ABOUT ONE CHARACTERISTIC INITIAL VALUE PROBLEM

V. V. Marynets', A. V. Dobryden'

Uzhhorod National University, Ukraine

The characteristic initial value problem has been studied for the second order nonlinear differential equation, and modifications of the two-sided method of its approximate integration have been constructed.

AMS Subject Classification: 35L15

Let's consider a nonlinear partial differential equation of the hyperbolic type of the form

$$U_{xy}(x,y) = f(x,y,U(x,y),U_x(x,y),U_y(x,y)) \equiv f[U(x,y)],$$
(1)

where

$$(x, y) \in B, B = B_1 \cup B_2 \cup B_3, B_1 = \left\{ (x, y) \middle| x \in [0, x_0), y \in (0, x] \right\},$$
$$B_2 = \left\{ (x, y) \middle| x \in (x_0, 1], y \in [0, x_0) \right\},$$
$$B_3 = \left\{ (x, y) \middle| x \in [x_0, 1), y \in (x_0, x] \right\}, f : D \to R, D \in \mathbb{R}^5.$$

The setting of the problem [1] is as follows: in the functional space $C^2(B) \cap C(\overline{B})$, find a solution of the differential equation (1) that would satisfy the conditions

$$U(x, 0) = \psi_1(x), \ x \in [0, x_0], \quad U(x_0, y) = \varphi_1(y), \ y \in [0, x_0],$$

$$U(x, x_0) = \psi_2(x), \ x \in [x_0, 1], \quad U(1, y) = \varphi_2(y), \ y \in [x_0, 1].$$
(2)

We assume that $\psi_1(x) \in C^1([0, x_0]), \varphi_1(y) \in C^1([0, x_0]), \quad \psi_2(x) \in C^1([x_0, 1]), \varphi_2(y) \in C^1([x_0, 1])$; moreover they satisfy the consistency conditions

$$\psi_1(x_0) = \varphi_1(0), \quad \varphi_1(x_0) = \psi_2(x_0), \quad \psi_2(1) = \varphi_2(x_0).$$
 (3)

It is easy to show that the characteristic initial value problem (1)-(3) is equivalent to the integral equation

$$U(x,y) = U_i(x,y), (x,y) \in \bar{B}_i,$$
(4)

© V. V. Marynets', A. V. Dobryden', 2001

487

where $U_i(x,y) = \Phi_i(x,y) + T_i f[U(\xi,\eta)], i = \overline{1,3}$, and

$$\Phi_1(x,y) \equiv \psi_1(x) + \varphi_1(y) - \varphi_1(0), \quad T_1 f[U(\xi,\eta)] \equiv \int_0^y \int_{x_0}^x f[U(\xi,\eta)] d\xi d\eta,$$

$$\Phi_2(x,y) \equiv \psi_2(x) + \varphi_1(y) - \varphi_1(x_0), \quad T_2 f[U(\xi,\eta)] \equiv \int_{x_0}^y \int_{x_0}^x f[U(\xi,\eta)] d\xi d\eta,$$

$$\Phi_3(x,y) \equiv \psi_2(x) + \varphi_2(y) - \psi_2(1), \quad T_3f[U(\xi,\eta)] \equiv \int_{x_0}^y \int_{-1}^x f[U(\xi,\eta)]d\xi d\eta.$$

It is obvious that $\Phi_i(x, y) \in C^{(1,1)}(\overline{B}_i)$ and since they satisfy the conditions (2), the problem (1)–(3) is reduced by the substitution

$$V_i(x,y) = U_i(x,y) - \Phi_i(x,y), \quad (x,y) \in B_i, \quad i = \overline{1, 3},$$

to a problem with homogeneous conditions (2). Hence from now on, without loss of generality, we assume that

$$\varphi_1(y) = \varphi_2(y) = \psi_1(x) = \psi_2(x) = 0.$$

Definition. Any functions Z(x,y), V(x,y) from the space $C^2(B) \cap C(\overline{B})$ that satisfy the conditions (2) and the inequalities

$$W(x,y) \le 0, (x,y) \in \bar{B}, \ W_x(x,y) \ge 0, \ W_y(x,y) \le 0, \ (x,y) \in \bar{B}_1 \cup \bar{B}_3,$$

$$W_x(x,y) \le 0, \ W_y(x,y) \ge 0, \ (x,y) \in \bar{B}_2,$$
(5)

are called comparison functions of the problem (1) - (3).

