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The impedance technique, also known as the particular case of the invariant embedding approach, is generalized for
modeling of electromagnetic wave propagation in the anisotropic and gyrotropic media with spatial dispersion such as
hot magnetized plasmas. That provides a new way for analytical and numerical studies of “full wave” problems in
plasma physics that require exact solutions of Maxwell equations. Coupling of electromagnetic and electrostatic plasma
modes in electron cyclotron range is considered as an example of application of the proposed technique.
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1. INTRODUCTION

In the present communication we review a relatively
simple general technique for modeling the propagation of
electromagnetic waves in hot magnetized plasmas.
Specific features of such media are complex (gyrotropic
and anisotropic) dielectric response, spatial dispersion,
and existence of several normal waves with different
polarizations which may be coupled in spatially
inhomogeneous plasma. The basic problem considered
below is reconstruction of electromagnetic fields inside
and outside of a stationary plasma layer highlighted by
incident radiation. This problem primarily corresponds to
the plasma heating by high frequency waves in magnetic
traps. Mathematically such processes are naturally
described by a boundary problem for Maxwell equations
with inhomogeneous constitutive relations. However,
there is a regular way to transform this problem to a
purely evolutional problem defined only by initial
conditions. In this form the problem becomes more
convenient both for developing the analytical solutions
and for numerical calculations.

The considered approach is a particular form of the
more general method of invariant embedding [1]. In most
cases the invariant embedding technique has been applied
to a scalar wave equation [2]. However, wave propagation
in magnetized plasmas is more adequately described by
vector wave equations. In this case, a straightforward
generalization of the standard invariant embedding
technique is possible, but it involves essential technical
difficulties, see e.g. [3]. The main goal of the present
paper is demonstration of a new interpretation of the
invariant embedding technique. A particular new
development concerns the interaction between the normal
waves of the studied medium in terms of the evolution of
the reflection operator that couples counterpropagating
normal waves. This reformulation of the invariant
embedding approach gives rise to new evolutionary
equations that are more transparent, physically intuitive,
and very flexible for further analytical transformations or
numerical studies.

The technique may be especially useful being applied
to linear mode-conversion problems characterized by
large evanescent regions the interacting modes. This

which propagates against the direction of integration is
inevitably raised from a numerical noise resulting in an
exponentially growing solution in the direction of
integration. This exponentially growing part tends to
suppress all real physics in the round-off errors long
before the integration procedure reached the other end of
the domain. The similar troubles exist near the plasma
resonances characterized by quite different wavelengths
and damping lengths for the “fast” and “slow” waves. The
mode-impedance technique provides a way of a numerical
treatment of stiff wave problems which requires much
less computer resources than usual (finite element or
FDTD) methods, for more details see [4].

2. MODE-IMPEDANCE TECHNIQUE
FOR MAXWELL EQUATIONS

Let us consider a plane monochromatic wave which is
incident to plasma layer inhomogeneous along the
coordinate z and limited within the range a<z<b.
Generalization over a three-dimensional geometry may be
found in [4]. Outside the layer there is some “external”
medium which is assumed to be homogeneous. Our final
goal is to find the wave distribution inside the slab and the
reflection and transmission matrixes characterizing the
wave distribution outside the slab. To do so, one must
solve Maxwell equations inside the slab,

rotE =ik, H, rotH=-ik,e(2)E ,
with proper boundary conditions — fixed incident wave at
the one end and absence of the ingoing (incident) wave at
the other end. Here k, = w/c is the vacuum wave vector,
and the plasma dielectric response is defined by 3x3
tensor operator which contains derivatives over the z
coordinate in case of spatial dispersion
e(2) =&)(z.k ) +&(2,k,) 0, +&(z,k,) 07 +...

Let us introduce the mode-impedance technique. At
first step, one must choose the minimum set of field
variables that describe a particular problem, and convert
Maxwell equations to the following form:

O¥=MVY, (1)
where M (z) is a matrix of scalar functions containing no
differential operators, and W(z) is a field vector like

makgs stralghtfmfward gumerlcal integration of the wave p— (Ex’ H,.E,.H,.E,.H,,0,E,,8,E,,0,E,, 0°E, )
equation usually impossible, because the evanescent wave
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Some derivatives of field components may be also
included as components of W -vector to preserve form (1)
in cases with spatial dispersion, for example, related to
electrostatic waves. Here the derivatives are treated as
independent field variables what allows to take into
account higher dimensionality due to spatial dispersion
Once ¥ and corresponding M are known, one can
specify the boundary conditions. The most natural way is
to find the mode composition of the ingoing and outgoing
radiation. Indeed, outside the slab one may assume that
W « exp(ik,z) , then equation (1) reduces to an algebraic

ik, ¥, =M(a)¥,. Eigenvectors

polarizations of the ingoing and outgoing waves
propagating outside the slab; wave vectors k, may be

problem Y, give

defined as roots of the corresponding dispersion relation,

det(M, —ik,1)=0. (2)
Normal modes may be sorted into two groups. Let
¥, ,¥,,... VY, denote all modes propagating or

evanescent in the positive direction towards the z axis
(Rek, >0 or Rek, =0,Imk, >0); and ¥,,,%¥,,... ¥,,
denote all modes propagating or evanescent opposite to
the z axis (either Rek, <0 or Rek, =0,Imk, <0). In

most cases the set of eigenmodes forms a basis for WV -
vector — at any point the wave field may be decomposed
over the normal waves of the external medium

