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We study a system of linear singularly perturbed functional differential equations by the method
of integral manifolds. We construct a change of variables that decomposes this system into two
subsystems, an ordinary differential equation on the center manifold and integral equations on
the stable manifold.
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Consider a second order linear differential equation,

y′′ + p(x)y′ + q(x)y = 0, (1)

where p(x) and q(x) are arbitrary analytic functions. Given the initial conditions x = x0,
y(x0) = y0, y′(x0) = y′0, suppose we know a particular solution of the equation, y1(x). Let
any other solution, which is linearly independent of y1, be given by the formula

y = ξ(x)y1. (2)

By differentiating (2) along the solution y1, we successively find that

2ξ′y′1 + (pξ′ + ξ′′)y1 = 0, (3)

(3ξ′′ − pξ′)y′1 + (pξ′′ + p′ξ′ − 2qξ′ + ξ′′′)y1 = 0. (4)

Eliminating the variable y1(x) and its derivative from equations (3) and (4), we get the Schwarz
equations for determining the function ξ(x),

2ξ′ξ′′′ − 3ξ′′
2
+ (p2 + 2p′ − 4q)ξ′

2
= 0. (5)

By setting

ξ′ = η, η′ = wη (6)

in (5), to find the function w(x), we get the Riccati equation

2w′ = w2 − (p2 + 2p′ − 4q). (7)

It follows from (6) and (7) that, in order to find a general solution of equation (1), it is suffi-
cient to find a particular solution of equation (7). In the sequel, we consider equation (1) as a

308 c© N. A. Lukashevich, 2001



SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS OF FUCHSIAN TYPE.. . 309

Fuchsian type equation with four singularities located in the points x = 0, a1, a2, and in x = ∞
(a1, a2 6= 0, a1 6= a2) and written in the form

y′′ +
p0x

2 + p1x+ p2
x(x− a1)(x− a2)

y′ +
q0x

4 + q1x
3 + q2x

2 + q3x+ q4
x2(x− a1)2(x− a2)2

y = 0. (8)

The constant coefficients pk and qk, k = 0, 4, must have the following form in this case [1]:

p0 = α1 + α2 + α3,

p1 = −(α1a2 + α2a1 + α3(a1 + a2)),

p2 = α3a1a2, αk = 1− ρk1 − ρk2, k = 1, 2, 3,

(9)

and

q0 = β4, q1 = b− (a1 + a2)β4, q2 = β1 + β2 + β3 + a1a2β4 − (a1 + a2)b,

q3 = −β1a2 − β2a1 − β3(a1 + a2) + ba1a2, q4 = β3a1a2,

(10)
β1 = ρ11ρ12a1(a1 − a2), β2 = ρ21ρ22a2(a2 − a1),

β3 = ρ31ρ32a1a2, β4 = ρ01ρ02,

where b is the accessor coefficient and the following Fuchsian condition holds:

3∑
k=0

(1− ρk1 − ρk2) = 2, (11)

where ρ01 and ρ02 are exponents with respect to the point z = ∞.
Let us look for a solution of (7) in the form

w =
v0x

2 + v1x+ v2
x(x− a1)(x− a2)

. (12)

Substituting (12) into (7) we find

2
(
−v0x4 − 2v1x

3 + (v0a1a2 + v1(a1 + a2)− 3v2)x
2

+ 2v2(a1 + a2)x− v2a1a2
)

= (v0x
2 + v1x+ v2)

2 − (p0x
2 + p1x+ p2)

2

+ 4(q0x
4 + q1x

3 + q2x
2 + q3x+ q4)− 2

(
−p0x4 − 2p1x

3

+ (p0a1a2 + p1(a1 + a2)− 3p2)x
2 + 2p2(a1 + a2)x− p2a1a2

)
. (13)
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Using (13) we get the following system for finding the unknowns v0, v1, and v2:

(v0 + 1)2 = p20 − 4q0 + 1− 2p0, (v0 + 2)v1 = (p0 − 2)p1 − 2q1,

2(v0a1a2 + v1(a1 + a2)− 3v2)

= v21 + 2v0v2 − p21 − 2p0p2 + 4q2 − 2(p0a1a2 + p1(a1 + a2)− 3p2),

2v2(a1 + a2) = v1v2 − p1p2 + 3q3 − 2p2(a1 + a2),

v22 + 2v2a1a2 − p22 + 2p2a1a2 + 4q4 = 0.

(14)

Using notations (9), (10) and identity (11) we find from the first equation of system (14) that

v0 = ε1(ρ01 − ρ02)− 1, ε21 = 1. (15)

Similarly, from the fifth equation of system (14) we get

v2 = (ε2(ρ31 − ρ32)− 1)a1a2, ε22 = 1. (16)

The second and the fourth equations of system (14), with the use of (15) and (16), become

(ε1(ρ01 − ρ02) + 1)v1 + 2b = γ11a1 + γ12a2,

(ε2(ρ31 − ρ32)− 1)v1 + 2b = γ21a1 + γ22a2,
(17)

where

γ11 = α0(α2 + α3) + 2β4, γ12 = α0(α1 + α3) + 2β4,

γ21 = 2(ε2(ρ31 − ρ32)− 1) + α3(α0 + α1) + 2(ρ31ρ32 + ρ11ρ12 − ρ21ρ22),

γ22 = 2(ε2(ρ31 − ρ32)− 1) + α3(α0 + α2) + 2(ρ31ρ32 − ρ11ρ12 + ρ21ρ22).