Let the right-hand side of the equation (1), f[U(x, y)], belong to the space $C_1(\overline{D})$ [2], where $C_1(\overline{D})$ is the space of functions that satisfy the following conditions:

1) $f[U(x,y)] \in C(\bar{D});$

2) the function f[U(x,y)] can be represented in the form $f[U(x,y)] \equiv f[U^+(x,y); U^-(x,y) \in C(\bar{D}_1), \bar{D}_1 \in \mathbb{R}^8$, so that for any functions $Z(x,y), Z^*(x,y), V(x,y), V^*(x,y) \in \bar{D}_1$ from the space $C^2(B) \cap C(\bar{B})$ that satisfy the inequalities

$$Z(x,y) \le Z^*(x,y), \quad V(x,y) \ge V^*(x,y), \quad (x,y) \in \overline{B},$$

$$Z_x(x,y) \ge Z_x^*(x,y), \quad V_x(x,y) \le V_x^*(x,y), \quad (x,y) \in \bar{B}_1 \cup \bar{B}_3,$$

$$Z_{y}(x,y) \leq Z_{y}^{*}(x,y), \quad V_{y}(x,y) \geq V_{y}^{*}(x,y), \quad (x,y) \in \bar{B}_{1} \cup \bar{B}_{3},$$
$$Z_{x}(x,y) \leq Z_{x}^{*}(x,y), \quad V_{x}(x,y) \geq V_{x}^{*}(x,y), \quad (x,y) \in \bar{B}_{2},$$
$$Z_{y}(x,y) \geq Z_{y}^{*}(x,y), \quad V_{y}(x,y) \leq V_{y}^{*}(x,y), \quad (x,y) \in \bar{B}_{2},$$

the condition

$$f[Z(x,y);V(x,y)] \ge f[Z^*(x,y);V^*(x,y)]$$
(6)

is fulfilled;

3) in the set \bar{D}_1 the function $f[U^+(x,y); U^-(x,y)]$ satisfies Lipshits' condition with a constant K,

$$\left| f[Z(x,y);V(x,y)] - f[Z^*(x,y);V^*(x,y)] \right| \leq K(|Z(x,y) - Z^*(x,y)| + |V(x,y) - V^*(x,y)| + |Z_x(x,y) - Z^*_x(x,y)| + |V_x(x,y) - V^*_x(x,y)| + |Z_y(x,y) - Z^*_y(x,y)| + |V_y(x,y) - V^*_y(x,y)|).$$

$$(7)$$

If $f[U(x,y)] \in C(\bar{D})$ and has bounded first order partial derivatives in all its variables starting from the third one, then $f[U(x,y)] \in C_1(\bar{D})$.

Let's denote

$$f^{p} = f[Z_{p}(x,y); V_{p}(x,y)], \quad f_{p} = f[V_{p}(x,y); Z_{p}(x,y)],$$

$$\bar{f}^{p} = f[\bar{Z}_{p}(x,y); \bar{V}_{p}(x,y)], \quad \bar{f}_{p} = f[\bar{V}_{p}(x,y); \bar{Z}_{p}(x,y)],$$

$$\bar{Z}_{p}(x,y) = Z_{p}(x,y) - d_{p}(x,y)W_{p}(x,y), \quad \bar{V}_{p}(x,y) = V_{p}(x,y) + d_{p}(x,y)W_{p}(x,y),$$

$$\alpha_{p}(x,y) = Z_{p,xy}(x,y) - f^{p}, \quad \beta_{p}(x,y) = V_{p,xy} - f_{p}, \quad p = 0, 1, 2, ...,$$
(8)

where $d_p(x,y)$ are any functions from the space $C^{(1,1)}(\bar{B})$ that satisfy the conditions

$$d_{p}(x,y) \geq 0, \quad (x,y) \in \bar{B},$$

$$d_{p,x}(x,y) \leq 0, \quad d_{p,y}(x,y) \geq 0, \quad (x,y) \in \bar{B}_{1} \cup \bar{B}_{3},$$

$$d_{p,x}(x,y) \geq 0, \quad d_{p,y}(x,y) \leq 0, \quad (x,y) \in \bar{B}_{2},$$
(9)

 $\sup_{B} d_{p}(x,y) \leq 0,5, \quad \sup_{B} \left| d_{p,x}(x,y) \right| \leq 0,5, \quad \sup_{B} \left| d_{p,y}(x,y) \right| \leq 0,5, \quad p = 0, \ 1, \ 2, \dots$

Let us construct sequences of functions, $\{Z_p(x, y)\}, \{V_p(x, y)\}, by [4]$

$$Z_{i,p+1}(x,y) = T_i \left\{ \bar{f}^p - c_p(\bar{f}^p - \bar{f}_p) \right\}, \quad (x,y) \in \bar{B}_i,$$

$$V_{i,p+1}(x,y) = T_i \left\{ \bar{f}_p + c_p(\bar{f}^p - \bar{f}_p) \right\}, \quad (x,y) \in \bar{B}_i, i = \overline{1,3},$$
(10)

where $c_p(x,y)$ are any nonnegative functions from the space $C(\bar{B})$ that satisfy the condition

$$\sup_{B} c_p(x, y) \le 0, 5, \quad p = 0, 1, 2, \dots$$
(11)

The formulas

$$W_{i,p+1}(x,y) = T_i \left\{ (1 - 2c_p)(\bar{f}^p - \bar{f}_p) \right\}, (x,y) \in \bar{B}_i,$$
(12)

$$Z_{i,p}(x,y) - Z_{i,p+1}(x,y) = T_i \left\{ \alpha_p(\xi,\eta) + f^p - \bar{f}^p + c_p(\bar{f}^p - \bar{f}_p) \right\},$$

$$V_{i,p}(x,y) - V_{i,p+1}(x,y) = T_i \left\{ \beta_p(\xi,\eta) + f_p - \bar{f}_p - c_p(\bar{f}^p - \bar{f}_p) \right\},$$
(13)

 $(x,y) \in \overline{B}_i, \quad i = \overline{1,3},$

$$\alpha_{p+1}(x,y) = \bar{f}^{p} - f^{p+1} - c_{p}(\bar{f}^{p} - \bar{f}_{p}),$$

$$\beta_{p+1}(x,y) = \bar{f}_{p} - f_{p+1} + c_{p}(\bar{f}^{p} - \bar{f}_{p})$$
(14)

follow from (8), (10).