Y(2)= E' ¥+, E (DY, .
Here E*(z) are 2n unknown functions that will be used

as new field variables; obviously their number is equal to
the dimension of the initial ¥ -vector. Let us group these
functions into two new n-dimensional vector fields:

E'=G'E",..E"), £ =EF &, En_)
By definition, the components of these vectors give the
amplitudes of normal modes with definite propagation
direction in the external medium outside the slab. After
decomposition of the wave field, Maxwell equation may
be formally rewritten as equations for two coupled
counterpropagating waves

0,E =t'g"+1rg
{—az g =teg+ig
which should be solved in the range a<z<b with
boundary conditions, eg. £'(a)=£™, £ (b)=0.
Matrix coefficients in (3) may be obtained from

)

oo
(+E+ +fj U MU, U= (¥, %%, ¥, ).
_r —_

U is a matrix with columns formed by vectors ¥, .

Boundary problem (3) may be further reduced to
evolutional problem defined only by initial conditions.
Let us formally introduce “mode-impedance” matrix that
couples forward and backward waves as

E(D)=R@E (D). ©)
Note, that this unknown yet operator R(z) may be

considered as the reflection matrix of the reduced layer
[z,b] for the wave incident from z<a. In particular,

R(b)=0 since there is no reflection from a “zero” layer.

Substituting (4) into equations (3), one may exclude £°

and obtain the following matrix equation:
-0,R=RFR+Rt"+t R+F", R(b)=0. (5

In case of one-dimensional inhomogeneity, the

evolutional equation is reduced to a set of nonlinear
ordinary differential equations for components of the

impedance matrix Ii(z) , which can be easily integrated

numerically for arbitrary distribution of the dielectric
tensor in space. The integration should start from the right

boundary z=Db with zero initial condition. Once ﬁ(z) is

known, the wave field distribution inside the slab may be
retrieved as well as the reflected and transmitted waves
outside the slab (for a given incident wave). Indeed, the

forward wave £7(z) may be obtained by integrating the
following equation from the boundary z=a:
0, =t"+TRE", E(@=E™. (6
Finally the backward wave £ may be retrieved from (4).
3. TEST WAVE PROBLEM

The proposed formalism has been proved to be very
effective in modeling of wave propagation in
inhomogeneous magnetized plasmas. To provide a
working example we consider electromagnetic waves
propagating in dense plasmas in electron cyclotron
frequency range. We focus our attention on the problem
of linear coupling of the electromagnetic modes in the
inhomogeneous plasma, subsequent excitation of the
electrostatic electron Bernstein mode by the extraordinary
mode and cyclotron damping of these waves. This
problem has many applications in ionosphere and astro-
physics; in recent years interest in linear mode coupling in
this frequency range has increased appreciably in
connection with the high-frequency plasma heating in
spherical tokamaks and optimized stellarators [5].

For simplicity we assume that the ambient magnetic
field is directed along the X axis, and the hot plasma
dielectric response is modeled by [4]:

&+ 11k, °0; ick,'o, £k,'0,
e()=| —iék)'o, & + ko) ig—iyk,’0:
Eky€'o,  —ig+iyk,’0; & + x.k,00;

Here & =1-w,, /0’ , &, =1- o, /(0" —©},), and g =
w0, (0° — 7)o are usual parameters of cold plasma;
§ B Zl 9 Z4
plasma electrons, explicit expressions for these

coefficients may be found in [4]. Following the general
algorithm we chose ¥=(E,,H,,E,H, ,E,J,E,),

are resulted from the thermal motion of

corresponding matrix M and propagating modes ¥, are

found in [4]. We use Mathematica™ software both for
deriving the final equations (5), (6) in analytical form and
for subsequent numerical integration. From a physical
point of view, the six components of W -vector
correspond to three modes — the ordinary (O),
extraordinary (X) and Bernstein (B) waves, propagating
in each direction. So, six roots of the dispersion
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relation (3) must be attributed to the O, X and B modes.
Note that all three modes should exist in the external
medium, thus we must specify very rarefied plasma
outside the slab.