(18)

Using system (17) we find that

[ε1(ρ01 − ρ02)− ε2(ρ31 − ρ32) + 2]v1 = (γ11 − γ21)a1 + (γ12 − γ22)a2

and if

δ ≡ ε1(ρ01 − ρ02)− ε2(ρ31 − ρ32) + 2 6= 0, (19)

then

v1 =
1

δ
[(γ11 − γ21)a1 + (γ12 − γ22)a2], (20)

b =
1

2δ
[(ε1(ρ01 − ρ02) + 1)γ21 − (ε2(ρ31 − ρ32)− 1)γ11]a1

+
1

2δ
[(ε1(ρ01 − ρ02) + 1)γ22 − (ε2(ρ31 − ρ32)− 1)γ12]a2. (21)
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The third equation of (14) becomes

(v1 − a1 − a2)2 − (p1 + a1 + a2)
2 = 2(a1a2 − v2)v0 − 6v2 + 2p0(p2 + a1a2)− 6p2 − 4q2,

or using notations (9), (10) and identities (11), (20), and (21) we get

k0a
2
1 + 2k1a1a2 + k2a

2
2 = 0, (22)

where

k0 ≡ (γ11 − γ21 − δ)2 − (α2 + α3 − 1)2δ2 + 4ρ11ρ12δ
2

− 2δ[(ε1(ρ01 − ρ02) + 1)γ21 − (ε2(ρ31 − ρ32)− 1)γ11],

k1 ≡ (γ11 − γ12 − δ)(γ12 − γ22 − δ)− (α2 + α3 − 1)(α1 + α3 − 1)δ2

+ 2(ρ31ρ32 + ρ01ρ02 − ρ11ρ12 − ρ21ρ22)δ2 − δ[(ε1(ρ01 − ρ02) + 1)(γ21 + γ22)

− (ε2(ρ31 − ρ32)− 1)(γ11 + γ12)]

− [2δ − ε1ε2(ρ01 − ρ02)(ρ31 − ρ32)− α0α3 − α0 − α3 − 1]δ2, (23)

k2 ≡ (γ12 − γ22 − δ)2 − (α1 + α3 − 1)2δ2

+ 4ρ21ρ22δ
2 − 2δ[(ε1(ρ01 − ρ02) + 1)γ22 − (ε2(ρ31 − ρ32)− 1)γ12].

Equation (22) is a condition imposed on the coefficients of equation (8) so that the function
given by (12) is a partial solution of equation (7). Considering (22) as a quadratic equation for
the unknowns ak, k = 1, 2, we should keep in mind that its roots, λk, k = 1, 2, as follows from
the sense of the problem, must be distinct and nonzero. Suppose we found from (22) that

a1 = λka2, k = 1, 2, λk 6= 1. (24)

Represent the particular solution (12) of the Riccati equation (7) as

v0x
2 + v1x+ v2

x(x− a1)(x− a2)
=
r1
x

+
r2

x− a1
+

r3
x− a2

. (25)

To evaluate the unknowns rk, k = 1, 2, 3, (25) gives the system

r1 + r2 + r3 = ε1(ρ01 − ρ01)− 1,

(r1 + r3)a1 + (r1 + r2)a2 =
1

δ
[(γ21 − γ11)a1 + (γ22 − γ12)a2], (26)

r1 = ε2(ρ31 − ρ32)− 1.
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Using (24) we find from system (26) that

r2 = δ − 2− r3, (27)

where

r3 =
1

λk − 1

[
1

δ
(γ21 − γ11)λk +

1

δ
(γ22 − γ12) + 2− δ

− (1 + λk)(ε2(ρ31 − ρ32)− 1)

]
.

Let us set, in equation (7),

W =
r1
x

+
r2

x− a1
+

r3
x− a2

+ V. (28)

To find the function V , we have the following equation:

2V ′ = V 2 +
(r1
x

+
r2

x− a1
+

r3
x− a2

)
V,

from which we find that

V =
2xr1(x− a1)r2(x− a2)r3

C1 −
∫
xr1(x− a1)r2(x− a2)r3 dx

,

and, consequently,

W =
r1
x

+
r2

x− a1
+

r3
x− a2

+
2xr1(x− a1)r2(x− a2)r3

C1 −
∫
xr1(x− a1)r2(x− a2)r3 dx

. (29)

By substituting (29) into formulas (6), we find

η(x) = C2
xr1(x− a1)r2(x− a2)r3[

C1 −
∫
xr1(x− a1)r2(x− a2)r3 dx

]2 ,
(30)

ξ(x) = C3 + C2
1

−C1 +
∫
xr1(x− a1)r2(x− a2)r3 dx

.