As the zero approximation, we choose arbitrary comparison functions $Z_0(x, y)$, $V_0(x, y)$ that satisfy, in the set \overline{B} , the inequalities

$$\alpha_0(x,y) \ge 0, \, \beta_0(x,y) \le 0.$$
 (15)

Let

$$\begin{split} M &= \sup_{D_1} \, f(x,y,U^+(x,y),U^+_x(x,y),U^+_y(x,y);\,U^-(x,y),U^-_x(x,y),U^-_y(x,y)), \\ m &= \inf_{D_1} \, f(x,y,U^-(x,y),U^-_x(x,y),U^-_y(x,y);\,U^+(x,y),U^+_x(x,y),U^+_y(x,y)). \end{split}$$

Then if the functions

$$Z_{i,0}(x,y) = T_i M = \begin{cases} M(x-x_0)y, & (x,y) \in \bar{B}_1; \\ M(x-x_0)(y-x_0), & (x,y) \in \bar{B}_2; \\ M(x-1)(y-x_0), & (x,y) \in \bar{B}_3, \end{cases}$$

$$V_{i,0}(x,y) = T_i m = \begin{cases} m(x-x_0)y, & (x,y) \in \bar{B}_1; \\ m(x-x_0)(y-x_0), & (x,y) \in \bar{B}_2; \\ m(x-1)(y-x_0), & (x,y) \in \bar{B}_3 \end{cases}$$

belongs to the space \bar{D}_1 , then they are comparison functions of the problem (1)–(3) that satisfy conditions (15).

We will assume that the function $d_0(x, y)$ is such that, in the set \overline{B} , the inequalities (9) hold and

$$(1 - 2d_0(x, y))W_{0,x}(x, y) - 2d_{0,x}(x, y)W_0(x, y) \ge 0, \quad (x, y) \in \bar{B}_1 \cup \bar{B}_3,$$

$$(1 - 2d_0(x, y))W_{0,y}(x, y) - 2d_{0,y}(x, y)W_0(x, y) \le 0, \quad (x, y) \in \bar{B}_1 \cup \bar{B}_3,$$

$$(1 - 2d_0(x, y))W_{0,x}(x, y) - 2d_{0,x}(x, y)W_0(x, y) \le 0, \quad (x, y) \in \bar{B}_2,$$

$$(1 - 2d_0(x, y))W_{0,y}(x, y) - 2d_{0,y}(x, y)W_0(x, y) \ge 0, \quad (x, y) \in \bar{B}_2.$$

Then we obtain

$$Z_{0}(x,y) \leq \bar{Z}_{0}(x,y) \leq \bar{V}_{0}(x,y) \leq V_{0}(x,y), \quad (x,y) \in \bar{B},$$

$$Z_{0,x}(x,y) \geq \bar{Z}_{0,x}(x,y) \geq \bar{V}_{0,x}(x,y) \geq V_{0,x}(x,y), \quad (x,y) \in \bar{B}_{1} \cup \bar{B}_{3},$$

$$Z_{0,y}(x,y) \leq \bar{Z}_{0,y}(x,y) \leq \bar{V}_{0,y}(x,y) \leq V_{0,y}(x,y), \quad (x,y) \in \bar{B}_{1} \cup \bar{B}_{3},$$

$$Z_{0,x}(x,y) \leq \bar{Z}_{0,x}(x,y) \leq \bar{V}_{0,x}(x,y) \leq V_{0,x}(x,y), \quad (x,y) \in \bar{B}_{2},$$

$$Z_{0,y}(x,y) \geq \bar{Z}_{0,y}(x,y) \geq \bar{V}_{0,y}(x,y) \geq V_{0,y}(x,y), \quad (x,y) \in \bar{B}_{2}.$$
(16)

Taking into account inequalities (6), (11), (16), from (12), for p = 0, we have

$$W_{1,xy}(x,y) = (1 - 2c_0(x,y))(\bar{f}^0 - \bar{f}_0) \ge 0.$$

By integrating the latter inequality with respect to x from x_0 to x and with respect to y from 0 to y in \overline{B}_1 , with respect to x from x_0 to x and with respect to y from x_0 to y in \overline{B}_2 , with respect to x from 1 to x and with respect to y from x_0 to y in \overline{B}_3 and taking into account conditions (2), (3), we see that the following inequalities hold in the set \overline{D}_1 :

$$W_1(x,y) \le 0,$$
 $(x,y) \in B,$
 $W_{1,x}(x,y) \ge 0,$ $W_{1,y}(x,y) \le 0,$ $(x,y) \in \bar{B}_1 \cup \bar{B}_3,$
 $W_{1,x}(x,y) \le 0,$ $W_{1,y}(x,y) \ge 0,$ $(x,y) \in \bar{B}_2.$

