SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS OF FUCHSIAN TYPE WITH FOUR SINGULARITIES

N. A. Lukashevich

Belarus University
pr. F. Skoriny, 4, Minsk, 220050, Belarus

We study a system of linear singularly perturbed functional differential equations by the method of integral manifolds. We construct a change of variables that decomposes this system into two subsystems, an ordinary differential equation on the center manifold and integral equations on the stable manifold.

AMS Subject Classification: 34A30

Consider a second order linear differential equation,

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0, \tag{1}
\end{equation*}
$$

where $p(x)$ and $q(x)$ are arbitrary analytic functions. Given the initial conditions $x=x_{0}$, $y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$, suppose we know a particular solution of the equation, $y_{1}(x)$. Let any other solution, which is linearly independent of y_{1}, be given by the formula

$$
\begin{equation*}
y=\xi(x) y_{1} . \tag{2}
\end{equation*}
$$

By differentiating (2) along the solution y_{1}, we successively find that

$$
\begin{gather*}
2 \xi^{\prime} y_{1}^{\prime}+\left(p \xi^{\prime}+\xi^{\prime \prime}\right) y_{1}=0 \tag{3}\\
\left(3 \xi^{\prime \prime}-p \xi^{\prime}\right) y_{1}^{\prime}+\left(p \xi^{\prime \prime}+p^{\prime} \xi^{\prime}-2 q \xi^{\prime}+\xi^{\prime \prime \prime}\right) y_{1}=0 \tag{4}
\end{gather*}
$$

Eliminating the variable $y_{1}(x)$ and its derivative from equations (3) and (4), we get the Schwarz equations for determining the function $\xi(x)$,

$$
\begin{equation*}
2 \xi^{\prime} \xi^{\prime \prime \prime}-3 \xi^{\prime \prime 2}+\left(p^{2}+2 p^{\prime}-4 q\right) \xi^{\prime 2}=0 . \tag{5}
\end{equation*}
$$

By setting

$$
\begin{equation*}
\xi^{\prime}=\eta, \quad \eta^{\prime}=w \eta \tag{6}
\end{equation*}
$$

in (5), to find the function $w(x)$, we get the Riccati equation

$$
\begin{equation*}
2 w^{\prime}=w^{2}-\left(p^{2}+2 p^{\prime}-4 q\right) . \tag{7}
\end{equation*}
$$

It follows from (6) and (7) that, in order to find a general solution of equation (1), it is sufficient to find a particular solution of equation (7). In the sequel, we consider equation (1) as a

Fuchsian type equation with four singularities located in the points $x=0, a_{1}, a_{2}$, and in $x=\infty$ ($a_{1}, a_{2} \neq 0, a_{1} \neq a_{2}$) and written in the form

$$
\begin{equation*}
y^{\prime \prime}+\frac{p_{0} x^{2}+p_{1} x+p_{2}}{x\left(x-a_{1}\right)\left(x-a_{2}\right)} y^{\prime}+\frac{q_{0} x^{4}+q_{1} x^{3}+q_{2} x^{2}+q_{3} x+q_{4}}{x^{2}\left(x-a_{1}\right)^{2}\left(x-a_{2}\right)^{2}} y=0 . \tag{8}
\end{equation*}
$$

The constant coefficients p_{k} and $q_{k}, k=\overline{0,4}$, must have the following form in this case [1]:

$$
\begin{gather*}
p_{0}=\alpha_{1}+\alpha_{2}+\alpha_{3}, \\
p_{1}=-\left(\alpha_{1} a_{2}+\alpha_{2} a_{1}+\alpha_{3}\left(a_{1}+a_{2}\right)\right), \tag{9}\\
p_{2}=\alpha_{3} a_{1} a_{2}, \quad \alpha_{k}=1-\rho_{k 1}-\rho_{k 2}, \quad k=1,2,3,
\end{gather*}
$$

and

$$
\begin{gather*}
q_{0}=\beta_{4}, q_{1}=b-\left(a_{1}+a_{2}\right) \beta_{4}, q_{2}=\beta_{1}+\beta_{2}+\beta_{3}+a_{1} a_{2} \beta_{4}-\left(a_{1}+a_{2}\right) b, \\
q_{3}=-\beta_{1} a_{2}-\beta_{2} a_{1}-\beta_{3}\left(a_{1}+a_{2}\right)+b a_{1} a_{2}, q_{4}=\beta_{3} a_{1} a_{2}, \tag{10}\\
\beta_{1}=\rho_{11} \rho_{12} a_{1}\left(a_{1}-a_{2}\right), \beta_{2}=\rho_{21} \rho_{22} a_{2}\left(a_{2}-a_{1}\right), \\
\beta_{3}=\rho_{31} \rho_{32} a_{1} a_{2}, \beta_{4}=\rho_{01} \rho_{02},
\end{gather*}
$$

