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The impedance technique, also known as the particular case of the invariant embedding approach, is generalized for 
modeling of electromagnetic wave propagation in the anisotropic and gyrotropic media with spatial dispersion such as 
hot magnetized plasmas. That provides a new way for analytical and numerical studies of “full wave” problems in 
plasma physics that require exact solutions of Maxwell equations. Coupling of electromagnetic and electrostatic plasma 
modes in electron cyclotron range is considered as an example of application of the proposed technique. 
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1. INTRODUCTION 
In the present communication we review a relatively 

simple general technique for modeling the propagation of 
electromagnetic waves in hot magnetized plasmas. 
Specific features of such media are complex (gyrotropic 
and anisotropic) dielectric response, spatial dispersion, 
and existence of several normal waves with different 
polarizations which may be coupled in spatially 
inhomogeneous plasma. The basic problem considered 
below is reconstruction of electromagnetic fields inside 
and outside of a stationary plasma layer highlighted by 
incident radiation. This problem primarily corresponds to 
the plasma heating by high frequency waves in magnetic 
traps. Mathematically such processes are naturally 
described by a boundary problem for Maxwell equations 
with inhomogeneous constitutive relations. However, 
there is a regular way to transform this problem to a 
purely evolutional problem defined only by initial 
conditions. In this form the problem becomes more 
convenient both for developing the analytical solutions 
and for numerical calculations. 

The considered approach is a particular form of the 
more general method of invariant embedding [1]. In most 
cases the invariant embedding technique has been applied 
to a scalar wave equation [2]. However, wave propagation 
in magnetized plasmas is more adequately described by 
vector wave equations. In this case, a straightforward 
generalization of the standard invariant embedding 
technique is possible, but it involves essential technical 
difficulties, see e.g. [3]. The main goal of the present 
paper is demonstration of a new interpretation of the 
invariant embedding technique. A particular new 
development concerns the interaction between the normal 
waves of the studied medium in terms of the evolution of 
the reflection operator that couples counterpropagating 
normal waves. This reformulation of the invariant 
embedding approach gives rise to new evolutionary 
equations that are more transparent, physically intuitive, 
and very flexible for further analytical transformations or 
numerical studies.  

The technique may be especially useful being applied 
to linear mode-conversion problems characterized by 
large evanescent regions the interacting modes. This 
makes straightforward numerical integration of the wave 
equation usually impossible, because the evanescent wave 

which propagates against the direction of integration is 
inevitably raised from a numerical noise resulting in an 
exponentially growing solution in the direction of 
integration.  This exponentially growing part tends to 
suppress all real physics in the round-off errors long 
before the integration procedure reached the other end of 
the domain. The similar troubles exist near the plasma 
resonances characterized by quite different wavelengths 
and damping lengths for the “fast” and “slow” waves. The 
mode-impedance technique provides a way of a numerical 
treatment of stiff wave problems which requires much 
less computer resources than usual (finite element or 
FDTD) methods, for more details see [4]. 

2. MODE-IMPEDANCE TECHNIQUE  
FOR MAXWELL EQUATIONS 

Let us consider a plane monochromatic wave which is 
incident to plasma layer inhomogeneous along the 
coordinate z and limited within the range bza ≤≤ . 
Generalization over a three-dimensional geometry may be 
found in [4]. Outside the layer there is some “external” 
medium which is assumed to be homogeneous. Our final 
goal is to find the wave distribution inside the slab and the 
reflection and transmission matrixes characterizing the 
wave distribution outside the slab. To do so, one must 
solve Maxwell equations inside the slab, 

EHHE )(rot,rot 00 zikik ε)−==  , 
with proper boundary conditions – fixed incident wave at 
the one end and absence of the ingoing (incident) wave at 
the other end. Here ck /0 ω=  is the vacuum wave vector, 
and the plasma dielectric response is defined by 33×  
tensor operator which contains derivatives over the z 
coordinate in case of spatial dispersion 
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Let us introduce the mode-impedance technique. At 
first step, one must choose the minimum set of field 
variables that describe a particular problem, and convert 
Maxwell equations to the following form: 

ΨΨ Mz

)
=∂ ,   (1) 

where )(zM
)

 is a matrix of scalar functions containing no 
differential operators, and )(zΨ  is a field vector like 

( )...,,,,,,,,, 2
xzzzyzxzzzyyxx EEEEHEHEHE ∂∂∂∂=Ψ . 
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Some derivatives of field components may be also 
included as components of Ψ -vector to preserve form (1) 
in cases with spatial dispersion, for example, related to 
electrostatic waves. Here the derivatives are treated as 
independent field variables what allows to take into 
account higher dimensionality due to spatial dispersion  