Let us choose the function $d_0(x, y)$ so that the conditions

$$\begin{aligned} \bar{Z}_0(x,y) - Z_1(x,y) &\leq 0, \quad \bar{V}_0(x,y) - V_1(x,y) \geq 0, \quad (x,y) \in \bar{B}, \\ \bar{Z}_{0,x}(x,y) - Z_{1,x}(x,y) \geq 0, \quad \bar{V}_{0,x}(x,y) - V_{1,x}(x,y) \leq 0, \\ (x,y) \in \bar{B}_1 \cup \bar{B}_3, \end{aligned}$$

$$\bar{Z}_{0,y}(x,y) - Z_{1,y}(x,y) \le 0, \quad \bar{V}_{0,y}(x,y) - V_{1,y}(x,y) \ge 0,$$
$$(x,y) \in \bar{B}_1 \cup \bar{B}_3, \tag{17}$$

$$\begin{aligned} \bar{Z}_{0,x}(x,y) - Z_{1,x}(x,y) &\leq 0, \quad \bar{V}_{0,x}(x,y) - V_{1,x}(x,y) \geq 0, \quad (x,y) \in \bar{B}_2, \\ \bar{Z}_{0,y}(x,y) - Z_{1,y}(x,y) \geq 0, \quad \bar{V}_{0,y}(x,y) - V_{1,y}(x,y) \leq 0, \quad (x,y) \in \bar{B}_2 \end{aligned}$$

are fulfilled.

Then, taking into account (13), (11), (15), (16), (17), (6), we obtain

$$\bar{f}^0 - f^1 \ge 0, \quad \bar{f}_0 - f_1 \le 0.$$

By choosing the function $c_0(x, y)$ so that the inequalities

$$\bar{f}^0 - f^1 - c_0(x,y)(\bar{f}^0 - \bar{f}_0) \ge 0, \quad \bar{f}_0 - f_1 + c_0(x,y)(\bar{f}^0 - \bar{f}_0) \le 0,$$

hold in the set \overline{D}_1 , from (14), for p = 0, we obtain $\alpha_1(x, y) \ge 0, \beta_1(x, y) \le 0$.

Starting with the functions $Z_1(x, y)$, $V_1(x, y)$ and repeating previous considerations, by using induction, we see that if the functions $d_p(x, y)$, $c_p(x, y)$, p = 0, 1, 2, ..., were chosen so that

$$(1 - 2d_{p}(x, y))W_{p,x}(x, y) - 2d_{p,x}(x, y)W_{p}(x, y) \ge 0, \quad (x, y) \in \bar{B}_{1} \cup \bar{B}_{3},$$

$$(1 - 2d_{p}(x, y))W_{p,y}(x, y) - 2d_{p,y}(x, y)W_{p}(x, y) \le 0, \quad (x, y) \in \bar{B}_{1} \cup \bar{B}_{3},$$

$$(1 - 2d_{p}(x, y))W_{p,x}(x, y) - 2d_{p,x}(x, y)W_{p}(x, y) \le 0, \quad (x, y) \in \bar{B}_{2},$$

$$(1 - 2d_{p}(x, y))W_{p,y}(x, y) - 2d_{p,y}(x, y)W_{p}(x, y) \ge 0, \quad (x, y) \in \bar{B}_{2},$$

$$\bar{Z}_{p}(x, y) - Z_{p+1}(x, y) \le 0, \quad \bar{V}_{p}(x, y) - V_{p+1}(x, y) \ge 0, \quad (x, y) \in \bar{B},$$

$$\bar{Z}_{p,x}(x, y) - Z_{p+1,x}(x, y) \ge 0, \quad \bar{V}_{p,x}(x, y) - V_{p+1,x}(x, y) \le 0,$$

$$(x, y) \in \bar{B}_{1} \cup \bar{B}_{3},$$
(18)

$$\begin{split} \bar{Z}_{p,y}(x,y) - Z_{p+1,y}(x,y) &\leq 0, \quad \bar{V}_{p,y}(x,y) - V_{p+1,y}(x,y) \geq 0, \\ (x,y) &\in \bar{B}_1 \cup \bar{B}_3, \\ \bar{Z}_{p,x}(x,y) - Z_{p+1,x}(x,y) \leq 0, \quad \bar{V}_{p,x}(x,y) - V_{p+1,x}(x,y) \geq 0, \\ (x,y) &\in \bar{B}_2, \\ \bar{Z}_{p,y}(x,y) - Z_{p+1,y}(x,y) \geq 0, \quad \bar{V}_{p,y}(x,y) - V_{p+1,y}(x,y) \leq 0, \end{split}$$