where b is the accessor coefficient and the following Fuchsian condition holds:

$$
\begin{equation*}
\sum_{k=0}^{3}\left(1-\rho_{k 1}-\rho_{k 2}\right)=2, \tag{11}
\end{equation*}
$$

where ρ_{01} and ρ_{02} are exponents with respect to the point $z=\infty$.
Let us look for a solution of (7) in the form

$$
\begin{equation*}
w=\frac{v_{0} x^{2}+v_{1} x+v_{2}}{x\left(x-a_{1}\right)\left(x-a_{2}\right)} . \tag{12}
\end{equation*}
$$

Substituting (12) into (7) we find

$$
\begin{align*}
2\left(-v_{0} x^{4}-\right. & 2 v_{1} x^{3}+\left(v_{0} a_{1} a_{2}+v_{1}\left(a_{1}+a_{2}\right)-3 v_{2}\right) x^{2} \\
& \left.+2 v_{2}\left(a_{1}+a_{2}\right) x-v_{2} a_{1} a_{2}\right) \\
= & \left(v_{0} x^{2}+v_{1} x+v_{2}\right)^{2}-\left(p_{0} x^{2}+p_{1} x+p_{2}\right)^{2} \\
& +4\left(q_{0} x^{4}+q_{1} x^{3}+q_{2} x^{2}+q_{3} x+q_{4}\right)-2\left(-p_{0} x^{4}-2 p_{1} x^{3}\right. \\
& \left.+\left(p_{0} a_{1} a_{2}+p_{1}\left(a_{1}+a_{2}\right)-3 p_{2}\right) x^{2}+2 p_{2}\left(a_{1}+a_{2}\right) x-p_{2} a_{1} a_{2}\right) . \tag{13}
\end{align*}
$$

Using (13) we get the following system for finding the unknowns v_{0}, v_{1}, and v_{2} :

$$
\begin{gather*}
\left(v_{0}+1\right)^{2}=p_{0}^{2}-4 q_{0}+1-2 p_{0}, \quad\left(v_{0}+2\right) v_{1}=\left(p_{0}-2\right) p_{1}-2 q_{1}, \\
2\left(v_{0} a_{1} a_{2}+v_{1}\left(a_{1}+a_{2}\right)-3 v_{2}\right) \\
=v_{1}^{2}+2 v_{0} v_{2}-p_{1}^{2}-2 p_{0} p_{2}+4 q_{2}-2\left(p_{0} a_{1} a_{2}+p_{1}\left(a_{1}+a_{2}\right)-3 p_{2}\right), \tag{14}\\
2 v_{2}\left(a_{1}+a_{2}\right)=v_{1} v_{2}-p_{1} p_{2}+3 q_{3}-2 p_{2}\left(a_{1}+a_{2}\right), \\
v_{2}^{2}+2 v_{2} a_{1} a_{2}-p_{2}^{2}+2 p_{2} a_{1} a_{2}+4 q_{4}=0 .
\end{gather*}
$$

Using notations (9), (10) and identity (11) we find from the first equation of system (14) that

$$
\begin{equation*}
v_{0}=\varepsilon_{1}\left(\rho_{01}-\rho_{02}\right)-1, \quad \varepsilon_{1}^{2}=1 \tag{15}
\end{equation*}
$$

Similarly, from the fifth equation of system (14) we get

$$
\begin{equation*}
v_{2}=\left(\varepsilon_{2}\left(\rho_{31}-\rho_{32}\right)-1\right) a_{1} a_{2}, \quad \varepsilon_{2}^{2}=1 . \tag{16}
\end{equation*}
$$