We simulate an oblique propagation of waves in hot
dense plasma with a humped density profile:

N, o [1-(z/L)'T°, T, ~1keV, o,

It is well known that both O and X modes could not
propagate towards dense enough plasma when launched
from vacuum [5]. However, being launched at a specific
angle, the O mode couples effectively to the slow X mode
behind the upper hybrid resonance layer [6]. In this case
one should expect the strong absorption instead of
reflection from the layer of dense plasma due to further
conversion of the slow X mode to the electrostatic B
mode, which freely propagates towards the plasma
density increase and is absorbed at the nearest electron
cyclotron harmonics. In the Figure the absorption for the
incident O mode is plotted versus the launching angle.

1F

O > .

Absorption
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T
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Absorption coefficient for the incident O mode versus
launching angle. O mode cutoff corresponds to

kL, =48, o,/©=088, T,=1keVand 9, =43°

One can see the perfect coincidence of the well-known
analytical result by Mjelhus [6] (thin line) and the results
of the mode-impedance approach both in cold (dots) and
hot (crosses) plasmas. Thus, we demonstrate a direct full
wave justification of the widely used analytical approach.

4. CONCLUSIONS

The boundary problem for Maxwell equations is
reduced to two consecutive nonlinear initial problems (5)
and (6). Note that the only heuristic action in this
technique is formulation of a model for the dielectric
response (what selects the studied modes) and choice of
proper components of vector W . Although the derived
analytical expressions typically are rather lengthy,
numerical integration of the evolutionary equations
remains stable even for the most difficult cases involving
several very different scale-lengths (in particular, we
avoid uncontrolled exponential growth of evanescent
modes which may result in instability of numerical
integration). In summary, by performing all analytical
transformations using a computer, we develop a flexible
and fast tool for studying full wave problems in complex
media. More applications may be found in [4].
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METOJ MOJOBOI'O MMIIEJAHCA JUIS1 3AJJAY PACITPOCTPAHEHUA
SJEKTPOMATI'HUTHBIX BOJIH B IIJIABME

A.I. Hlanawos, E.JI. I'ocnoouukos

IIpennoxena ymoOHast m ¢usmdeckn mpo3padHas (OPMYyITHPOBKA METOJAa HHBAPUAHTHOTO TIOTPYKEHHS IS
pelieHusl 3ajad  paclpoCTPAaHEHUs] JICKTPOMArHUTHBIX BOJH B CpeAaX C aHU30TPONHBIM U THUPOTPOIHBIM
JIUBJIEKTPUYECKUM OTKJIMKOM C IPOCTPAHCTBEHHOW AMCIIEPCHEH, B YACTHOCTH, B TOpsYE€l MArHUTOAKTUBHOM ILIa3Me.
HoBrlit MeTon MOKET OBITh HCIIONB30BAH Ui aHAJUTUYECKUX W YHCIEHHBIX PACUYETOB ‘‘TIONTHOBOJIHOBBIX TPOOIEM
¢u3MKK TUTa3Mbl, TPeOYIONIMX pElIeHUs TOJHOM CHCTeMBbl ypaBHeHMH MakcBeiuia. B kauecTBe mpuMepa Takoro
NPWIIOKEHUS] pacCMOTpeHa NpodieMa B3auMO/ICHCTBUS 2JIEKTPOMAarHUTHBIX M DJIEKTPOCTATHYECKUX IIa3MEHHBIX MOJI B
JIEKTPOHHOM LIUKJIOTPOHHOM JHAIa30HE YacToT.

METO/J MOJOBOI'O IMIIEJAHCY JJIS1 3AJIAY HOIIMPEHHSA
EJIEKTPOMATHITHHUX XBWJIb B IIVIA3MI

A.I. Hlanawos, €. /. 'ocnoouuxos

3anpornoHoBaHo 3py4yHe Ta (Gi3U9HO Mpo3ope (HOPMYITIOBAHHA METOAY iHBapiaHTHOTO 3aHYpPEHHS IS BUPIMICHHS
3aBJaHb MOLIMPEHHS EJICKTPOMATHITHUX XBWJb y CEPElOBHINAX 3 aHI30TPONHUM Ta TiPOTPOIHHM [ieIeKTPHYHUM
BIATYKOM 3 TPOCTOPOBOIO JIUCIIEPCIEI0, 30KpeMa, y rapsidiii MarHiToakTuBHINM 1uiazmi. HoBuit Meron moxe Oytu
BUKOPHCTaHUM AJIsl aHAJTITUYHMX Ta YHCENBHUX PO3PaxyHKIB ‘‘TIOBHOXBHIJILOBUX’ MpoOjeM (i3MKM IJIa3Mu, IO
nOTpeOYIOTh BHUPIIICHHS MOBHOI CHUCTEMH piBHSHb MakcBemia. SIK TMPHKIaa TaKOro 3aCTOCYBAaHHS PO3IIISIHYTO
npobaeMy B3aeMOJii eMEKTPOMArHiTHUX Ta ENEKTPOCTATHYHHMX IUIA3MOBHX MOJ[ B CICKTPOHHOMY IMKIOTPOHOMY
Jiara3oHi 4acTor.
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