$$(x,y) \in \bar{B}_2,$$

$$\bar{f}^{p} - f^{p+1} - c_{p}(x,y)(\bar{f}^{p} - \bar{f}_{p}) \ge 0, \quad \bar{f}_{p} - f_{p+1} + c_{p}(x,y)(\bar{f}^{p} - \bar{f}_{p}) \le 0,$$

then the inequalities

$$Z_{p}(x,y) \leq Z_{p+1}(x,y) \leq V_{p+1}(x,y) \leq V_{p}(x,y), \quad (x,y) \in \bar{B},$$

$$Z_{p,x}(x,y) \geq Z_{p+1,x}(x,y) \geq V_{p+1,x}(x,y) \geq V_{p,x}(x,y), \quad (x,y) \in \bar{B}_{1} \cup \bar{B}_{3},$$

$$Z_{p,y}(x,y) \leq Z_{p+1,y}(x,y) \leq V_{p+1,y}(x,y) \leq V_{p,y}(x,y), \quad (x,y) \in \bar{B}_{1} \cup \bar{B}_{3},$$

$$Z_{p,x}(x,y) \leq Z_{p+1,x}(x,y) \leq V_{p+1,x}(x,y) \leq V_{p,x}(x,y), \quad (x,y) \in \bar{B}_{2},$$

$$Z_{p,y}(x,y) \geq Z_{p+1,y}(x,y) \geq V_{p+1,y}(x,y) \leq V_{p,y}(x,y), \quad (x,y) \in \bar{B}_{2}$$
(19)

take place in the set \overline{D}_1 for any $p = 0, 1, 2, \ldots$

Theorem 1. Let there exist comparison functions of the problem (1) - (3), $Z_0(x, y)$, $V_0(x, y)$, that satisfy conditions (15) for $(x, y) \in \overline{B}$ and the right-hand side of the equation (1) $f[U(x, y)] \in$ $C_1(\overline{D})$. Then, if the functions $d_p(x, y)$, $c_p(x, y)$, p = 0, 1, 2, ..., satisfying conditions (9), (11), are chosen so that inequalities (18) hold in the set \overline{D}_1 , then the sequences of functions, $\{Z_p(x, y)\}$, $\{V_p(x, y)\}$, constructed according to (10), converge to a unique solution of the problem (1) – (3) in the space $C^2(B) \cap C(\overline{B}) U(x, y)$ in the set \overline{B} absolutely and uniformly and

$$Z_{p}(x,y) \leq U(x,y) \leq V_{p}(x,y), \quad (x,y) \in \bar{B},$$

$$Z_{p,x}(x,y) \geq U_{x}(x,y) \geq V_{p,x}(x,y), \quad (x,y) \in \bar{B}_{1} \cup \bar{B}_{3},$$

$$Z_{p,y}(x,y) \leq U_{y}(x,y) \leq V_{p,y}(x,y), \quad (x,y) \in \bar{B}_{1} \cup \bar{B}_{3},$$

$$Z_{p,x}(x,y) \leq U_{x}(x,y) \leq V_{p,x}(x,y), \quad (x,y) \in \bar{B}_{2},$$

$$Z_{p,y}(x,y) \geq U_{y}(x,y) \geq V_{p,y}(x,y), \quad (x,y) \in \bar{B}_{2}.$$
(20)

Proof. To prove that the respective sequence of functions, $\{Z_p(x, y)\}, \{V_p(x, y)\}, \{Z_{p,x}(x, y)\}, \{V_{p,x}(x, y)\}, \{Z_{p,y}(x, y)\}, \{V_{p,y}(x, y)\}, uniformly converges to the same limit, taking into account inequalities (19), it is sufficiently to demonstrate that <math>W_p(x, y) \xrightarrow[p \to \infty]{} 0, W_{p,x}(x, y) \xrightarrow[p \to \infty]{} 0$.

From (7) we have

$$\bar{f}^{p} - \bar{f}_{p} \leq 2K \left(|\bar{W}_{p}(x,y)| + |\bar{W}_{p,x}(x,y)| + |\bar{W}_{p,y}(x,y)| \right) \\
\leq 2K \left((1 - 2d_{p}(x,y)) \left(|W_{p}(x,y)| + |W_{p,x}(x,y)| + |W_{p,y}(x,y)| \right) \\
+ 2|W_{p}(x,y)| \left(|d_{p,x}(x,y) + d_{p,y}(x,y)| \right) \right) \\
\leq 2Kl \left(|W_{p}(x,y)| + |W_{p,x}(x,y)| + |W_{p,y}(x,y)| \right), \qquad (21) \\
l = \max_{p} \sup_{B} \left\{ 1 - 2d_{p}(x,y) + 2|d_{p,x}(x,y) + d_{p,y}(x,y)| \right\}.$$