The second and the fourth equations of system (14), with the use of (15) and (16), become

$$
\begin{align*}
& \left(\varepsilon_{1}\left(\rho_{01}-\rho_{02}\right)+1\right) v_{1}+2 b=\gamma_{11} a_{1}+\gamma_{12} a_{2}, \\
& \left(\varepsilon_{2}\left(\rho_{31}-\rho_{32}\right)-1\right) v_{1}+2 b=\gamma_{21} a_{1}+\gamma_{22} a_{2}, \tag{17}
\end{align*}
$$

where

$$
\begin{gather*}
\gamma_{11}=\alpha_{0}\left(\alpha_{2}+\alpha_{3}\right)+2 \beta_{4}, \quad \gamma_{12}=\alpha_{0}\left(\alpha_{1}+\alpha_{3}\right)+2 \beta_{4}, \\
\gamma_{21}=2\left(\varepsilon_{2}\left(\rho_{31}-\rho_{32}\right)-1\right)+\alpha_{3}\left(\alpha_{0}+\alpha_{1}\right)+2\left(\rho_{31} \rho_{32}+\rho_{11} \rho_{12}-\rho_{21} \rho_{22}\right), \tag{18}\\
\gamma_{22}=2\left(\varepsilon_{2}\left(\rho_{31}-\rho_{32}\right)-1\right)+\alpha_{3}\left(\alpha_{0}+\alpha_{2}\right)+2\left(\rho_{31} \rho_{32}-\rho_{11} \rho_{12}+\rho_{21} \rho_{22}\right) .
\end{gather*}
$$

Using system (17) we find that

$$
\left[\varepsilon_{1}\left(\rho_{01}-\rho_{02}\right)-\varepsilon_{2}\left(\rho_{31}-\rho_{32}\right)+2\right] v_{1}=\left(\gamma_{11}-\gamma_{21}\right) a_{1}+\left(\gamma_{12}-\gamma_{22}\right) a_{2}
$$

and if

$$
\begin{equation*}
\delta \equiv \varepsilon_{1}\left(\rho_{01}-\rho_{02}\right)-\varepsilon_{2}\left(\rho_{31}-\rho_{32}\right)+2 \neq 0, \tag{19}
\end{equation*}
$$

then

$$
\begin{align*}
v_{1}= & \frac{1}{\delta}\left[\left(\gamma_{11}-\gamma_{21}\right) a_{1}+\left(\gamma_{12}-\gamma_{22}\right) a_{2}\right], \tag{20}\\
b= & \frac{1}{2 \delta}\left[\left(\varepsilon_{1}\left(\rho_{01}-\rho_{02}\right)+1\right) \gamma_{21}-\left(\varepsilon_{2}\left(\rho_{31}-\rho_{32}\right)-1\right) \gamma_{11}\right] a_{1} \\
& +\frac{1}{2 \delta}\left[\left(\varepsilon_{1}\left(\rho_{01}-\rho_{02}\right)+1\right) \gamma_{22}-\left(\varepsilon_{2}\left(\rho_{31}-\rho_{32}\right)-1\right) \gamma_{12}\right] a_{2} . \tag{21}
\end{align*}
$$

The third equation of (14) becomes

$$
\left(v_{1}-a_{1}-a_{2}\right)^{2}-\left(p_{1}+a_{1}+a_{2}\right)^{2}=2\left(a_{1} a_{2}-v_{2}\right) v_{0}-6 v_{2}+2 p_{0}\left(p_{2}+a_{1} a_{2}\right)-6 p_{2}-4 q_{2},
$$

or using notations (9), (10) and identities (11), (20), and (21) we get

$$
\begin{equation*}
k_{0} a_{1}^{2}+2 k_{1} a_{1} a_{2}+k_{2} a_{2}^{2}=0 \tag{22}
\end{equation*}
$$