Once Ψ  and corresponding M
)

 are known, one can 
specify the boundary conditions. The most natural way is 
to find the mode composition of the ingoing and outgoing 
radiation. Indeed, outside the slab one may assume that 

)exp( zikz∝Ψ , then equation (1) reduces to an algebraic 

problem 00 )( ΨΨ aMikz

)
= . Eigenvectors 0Ψ  give 

polarizations of the ingoing and outgoing waves 
propagating outside the slab; wave vectors zk  may be 
defined as roots of the corresponding dispersion relation, 

 0)det( 0 =− IikM z

))
.   (2) 

Normal modes may be sorted into two groups. Let 
+++

n00201 ...,, ΨΨΨ  denote all modes propagating or 
evanescent in the positive direction towards the z axis 
( 0Re >zk  or 0Im,0Re >= zz kk ); and −−−

n00201 ...,, ΨΨΨ  
denote all modes propagating or evanescent opposite to 
the z axis (either 0Re <zk  or 0Im,0Re <= zz kk ). In 
most cases the set of eigenmodes forms a basis for Ψ -
vector – at any point the wave field may be decomposed 
over the normal waves of the external medium  
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Here )(zi
±E  are n2  unknown functions that will be used 

as new field variables; obviously their number is equal to 
the dimension of the initialΨ -vector. Let us group these 
functions into two new n-dimensional vector fields: 
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By definition, the components of these vectors give the 
amplitudes of normal modes with definite propagation 
direction in the external medium outside the slab. After 
decomposition of the wave field, Maxwell equation may 
be formally rewritten as equations for two coupled 
counterpropagating waves 
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which should be solved in the range bza <<  with 
boundary conditions, e.g. ( ) incEE =+ a , ( ) 0=− bE . 
Matrix coefficients in (3) may be obtained from 
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 is a matrix with columns formed by vectors ±
i0Ψ . 

Boundary problem (3) may be further reduced to 
evolutional problem defined only by initial conditions. 
Let us formally introduce “mode-impedance” matrix that 
couples forward and backward waves as 

  )()()( zzRz +− = EE
)

.  (4) 

Note, that this unknown yet operator )(zR
)

 may be 
considered as the reflection matrix of the reduced layer 

],[ bz  for the wave incident from az < . In particular, 

0)( =bR
)

 since there is no reflection from a “zero” layer.  

Substituting (4) into equations (3), one may exclude +E  
and obtain the following matrix equation: 

+−+− +++=∂− rRttRRrRRz
)))))))))

,    0)( =bR
)

.       (5) 
In case of one-dimensional inhomogeneity, the 
evolutional equation is reduced to a set of nonlinear 
ordinary differential equations for components of the 
impedance matrix )(zR

)
, which can be easily integrated 

numerically for arbitrary distribution of the dielectric 
tensor in space. The integration should start from the right 
boundary bz =  with zero initial condition. Once  )(zR

)
 is 

known, the wave field distribution inside the slab may be 
retrieved as well as the reflected and transmitted waves 
outside the slab (for a given incident wave). Indeed, the 
forward wave )(z+E  may be obtained by integrating the 
following equation from the boundary az = : 

inc)(,)( EEEE =+=∂ ++−++ aRrtz

)))
.  (6) 

Finally the backward wave −E  may be retrieved from (4). 

3. TEST WAVE PROBLEM 
The proposed formalism has been proved to be very 

effective in modeling of wave propagation in 
inhomogeneous magnetized plasmas. To provide a 
working example we consider electromagnetic waves 
propagating in dense plasmas in electron cyclotron 
frequency range. We focus our attention on the problem 
of linear coupling of the electromagnetic modes in the 
inhomogeneous plasma, subsequent excitation of the 
electrostatic electron Bernstein mode by the extraordinary 
mode and cyclotron damping of these waves. This 
problem has many applications in ionosphere and astro-
physics; in recent years interest in linear mode coupling in 
this frequency range has increased appreciably in 
connection with the high-frequency plasma heating in 
spherical tokamaks and optimized stellarators [5].  

For simplicity we assume that the ambient magnetic 
field is directed along the x axis, and the hot plasma 
dielectric response is modeled by [4]: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∂+∂+−∂
∂−∂+∂−

∂∂∂+
=

−
⊥

−−

−−
⊥

−

−−−

22
04

22
03

1
0

22
03

22
02

1
0

1
0

1
0

22
01||

)(

zzz

zzz

zzz

kkiigk
kiigkki

kkik
z

χεχξ
χχεξ

ξξχε
ε) . 