If p = 0, we have $\bar{f}^0 - \bar{f}_0 \le 2Kl (|W_0(x, y)| + |W_{0,x}(x, y)| + |W_{0,y}(x, y)|)$. Let's denote

$$d = \sup_{B} \{ |W_0(x,y)|, |W_{0,x}(x,y)|, |W_{0,y}(x,y)| \}, \quad q = \max_{p} \sup_{B} (1 - 2c_p(x,y)),$$

$$|\Omega_p(x,y)| = \{ |W_p(x,y)|, |W_{p,x}(x,y)|, |W_{p,y}(x,y)| \}.$$

Then from (12), for p = 0, it follows that

$$W_{1,xy}(x,y) = (1 - 2c_0(x,y))(\bar{f}^0 - \bar{f}_0) \le 6Kldq,$$

$$|\Omega_1(x,y)| \le \begin{cases} 6Klqd(y+x_0-x), & (x,y) \in \bar{B}_1; \\ 6Klqd(x-y), & (x,y) \in \bar{B}_2; \\ 6Klqd(1-x+y-x_0), & (x,y) \in \bar{B}_3. \end{cases}$$

For p = 1, from (12) we obtain

$$\begin{split} W_{2,xy}(x,y) &= (1-2c_1(x,y))(\bar{f}^{\ 1}-\bar{f}_1) \\ &\leq (1-2c_1(x,y))2kl\,(|W_1(x,y)|+|W_{1,x}(x,y)|+W_{1,y}(x,y)|) \\ &\leq \begin{cases} d(6klq)^2(y+x_0-x), & (x,y)\in\bar{B}_1; \\ d(6klq)^2(x-y), & (x,y)\in\bar{B}_2; \\ d(6klq)^2(1-x+y-x_0), & (x,y)\in\bar{B}_3, \end{cases} \end{split}$$

ABOUT ONE CHARACTERISTIC INITIAL VALUE PROBLEM

hence,

$$|\Omega_2(x,y)| \le \begin{cases} d(6Klq)^2(y+x_0-x)^2/2!, & (x,y) \in \bar{B}_1; \\ d(6Klq)^2(x-y)^2/2!, & (x,y) \in \bar{B}_2; \\ d(6Klq)^2(1-x+y-x_0)^2/2!, & (x,y) \in \bar{B}_3. \end{cases}$$

Supposo that the recurrence estimates

$$|\Omega_p(x,y)| \le \begin{cases} d(6Klq)^p (y+x_0-x)^p / p!, & (x,y) \in \bar{B}_1; \\ d(6Klq)^p (x-y)^p / p!, & (x,y) \in \bar{B}_2; \\ d(6Klq)^p (1-x+y-x_0)^p / p!, & (x,y) \in \bar{B}_3 \end{cases}$$

hold. Then from (12), (21) we have

$$W_{p+1,xy}(x,y) \leq \begin{cases} d(6Klq)^{p+1}(y+x_0-x)^p/p!, & (x,y) \in \bar{B}_1; \\ d(6Klq)^{p+1}(x-y)^p/p!, & (x,y) \in \bar{B}_2; \\ d(6Klq)^{p+1}(1-x+y-x_0)^p/p!, & (x,y) \in \bar{B}_3. \end{cases}$$

Integrating the latter inequality with respect to x from x_0 to x and with respect to y from 0 to y in \overline{B}_1 , with respect to x from x_0 to x and with respect to y from x_0 to y in \overline{B}_2 , with respect to x from 1 to x and with respect to y from x_0 to y in \overline{B}_3 we obtain

$$|\Omega_{p+1}(x,y)| \leq \begin{cases} d(6Klq(y+x_0-x))^{p+1}/(p+1)!, & (x,y) \in \bar{B}_1; \\ d(6Klq(x-y))^{p+1}/(p+1)!, & (x,y) \in \bar{B}_2; \\ d(6Klq(1-x+y-x_0))^{p+1}/(p+1)!, & (x,y) \in \bar{B}_3. \end{cases}$$
(22)

From estimates (22) it follows that $\lim_{p\to\infty} |\Omega_p(x,y)| = 0$, that is, in the set \overline{B} ,

$$\lim_{p \to \infty} Z_p(x, y) = \lim_{p \to \infty} V_p(x, y) = U(x, y),$$
$$\lim_{p \to \infty} Z_{p,x}(x, y) = \lim_{p \to \infty} V_{p,x}(x, y) = U_x(x, y),$$
$$\lim_{p \to \infty} Z_{p,y}(x, y) = \lim_{p \to \infty} V_{p,y}(x, y) = U_y(x, y).$$

Passing to the limit in (10) for $p \to \infty$ and differentiating with respect to x and y, we see that the limit function U(x, y) is solution of the problem (1)–(3).

Let's prove uniqueness of the solution of the problem (1)-(3) in the set \overline{D} . To do this, assume that there exist two solutions, U(x, y) and Z(x, y). We denote W(x, y) = U(x, y) - Z(x, y). Then we have

$$|W_{xy}(x,y)| = 2K(|W(x,y)| + |W_x(x,y)| + |W_y(x,y)|).$$

Denoting $d_1 = \max_{B} \sup_{B} \{|W(x,y)|, |W_x(x,y)|, |W_y(x,y)|\}$, as in the previous case, we see that the following estimate holds,

$$|\Omega(x,y)| \leq \begin{cases} (6Kd_1(y+x_0-x))^p/p!, & (x,y) \in \bar{B}_1; \\ (6Kd_1(x-y))^p/p!, & (x,y) \in \bar{B}_2; \\ (6Kd_1(1-x+y-x_0))^p/p!, & (x,y) \in \bar{B}_3, \end{cases}$$

where p is any nonnegative number. This is possible only if $W(x, y) \equiv 0$.