Now, using equation (3) find y1(x). Namely,

y1(x) =
C4

C2
x−

1
2
(r1+α1)(x− a1)−

1
2
(r2+α2)(x− a2)−

1
2
(r3+α3)

×
[
C1 −

∫
xr1(x− a1)r2(x− a2)r3 dx

]
. (31)



SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS OF FUCHSIAN TYPE.. . 313

Substituting (30) and (31) into formula (2) we finally find that

y(x) = ξ(x)y1(x)

= x−
1
2
(r1+α1)(x− a1)−

1
2
(r2+α2)(x− a2)−

1
2
(r3−α3)

×
[
C + C1

∫
xr1(x− a1)r2(x− a2)r3 dx

]
, (32)

where C and C1 are new arbitrary constants.
The preceding gives the following theorem.

Theorem. For equation (8) to have a general solution of the form (32), it is sufficient that 1)
the accessor coefficient b have the form (21) and 2) its coefficients satisfy the condition (22).

Together with equation (8), consider the related Heun equation

y′′ +
(α+ β + 1)x2 − [a(γ + δ) + α+ β − δ + 1]x+ aγ

x(x− 1)(x− a)
y′

+
(αβx− q)

x(x− 1)(x− a)
y = 0, (33)

the coefficients of which, as opposed to the coefficients of (9) and (10), have the form

p0 = α+ β + 1, p1 = −[a(γ + δ) + α+ β − δ + 1], p2 = aγ, a1 = 1, a2 = a, (34)

q0 = αβ, q1 = −(a+ 1)αβ − q, q2 = aαβ + (a+ 1)q, q3 = −aq, q4 = 0. (35)

Using the structure of the general solution of equation (8) in the form (32), a particular solution
of (33) is sought in the form

y1 = xs1(x− 1)s2(x− a)s3 , (36)

where the constants s1, s2, s3 are to be found. From (36) we get

y′ =

(
s1
x

+
s2

x− 1
+

s3
x− a

)
y,

(37)

y′′ =

[(
s1
x

+
s2

x− 1
+

s3
x− a

)2

−
(
s1
x2

+
s2

(x− 1)2
+

s3
(x− a)2

)]
y.
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Substituting (37) into (33) we get the system

(s1 + s2 + s3)
2 + (p0 − 1)(s1 + s2 + s3) + q0 = 0,

2s1(s1 − 1)(a+ 1) + 2as2(s2 − 1) + 2s3(s3 − 1) + 2s1s2(2a+ 1)

+2s2s3(a+ 1) + 2s1s3(a+ 2) + p0[(a+ 1)s1 + as2 + s3]

−p1(s1 + s2 + s3)− q1 = 0,

s1(s1 − 1)(a2 + 4a+ 1) + s2(s2 − 1)a2 + s3(s3 − 1) + 2s1s2(a
2 + 2a)

+2s2s3a+ 2s1s3(1 + 2a) + p0as1 − p1[(a+ 1)s1 + as2 + s3]

+p2(s1 + s2 + s3) + q2 = 0, (38)

2s1(s1 − 1)(a2 + 2a) + 2s1s2a
2 + 2s1s3a− p1as1

+p2[(a+ 1)s1 + as2 + s3]− q3 = 0,

s1(s1 − 1)a2 + p2as1 = 0.

It follows from the first and the fifth equations of system (38) that
1) either s1 + s2 + s3 = −α,
2) or s1 + s2 + s3 = −β and (39)
3) either s1 = 0, 4) or s1 = 1− γ.

The fourth equation of system (38) defines the accessor coefficient q,

q = −[2s1(s1 − 1)(a+ 2) + 2s1s2a+ 2s1s3 − s1p1 + γ((a+ 1)s1 + as2 + s3)]. (40)

Substituting (40) into the second equation of (38) and setting

s2 = h− s1 − s3, (41)

where h equals either −α or −β we find that

(2s1 − 2h+ γ − α− β + 1)(a− 1)s3 = [2(s1 − h)(h− 1) + h(γ − p0)]a

+3s31 − (2h+ 1)s1 + (γ − p0)s1 + p1(h− s1). (42)

Assume that, for any choice of s1 and h, the quantity

2s1 − 2h+ γ − α− β + 1 6= 0. (43)
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Note that, if a 6= 1, then assuming that the condition (43) holds, the quantities s1, s2, and s3
can be uniquely expressed in terms of the parameters α, β, γ, δ, and a using formulas (39),
(41), and (42). Substituting their values into the third equation of system (38), the condition
implies that equation (33) has a particular solution of the form (36). Then the general solution
of equation (33) will be

y = xs1(x− 1)s2(x− a)s3

×
[
C1 + C2

∫
x−2s1(x− 1)−2s2(x− a)−2s3 exp

(
−
∫
p(x) dx

)
dx

]
. (44)

The cases where the condition (19) or (43) is violated and the comparison of general solutions
of the forms (32) and (44) are not considered in this paper.
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