is provided by
the singular terms A, a, and Aq, a, in Eq. (9.8) at the

lower and the upper integration limits, respectively,
yields »
' (V) 1

LV Vi’

Further analysis shows that the current reaches a
maximum value slightly above V = V|, after which it

rapidly decreases (see Fig. 9). At voltages V> V| the

singular point § L= 0 remains within the integration

region, which increases the current by a logarithmic
factor in comparison with the value of the current near
the threshold V,, ‘

ear’ing

R 9.9)

L(V>V,)~

At large voltage V' >> V| the current I, forms the ex-

cess current [Eq. (7.10) ]. It is intercsting to note that
in this limit the logarithmic factor is compensated for
by the current /, [Eq. (8.9) ], which yields the A2-de-
pendence of the excess current. ,
The third-order current /5 at voltages close to the

threshold V, results from the combination of one-par-

ticle tunneling into the side band n = 3 and excitation
of the transmitted Andreev bound states of the side
band n = 1 (Fig. 7,¢). The probabilities of these two
processes are related as 1:2 at threshold [Eq.(8.7) ]. A
gradual emergence of the bound states of the side
bands n = 1 and 2 outside the energy gapat V=1V,

and V =V, (Fig. 8,b) gives rise to the current peaks.
The current 1 has the explicit form:

3eV-A _ =¥ _
L 20% ¢ LA e (1 +2cosh [,eT1¥22) e O(1 + 2cosh T, e"17 22 010
3= TzR 2 P + 5 :
) el \
with the regularization factor
.11

‘ - - - - - - + + + 412
P3zI(l-!—Aa__lao)(l+/1ala2)(l+/1a3a4)+}laoal (1+24a,a;)| .

The current peak at V = V, results from the overlap of
nodes of £ and &, at E = A and nodes of {; and &, at
E = 2A , similarly to the peak of the current I, . These

singularities yield again an increase in the current in-
versely proportional to the square root of the departure
from the voltage V,:I;~ eA3/2)13/[e(V2 -2,

However, since the factor P; [Eq. (9.11)] contains
neither the term /1a0a2 nor the term Aaa,,

regularization of the singularity is provided, e.g., at
E = A, by the terms Aq, or Aa, , which gives rise to a

more pronounced peak with magnitude

L,V 1
Iy A

9.12)
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We note that the magnitude of this peak is comparable
to the magnitude of the onset of the current I, . The

second peak at V = V, results from the overlap of the
nodes of &, and &5 at E = 3A , which increases the
current I near the voltage V = V| which is inversely

proportional to the first power of the distance to this
voltage: 1, ~A3A%/ (V; — V) . The divergence is
regularized by the term la,a; in Eq. (9.11), which

results in a peak of magnitude

1I3(V)

3\'1
T 9.13)
vy 1

Thus the heights of the two peaks of the current 13 are
of the same order in 4, although the peak at V=V, is

sharper.
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In a similar way, all of the high-order currents in
the vicinity of their thresholds are atiributable either
to the Andreev bound state currents (even n) or to a
combination of Andreev bound state currents and the
current of a single real excitation (odd n). The num-
ber of excited Andreev states is correspondingly n/2
or (n — 1)/2. Singularities similar to the singularity
of the current /; at the voltage V = V| exist in ail
high-order currents, where they cause even more
pronounced current peaks because of the absence of
terms lakak +1 in the corresponding smearing func-

tions P, . Besause of this property, the heights of such

peaks exceed the threshold value of the correspond-
ing current by two orders of A: (1), ~ €A A" R,

The above discussion reveals the current peaks to
be essential features of the SGS of tunnel current in
addition to the current onsets (Fig. 9) (these peaks
are seen also in the numerical results of Refs. 34 and
39). It allows us to establish a general classification of
singularities that cause peaks in partial currents [, .

They result from the overlap of singularities of the
side band density of states. It is easy to see that the
singularities of only two side bands can overlap. The
condition of the overlap for mth and kth side bands
have the form

E—keV=A, E—-meV=—-A. (.14

This condition is met at voltages eV = 2A/(m — k) for
all integer 0 < k<m =< n. The magnitude of the cur-
rent peaks depends on whether the overlapping side
bands are neigbors or not, and whether the side band
index is inside or at the edge of the interval (0, n).