It remains to demonstrate that inequalities (20) take place. We will assume that for some number p,

$$Z_p(x,y) > U(x,y), \quad (x,y) \in \overline{B}.$$

Then by (19) we obtain

$$Z_p(x,y) > Z_{p+q}(x,y), \quad (x,y) \in \bar{B}$$

for any $q \in N$, hence, the sequence $\{Z_{p+q}(x, y)\}$ does not converge to a solution of the problem (1)–(3) for $q \to \infty$, which contradicts to what has been proved above. Similarly, another inequalities (20) are proved to hold in the set \overline{D} and the theorem is proved completely.

Theorem 2. Let the right-hand side of equation (1), $f[U(x,y)] \in C_1(\overline{D})$, and there exist in the space $C^2(B) \cap C(\overline{B})$ a function $Z_0(x,y)(V_0(x,y))$ that satisfies the homogeneous conditions (2) and the inequalities

$$Z_{0}(x,y) \leq 0 \quad (V_{0}(x,y) \geq 0), \quad (x,y) \in \bar{B},$$

$$Z_{0,x}(x,y) \geq 0 \quad (V_{0,x}(x,y) \leq 0), \quad (x,y) \in \bar{B}_{1} \cup \bar{B}_{3},$$

$$Z_{0,y}(x,y) \leq 0 \quad (V_{0,y}(x,y) \geq 0), \quad (x,y) \in \bar{B}_{1} \cup \bar{B}_{3},$$

$$Z_{0,x}(x,y) \leq 0 \quad (V_{0,x}(x,y) \geq 0), \quad (x,y) \in \bar{B}_{2},$$

$$Z_{0,y}(x,y) \geq 0 \quad (V_{0,y}(x,y) \leq 0), \quad (x,y) \in \bar{B}_{2},$$

$$Z_{0,xy}(x,y) - f[Z_{0}(x,y);0] \geq 0, \quad f[0;Z_{0}(x,y)] \geq 0$$

$$(V_{0,xy}(x,y) - f[V_{0}(x,y);0] \leq 0, \quad f[0;V_{0}(x,y)] \leq 0).$$
(23)

Then a solution of the problem (1), (2) satisfies the inequalities

$$U(x,y) \le 0 \ (U(x,y) \ge 0), \quad (x,y) \in \bar{B},$$

$$U_x(x,y) \ge 0, \ U_y(x,y) \le 0 \ (U_x(x,y) \le 0, U_y(x,y) \ge 0), \quad (x,y) \in \bar{B}_1 \cup \bar{B}_3, \qquad (24)$$

$$U_x(x,y) \le 0, \ U_y(x,y) \ge 0 \ (U_x(x,y) \ge 0, U_y(x,y) \le 0), \quad (x,y) \in \bar{B}_2.$$

Proof. The functions $Z_0(x, y), V_0(x, y) \equiv 0$ $(Z_0(x, y) \equiv 0, V_0(x, y))$ are comparison functions of the problem (1)-(3) and, by conditions $(23), \alpha_0(x, y) \ge 0, \beta_0(x, y) \le 0$. According to Theorem 1 inequalities (20) take place, hence, for p = 0, we obtain (24). Thus, the theorem is proved.

Consider a system of two linear equation of the form

$$Z_{xy}(x,y) = q_1(x,y)Z(x,y) + q_2(x,y)Z_x(x,y) + q_3(x,y)Z_y(x,y) + f_1(x,y),$$
(25)

$$V_{xy}(x,y) = p_1(x,y)V(x,y) + p_2(x,y)V_x(x,y) + p_3(x,y)V_y(x,y) + f_2(x,y)$$
(26)

with homogeneous conditions (2), where Z(x, y), V(x, y) are the sought functions and $q_j(x, y)$, $p_j(x, y)$, $f_i(x, y)$, $i = 1, 2, j = \overline{1, 3}$, are known piecewise continuous functions that satisfy the conditions

$$f_{i}(x,y) \geq 0, \quad i = 1, 2,$$

$$q_{1}(x,y) \leq 0, \quad p_{1}(x,y) \leq 0, \quad (x,y) \in \bar{B},$$

$$q_{2}(x,y) \geq 0, \quad p_{2}(x,y) \geq 0, \quad (x,y) \in \bar{B}_{1} \cup \bar{B}_{3},$$

$$q_{2}(x,y) \leq 0, \quad p_{2}(x,y) \leq 0, \quad (x,y) \in \bar{B}_{2},$$

$$q_{3}(x,y) \leq 0, \quad p_{3}(x,y) \leq 0, \quad (x,y) \in \bar{B}_{1} \cup \bar{B}_{3},$$

$$q_{3}(x,y) \geq 0, \quad p_{3}(x,y) \geq 0, \quad (x,y) \in \bar{B}_{2}.$$
(27)