where

$$
\begin{align*}
k_{0} \equiv & \left(\gamma_{11}-\gamma_{21}-\delta\right)^{2}-\left(\alpha_{2}+\alpha_{3}-1\right)^{2} \delta^{2}+4 \rho_{11} \rho_{12} \delta^{2} \\
& -2 \delta\left[\left(\varepsilon_{1}\left(\rho_{01}-\rho_{02}\right)+1\right) \gamma_{21}-\left(\varepsilon_{2}\left(\rho_{31}-\rho_{32}\right)-1\right) \gamma_{11}\right], \\
k_{1} \equiv & \left(\gamma_{11}-\gamma_{12}-\delta\right)\left(\gamma_{12}-\gamma_{22}-\delta\right)-\left(\alpha_{2}+\alpha_{3}-1\right)\left(\alpha_{1}+\alpha_{3}-1\right) \delta^{2} \\
& +2\left(\rho_{31} \rho_{32}+\rho_{01} \rho_{02}-\rho_{11} \rho_{12}-\rho_{21} \rho_{22}\right) \delta^{2}-\delta\left[\left(\varepsilon_{1}\left(\rho_{01}-\rho_{02}\right)+1\right)\left(\gamma_{21}+\gamma_{22}\right)\right. \\
& \left.-\left(\varepsilon_{2}\left(\rho_{31}-\rho_{32}\right)-1\right)\left(\gamma_{11}+\gamma_{12}\right)\right] \\
& -\left[2 \delta-\varepsilon_{1} \varepsilon_{2}\left(\rho_{01}-\rho_{02}\right)\left(\rho_{31}-\rho_{32}\right)-\alpha_{0} \alpha_{3}-\alpha_{0}-\alpha_{3}-1\right] \delta^{2}, \tag{23}\\
k_{2} \equiv & \left(\gamma_{12}-\gamma_{22}-\delta\right)^{2}-\left(\alpha_{1}+\alpha_{3}-1\right)^{2} \delta^{2} \\
& +4 \rho_{21} \rho_{22} \delta^{2}-2 \delta\left[\left(\varepsilon_{1}\left(\rho_{01}-\rho_{02}\right)+1\right) \gamma_{22}-\left(\varepsilon_{2}\left(\rho_{31}-\rho_{32}\right)-1\right) \gamma_{12}\right] .
\end{align*}
$$

Equation (22) is a condition imposed on the coefficients of equation (8) so that the function given by (12) is a partial solution of equation (7). Considering (22) as a quadratic equation for the unknowns $a_{k}, k=1,2$, we should keep in mind that its roots, $\lambda_{k}, k=1,2$, as follows from the sense of the problem, must be distinct and nonzero. Suppose we found from (22) that

$$
\begin{equation*}
a_{1}=\lambda_{k} a_{2}, \quad k=1,2, \quad \lambda_{k} \neq 1 . \tag{24}
\end{equation*}
$$

Represent the particular solution (12) of the Riccati equation (7) as

$$
\begin{equation*}
\frac{v_{0} x^{2}+v_{1} x+v_{2}}{x\left(x-a_{1}\right)\left(x-a_{2}\right)}=\frac{r_{1}}{x}+\frac{r_{2}}{x-a_{1}}+\frac{r_{3}}{x-a_{2}} . \tag{25}
\end{equation*}
$$

To evaluate the unknowns $r_{k}, k=1,2,3$, (25) gives the system

$$
\begin{gather*}
r_{1}+r_{2}+r_{3}=\varepsilon_{1}\left(\rho_{01}-\rho_{01}\right)-1, \\
\left(r_{1}+r_{3}\right) a_{1}+\left(r_{1}+r_{2}\right) a_{2}=\frac{1}{\delta}\left[\left(\gamma_{21}-\gamma_{11}\right) a_{1}+\left(\gamma_{22}-\gamma_{12}\right) a_{2}\right], \tag{26}\\
r_{1}=\varepsilon_{2}\left(\rho_{31}-\rho_{32}\right)-1 .
\end{gather*}
$$

Using (24) we find from system (26) that

$$
\begin{equation*}
r_{2}=\delta-2-r_{3}, \tag{27}
\end{equation*}
$$

where

$$
\begin{aligned}
r_{3}= & \frac{1}{\lambda_{k}-1}\left[\frac{1}{\delta}\left(\gamma_{21}-\gamma_{11}\right) \lambda_{k}+\frac{1}{\delta}\left(\gamma_{22}-\gamma_{12}\right)+2-\delta\right. \\
& \left.-\left(1+\lambda_{k}\right)\left(\varepsilon_{2}\left(\rho_{31}-\rho_{32}\right)-1\right)\right] .
\end{aligned}
$$

Let us set, in equation (7),

$$
\begin{equation*}
W=\frac{r_{1}}{x}+\frac{r_{2}}{x-a_{1}}+\frac{r_{3}}{x-a_{2}}+V . \tag{28}
\end{equation*}
$$