Here 22
|| /1 ωωε pe−= , )/(1 222

cepe ωωωε −−=⊥ , and =g  

ωωωωω )/( 222
cecepe −  are usual parameters of cold plasma; 

ξ , 1χ ,… 4χ  are resulted from the thermal motion of 
plasma electrons, explicit expressions for these 
coefficients may be found in [4]. Following the general 
algorithm we chose ),,,,,( zzzyyxx EEHEHE ∂=Ψ , 

corresponding matrix M
)

 and propagating modes ±
i0Ψ  are 

found in [4]. We use Mathematicatm software both for 
deriving the final equations (5), (6) in analytical form and 
for subsequent numerical integration. From a physical 
point of view, the six components of Ψ -vector 
correspond to three modes – the ordinary (O), 
extraordinary (X) and Bernstein (B) waves, propagating 
in each direction. So, six roots of the dispersion 
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relation (3) must be attributed to the O, X and B modes. 
Note that all three modes should exist in the external 
medium, thus we must specify very rarefied plasma 
outside the slab.  

We simulate an oblique propagation of waves in hot 
dense plasma with a humped density profile: 

164 ])/(1[ Lzne −∝ ,  keVTe 1~ ,  ωωω >cepe , .  
It is well known that both O and X modes could not 
propagate towards dense enough plasma when launched 
from vacuum [5]. However, being launched at a specific 
angle, the O mode couples effectively to the slow X mode 
behind the upper hybrid resonance layer [6]. In this case 
one should expect the strong absorption instead of 
reflection from the layer of dense plasma due to further 
conversion of the slow X mode to the electrostatic B 
mode, which freely propagates towards the plasma 
density increase and is absorbed at the nearest electron 
cyclotron harmonics. In the Figure the absorption for the 
incident O mode is plotted versus the launching angle. 

 
 Absorption coefficient for the incident O mode versus 

launching angle. O mode cutoff corresponds to 
8.40 =nLk , 88.0/ =ωωce , 1=eT  keV and o43opt =ϑ   

One can see the perfect coincidence of the well-known 
analytical result by Mjølhus [6] (thin line) and the results 
of the mode-impedance approach both in cold (dots) and 
hot (crosses) plasmas. Thus, we demonstrate a direct full 
wave justification of the widely used analytical approach. 

4. CONCLUSIONS 
The boundary problem for Maxwell equations is 

reduced to two consecutive nonlinear initial problems (5) 
and (6). Note that the only heuristic action in this 
technique is formulation of a model for the dielectric 
response (what selects the studied modes) and choice of 
proper components of vector Ψ . Although the derived 
analytical expressions typically are rather lengthy, 
numerical integration of the evolutionary equations 
remains stable even for the most difficult cases involving 
several very different scale-lengths (in particular, we 
avoid uncontrolled exponential growth of evanescent 
modes which may result in instability of numerical 
integration). In summary, by performing all analytical 
transformations using a computer, we develop a flexible 
and fast tool for studying full wave problems in complex 
media. More applications may be found in [4]. 
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МЕТОД МОДОВОГО ИМПЕДАНСА ДЛЯ ЗАДАЧ РАСПРОСТРАНЕНИЯ  
ЭЛЕКТРОМАГНИТНЫХ ВОЛН В ПЛАЗМЕ 

А.Г. Шалашов, Е.Д. Господчиков 

Предложена удобная и физически прозрачная формулировка метода инвариантного погружения для 
решения задач распространения электромагнитных волн в средах с анизотропным и гиротропным 
диэлектрическим откликом с пространственной дисперсией, в частности, в горячей магнитоактивной плазме. 
Новый метод может быть использован для аналитических и численных расчетов “полноволновых” проблем 
физики плазмы, требующих решения полной системы уравнений Максвелла. В качестве примера такого 
приложения рассмотрена проблема взаимодействия электромагнитных и электростатических плазменных мод в 
электронном циклотронном диапазоне частот.  

 
МЕТОД МОДОВОГО IМПЕДАНСУ ДЛЯ ЗАДАЧ ПОШИРЕННЯ  

ЕЛЕКТРОМАГНIТНИХ ХВИЛЬ В ПЛАЗМI 

А.Г. Шалашов, Є. Д. Господчиков 

Запропонованo зручне та фізично прозоре формулювання методу інваріантного занурення для вирішення 
завдань поширення електромагнітних хвиль у середовищах з анізотропним та гіротропним діелектричним 
відгуком з просторовою дисперсією, зокрема, у гарячій магнітоактивній плазмі. Новий метод може бути 
використаний для аналітичних та чисельних розрахунків “повнохвильових” проблем фізики плазми, що 
потребують вирішення повної системи рівнянь Максвелла. Як приклад такого застосування розглянутo 
проблемy взаємодії електромагнітних та електростатичних плазмових мод в електронному циклотроному 
діапазоні частот. 