According to Theorem 2, solutions of the problems (25), (2) and (26), (2) satisfy the inequalities

$$Z(x,y) \le 0, \quad V(x,y) \le 0, \quad (x,y) \in \bar{B},$$

$$Z_x(x,y) \ge 0, \quad V_x(x,y) \ge 0, \quad (x,y) \in \bar{B}_1 \cup \bar{B}_3,$$

$$Z_y(x,y) \le 0, \quad V_y(x,y) \le 0, \quad (x,y) \in \bar{B}_1 \cup \bar{B}_3,$$
(28)

$$Z_x(x,y) \le 0, \quad V_x(x,y) \le 0, \quad (x,y) \in \bar{B}_2,$$

 $Z_y(x,y) \ge 0, \quad V_y(x,y) \ge 0, \quad (x,y) \in \bar{B}_2.$

Theorem 3. Let, for piecewise continuous functions $q_j(x, y), p_j(x, y), f_i(x, y), i = 1, 2, j = \overline{1, 3}$, that satisfy conditions (27), the inequalities

$$f_1(x,y) \ge f_2(x,y),$$

$$q_1(x,y) \le p_1(x,y), \quad (x,y) \in \bar{B},$$

$$q_2(x,y) \ge p_2(x,y), \quad q_3(x,y) \le p_3(x,y), \quad (x,y) \in \bar{B}_1 \cup \bar{B}_3,$$

$$q_2(x,y) \le p_2(x,y), \quad q_3(x,y) \ge p_3(x,y), \quad (x,y) \in \bar{B}_2$$
(29)

take place.

Then solutions of the problems (25), (2) and (26), (2) satisfy

$$Z(x,y) \ge V(x,y), \quad (x,y) \in \bar{B},$$

$$Z_x(x,y) \ge V_x(x,y), \quad Z_y(x,y) \le V_y(x,y), \quad (x,y) \in \bar{B}_1 \cup \bar{B}_3,$$

$$Z_x(x,y) \le V_x(x,y), \quad Z_y(x,y) \ge V_y(x,y), \quad (x,y) \in \bar{B}_2.$$

Proof. Denoting W(x,y) = Z(x,y) - V(x,y), from (25), (26) we obtain

$$W_{xy}(x,y) = q_1(x,y)W(x,y) + q_2(x,y)W_x(x,y) + q_3(x,y)W_y(x,y) + f(x,y),$$

$$f(x,y) = (q_1(x,y) - p_1(x,y))V(x,y) + (q_2(x,y) - p_2(x,y))V_x(x,y)$$
(30)

$$+ (q_3(x,y) - p_3(x,y))V_y(x,y) + f_1(x,y) - f_2(x,y).$$

Taking into account (28), (29), we have $f(x, y) \ge 0$, hence, the solution of the problem (30), (2) satisfies the conditions

$$W(x,y) \le 0, \quad (x,y) \in \bar{B},$$

 $W_x(x,y) \ge 0, \quad W_y(x,y) \le 0, \quad (x,y) \in \bar{B}_1 \cup \bar{B}_3,$
 $W_x(x,y) \le 0, \quad W_y(x,y) \ge 0, \quad (x,y) \in \bar{B}_2,$

what was to be proved.

Consider an equation of the form

$$U_{xy}(x,y) = f(x,y,U(x,y)) \equiv f[U(x,y)].$$
(31)

ABOUT ONE CHARACTERISTIC INITIAL VALUE PROBLEM

Lemma. Let the right-hand side of the equation (31), $f(x, y, U(x, y)) \in C_1(\overline{D})$, and the functions $\psi_i(x), \varphi_i(y), i = 1, 2$, satisfy the relation

$$\psi_2(x_0) = \psi_1(x_0) + \int_0^{x_0} f[\varphi_1(\eta)] d\eta,$$
$$\varphi_2(x_0) = \varphi_1(x_0) + \int_{x_0}^1 f[\psi_2(\xi)] d\xi,$$

and the consistency conditions (3).

Then the solution of the problem (31), (2) is regular in the set \overline{B} .

REFERENCES

- 1. Bitsadze A.V. Certain Classes Of Partial Differential Equations [in Russian], Nauka, Moscow (1981).
- 2. *Marynets' V.V. and Troshyna A.V.* "A gGeneralized darboux problem," Naukovyi Visnyk Uzhhorods'koho Universytetu. Ser. Mat., No. 4, 79–84 (1999).
- 3. *Kurpel' N.S. and Shuvar B.A.* Two-Sided Operator Inequalities and Their Applications [in Russian], Naukova Dumka, Kiev (1980).
- 4. *Marynets' V.V.* "On one mixed problem for deterministic quasilinear partial differential equations with deviating argument," Ukr. Mat. Zh., **46**, No. 11, 1581–1585 (1994).

Received 21.08.2001