To find the function V, we have the following equation:

$$
2 V^{\prime}=V^{2}+\left(\frac{r_{1}}{x}+\frac{r_{2}}{x-a_{1}}+\frac{r_{3}}{x-a_{2}}\right) V,
$$

from which we find that

$$
V=\frac{2 x^{r_{1}}\left(x-a_{1}\right)^{r_{2}}\left(x-a_{2}\right)^{r_{3}}}{C_{1}-\int x^{r_{1}}\left(x-a_{1}\right)^{r_{2}}\left(x-a_{2}\right)^{r_{3}} d x},
$$

and, consequently,

$$
\begin{equation*}
W=\frac{r_{1}}{x}+\frac{r_{2}}{x-a_{1}}+\frac{r_{3}}{x-a_{2}}+\frac{2 x^{r_{1}}\left(x-a_{1}\right)^{r_{2}}\left(x-a_{2}\right)^{r_{3}}}{C_{1}-\int x^{r_{1}}\left(x-a_{1}\right)^{r_{2}}\left(x-a_{2}\right)^{r_{3}} d x} . \tag{29}
\end{equation*}
$$

By substituting (29) into formulas (6), we find

$$
\begin{align*}
& \eta(x)=C_{2} \frac{x^{r_{1}}\left(x-a_{1}\right)^{r_{2}}\left(x-a_{2}\right)^{r_{3}}}{\left[C_{1}-\int x^{r_{1}}\left(x-a_{1}\right)^{r_{2}}\left(x-a_{2}\right)^{r_{3}} d x\right]^{2}}, \\
& \xi(x)=C_{3}+C_{2} \frac{1}{-C_{1}+\int x^{r_{1}}\left(x-a_{1}\right)^{r_{2}}\left(x-a_{2}\right)^{r_{3}} d x} . \tag{30}
\end{align*}
$$

Now, using equation (3) find $y_{1}(x)$. Namely,

$$
\begin{align*}
y_{1}(x)= & \frac{C_{4}}{C_{2}} x^{-\frac{1}{2}\left(r_{1}+\alpha_{1}\right)}\left(x-a_{1}\right)^{-\frac{1}{2}\left(r_{2}+\alpha_{2}\right)}\left(x-a_{2}\right)^{-\frac{1}{2}\left(r_{3}+\alpha_{3}\right)} \\
& \times\left[C_{1}-\int x^{r_{1}}\left(x-a_{1}\right)^{r_{2}}\left(x-a_{2}\right)^{r_{3}} d x\right] . \tag{31}
\end{align*}
$$

Substituting (30) and (31) into formula (2) we finally find that

$$
\begin{align*}
y(x)= & \xi(x) y_{1}(x) \\
= & x^{-\frac{1}{2}\left(r_{1}+\alpha_{1}\right)}\left(x-a_{1}\right)^{-\frac{1}{2}\left(r_{2}+\alpha_{2}\right)}\left(x-a_{2}\right)^{-\frac{1}{2}\left(r_{3}-\alpha_{3}\right)} \\
& \times\left[C+C_{1} \int x^{r_{1}}\left(x-a_{1}\right)^{r_{2}}\left(x-a_{2}\right)^{r_{3}} d x\right] \tag{32}
\end{align*}
$$

where C and C_{1} are new arbitrary constants.
The preceding gives the following theorem.
Theorem. For equation (8) to have a general solution of the form (32), it is sufficient that 1) the accessor coefficient b have the form (21) and 2) its coefficients satisfy the condition (22).

Together with equation (8), consider the related Heun equation

$$
\begin{gather*}
y^{\prime \prime}+\frac{(\alpha+\beta+1) x^{2}-[a(\gamma+\delta)+\alpha+\beta-\delta+1] x+a \gamma}{x(x-1)(x-a)} y^{\prime} \\
+\frac{(\alpha \beta x-q)}{x(x-1)(x-a)} y=0 \tag{33}
\end{gather*}
$$

the coefficients of which, as opposed to the coefficients of (9) and (10), have the form

$$
\begin{gather*}
p_{0}=\alpha+\beta+1, p_{1}=-[a(\gamma+\delta)+\alpha+\beta-\delta+1], p_{2}=a \gamma, a_{1}=1, a_{2}=a \tag{34}\\
q_{0}=\alpha \beta, q_{1}=-(a+1) \alpha \beta-q, q_{2}=a \alpha \beta+(a+1) q, q_{3}=-a q, q_{4}=0 . \tag{35}
\end{gather*}
$$

Using the structure of the general solution of equation (8) in the form (32), a particular solution of (33) is sought in the form

$$
\begin{equation*}
y_{1}=x^{s_{1}}(x-1)^{s_{2}}(x-a)^{s_{3}}, \tag{36}
\end{equation*}
$$

where the constants s_{1}, s_{2}, s_{3} are to be found. From (36) we get

$$
\begin{align*}
y^{\prime} & =\left(\frac{s_{1}}{x}+\frac{s_{2}}{x-1}+\frac{s_{3}}{x-a}\right) y, \\
y^{\prime \prime} & =\left[\left(\frac{s_{1}}{x}+\frac{s_{2}}{x-1}+\frac{s_{3}}{x-a}\right)^{2}-\left(\frac{s_{1}}{x^{2}}+\frac{s_{2}}{(x-1)^{2}}+\frac{s_{3}}{(x-a)^{2}}\right)\right] y \tag{37}
\end{align*}
$$