I. m—k=1,m=n or k=0: edge-type sin-
gularity, neighbor side bands. This type of sin-
gularity forms the peak of the current /, at the main
threshold V| . The magnitude of the current peak is
() max ~ eAVI/R.

II. m—k>1,m=n or k=0: edge-type sin-
gularity, non-neighbor side bands. This type of sin-
gularity forms the first peak of each current [, , n>2
atvoltage V, . | . The magnitude of the current peak is
U pax ~ €AA"1/R.

Ml.m—-k=1,m <n, k>0: internal singularity,
neighbor side bands. This type of singularity
forms the last pez}k of each current I,,n> 2 at

voltage V, . The magnitude of the current peak is
U)pax — € M" /R
IV. m=k>1,m<n,k>0: internal singularity,

non-neighbor side bands. This type of singularity
forms all intermediate peaks of each current [, , n> 3.

Fizika Nizkikh Temperatur, 1997, v. 23, Ne 3

The magnitude of the current peaks are

-2
() pax ~ €D A"/ R.

Conclusion

In this paper we have considered superconductive
tunneling as a scattering problem within the frame-
work of Bogolyubov-de Gennes (BdG) quantum me-
chanics. An essential aspect of this problem is that the
scatterer consists not only of the potential of the tun-
nel barrier but also of the discontinuity of the phase of
the order parameter. At equilibrium (zero bias,
Josephson direct current) the scattering problem is
elastic. The peculiar feature of the elastic scattering
problem in short junctions, which is considered here,
is that the balance of currents of the scattering modes
is not violated: the supercurrent flows only through
the superconducting bound states (for a more general
discussion, see Ref. 48). In the presence of voltage
bias the scattering is inelastic, because the time de-
pendence of the component of the scatterer is related
to the superconducting phase difference. In general,
the currents of all inelastic channels, taken collective-
ly, constitute the components of the tunnel current
that flows through the biased junction. The quasipar-
ticle current corresponds to the incoherent part of the
inelastic side band contributions, and the Josephson
alternating current corresponds to the interference of
the side band contributions.

There are three distinct components of the
quasiparticle tunnel current at zero temperature: (i)
the current of quasi-particles excited above the
ground state, (ii) the current trough Andreev bound
states converted to a supercurrent outside the junc-
tion, and (iii) the imbalance current of the ground
state modes. At large bias voltage, eV >> 2A , the first
component corresponds to a single particle current of
the normal junction, while the other components
cause excess current. When voltage is decreased,
redistribution of current among the components gives
rise to subharmonic gap structure (SGS) in the form
of current onsets and current peaks. Within the volt-
age intervals 2A/n < ¢V <2A/(n — 1) with even n, the
tunnel current consists entirely of currents through
the Andreev bound states [component (ii); e.g.,
Fig. 7,b1; the states of all side bands with odd indices
smaller than n contribute to the current. If nis odd, a
real excitation current of the side band n {component
(i); e.g., Figs. 7,a, and 7,c] is also present in the
tunnel current. Opening of new channels of tunneling
of real excitations gives rise to current structures.
Thus, SGS reveals the discrete nature of the side
band spectrum. The structure becomes more

267



V. S. Shumeiko, E. N. Bratus’, and G. Wendin

pronounced with decreasing transparency of the junc-
tion.

Since each Andreev state provides transfer of one
Cooper pair through the junction for every incident
quasi-particle, n particles will tunnel in the interval
2A/n<eV<2A/(n - 1).

The participation of a large number of bound
Andreev states in the current transport at low voltages
is surprising: it appears to contradict the fact that
subgap current diminishes at zero bias. After all, the
probability of the scattering into side bands does not
depend on the bias and is proportional to powers of D.
This paradox can be solved by increasing the com-
pensation of currents between the normal and
Andreev channels in each side band with decreasing
voltage, which gives the required voltage dependence
of the total current.
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Appendix A: Boundary conditions

The quasiclassical boundary condition in Egs.(2.8)
and (2.9) has been derived in Ref. 31 by using the
method of Ref. 21. Here we present simple arguments
which lead to this boundary condition. We consider the
more general case of asymmetric junction, using an
asymmetric version of the Hamiltonian of Eq. (2.2) with
the same restriction imposed on the length of the nonsu-
perconducting region, L <<§, . We include a contact
potential difference in the potential U(x), which implies
that this potential may have nonvanishing asymptotic
values at infinity: U(— o) # U(») = 0. If the junction
has more than one transverse transport mode, we as-
sume that these modes are not mixed.

A one-dimensional quasiclassical wave function of a
given transverse channel in the right electrode has the
form [Eq.(2.6) ),

1
W, )= ) ——X%
rR(% D) % Vor
X exp (Bf ppdx) exp (o, 1/ DV (5.0 (A1
with a similar expression for the left electrode. The
quantities t/)ﬁ are slowly varying two-component
wave functions on the scale of 1/pp , where
PR(*) = [2my(u — Uy — E | o(x)) 112 This equation
is valid over the distance x >>1/ p, from the junc-
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tion, and in the spatial region 1/p, <<x<<§, the
functions 1/)% are almost constant.

From another point of view, at large distance from
the junction, [x|>>1/ PrL the function W can be
expressed in the form of a linear combination of the
scattering states at the Fermi level,

W=Cy +Cpy (A2)
(1/\/’172)[elpLx+re-lpLx] ,x<0,
X = (A.3a)
ipr
WWVogyde ©, x>0,
1/Viyg) [ e Ky 7e-me] x>0,

x<0,

~ =ipyx

Wo de 7,

Comparing Egs. (A.2) and (A.3) with Eq. (A.1) in the
region 1/p, << |x| <<§, , we have

I iy xp/2 _

Ciy=e "y, C=c " ¥pg,

iaz xL/Z _ (A‘4)

rCl + dC2 =& ’(/)L ’
- iv, xR/z
dC1+rC2=eZ tp;,
which yields the boundary condition
A
¥ 14

with the matching matrix

) (A.5)

~ o2
r de
-iop/2
de

V= , (A.6)

where ¢ = x(0) — x,(0). The matrix V satisfies the
unitarity condition VY= 1, provided by the rela-
tions among the normal electron scattering amplitudes
inEq. (A.3): 7= —d(r/d)*, |d|?=|d|*=D,
|r]2=|Fl*=R=1-D.

Appendix B: Bound state current

Equation (4.10) for the current of a bsingle bound
state can be derived directly [61] from the Bogo-
lyubov-de Gennes equations (2.5) and (2.2). The de-

rivation is valid for junctions with an arbitrary nonsu-

perconducting region between the superconducting
electrodes. We assume for simplicity that the phase of
the order parameter [Eq.(2.3) ] in the electrodes is
constant and equal to /2 in the right and left
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electrodes, respectively. Let W(r, E) be a normalized
wave function of the Andreev bound state with energy E,

HY—E¥=0,¥(x=2w)=0. (B.D

The energy and the wave function of the bound state
depend on the phase difference ¢. Using the deriva-
tive with respect to ¢ in Eq. (B.1) and a scalar product
of the resulting equation with the function ¥, we ob-
tain

fd%(\p,%(?{—zs)\p) =0, (B2

where the brackets denote a scalar product in the
electron-hole space, similar to Eq. (3.8). In this equa-
tion the derivative of the Hamiltonian has the form

dH dA s1gnx
dp d¢ 2

in accordance with Egs. (2.2) and (2.3). Substituting
relation (B.3) into Eq. (B.2) and taking into account
that the function W is normalized, we obtain

dE f &P (\p dA \p)
dp
The continuity equation for the charge current,
e N /\, 2 ,
I(x, E) =5 (P~ D' f & (W(x), W), »
(B.5

(B.3)

(B.49

in accordance with Eq. (B.1), has the form

. d _ 2
zdxl(x,E)—efd

Substituting relation (B.3) into Eg. (B.6) and in-
tegrating this equation over the entire x axis, we ob-

tain
0.5 =20 f e D)

In Eq. (B.7) the current at infinity drops out because
of decay of the bound state wave function,
I(+») = 0. The current I(0) is formally taken in the
middle of the junction; however, the current has the
same value in the whole nonsuperconducting region,
according to the conservation equation (B.6). Com-
parison of Egs. (B.4) and (B.7) finally yields

r, (¥ lo, A () B.6)

(B.7

2. dE
I(E) = 205> (B.8)
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