Substituting (37) into (33) we get the system

$$
\begin{gather*}
\left(s_{1}+s_{2}+s_{3}\right)^{2}+\left(p_{0}-1\right)\left(s_{1}+s_{2}+s_{3}\right)+q_{0}=0, \\
2 s_{1}\left(s_{1}-1\right)(a+1)+2 a s_{2}\left(s_{2}-1\right)+2 s_{3}\left(s_{3}-1\right)+2 s_{1} s_{2}(2 a+1) \\
+2 s_{2} s_{3}(a+1)+2 s_{1} s_{3}(a+2)+p_{0}\left[(a+1) s_{1}+a s_{2}+s_{3}\right] \\
-p_{1}\left(s_{1}+s_{2}+s_{3}\right)-q_{1}=0, \\
s_{1}\left(s_{1}-1\right)\left(a^{2}+4 a+1\right)+s_{2}\left(s_{2}-1\right) a^{2}+s_{3}\left(s_{3}-1\right)+2 s_{1} s_{2}\left(a^{2}+2 a\right) \\
+2 s_{2} s_{3} a+2 s_{1} s_{3}(1+2 a)+p_{0} a s_{1}-p_{1}\left[(a+1) s_{1}+a s_{2}+s_{3}\right] \\
+p_{2}\left(s_{1}+s_{2}+s_{3}\right)+q_{2}=0, \tag{38}\\
2 s_{1}\left(s_{1}-1\right)\left(a^{2}+2 a\right)+2 s_{1} s_{2} a^{2}+2 s_{1} s_{3} a-p_{1} a s_{1} \\
+p_{2}\left[(a+1) s_{1}+a s_{2}+s_{3}\right]-q_{3}=0, \\
s_{1}\left(s_{1}-1\right) a^{2}+p_{2} a s_{1}=0 .
\end{gather*}
$$

It follows from the first and the fifth equations of system (38) that

1) either $s_{1}+s_{2}+s_{3}=-\alpha$,
2) or $s_{1}+s_{2}+s_{3}=-\beta$ and
3) either $\left.s_{1}=0,4\right)$ or $s_{1}=1-\gamma$.

The fourth equation of system (38) defines the accessor coefficient q,

$$
\begin{equation*}
q=-\left[2 s_{1}\left(s_{1}-1\right)(a+2)+2 s_{1} s_{2} a+2 s_{1} s_{3}-s_{1} p_{1}+\gamma\left((a+1) s_{1}+a s_{2}+s_{3}\right)\right] . \tag{40}
\end{equation*}
$$

Substituting (40) into the second equation of (38) and setting

$$
\begin{equation*}
s_{2}=h-s_{1}-s_{3}, \tag{41}
\end{equation*}
$$

where h equals either $-\alpha$ or $-\beta$ we find that

$$
\begin{gather*}
\left(2 s_{1}-2 h+\gamma-\alpha-\beta+1\right)(a-1) s_{3}=\left[2\left(s_{1}-h\right)(h-1)+h\left(\gamma-p_{0}\right)\right] a \\
+3 s_{1}^{3}-(2 h+1) s_{1}+\left(\gamma-p_{0}\right) s_{1}+p_{1}\left(h-s_{1}\right) . \tag{42}
\end{gather*}
$$

Assume that, for any choice of s_{1} and h, the quantity

$$
\begin{equation*}
2 s_{1}-2 h+\gamma-\alpha-\beta+1 \neq 0 . \tag{43}
\end{equation*}
$$

Note that, if $a \neq 1$, then assuming that the condition (43) holds, the quantities s_{1}, s_{2}, and s_{3} can be uniquely expressed in terms of the parameters $\alpha, \beta, \gamma, \delta$, and a using formulas (39), (41), and (42). Substituting their values into the third equation of system (38), the condition implies that equation (33) has a particular solution of the form (36). Then the general solution of equation (33) will be

$$
\begin{gather*}
y=x^{s_{1}}(x-1)^{s_{2}}(x-a)^{s_{3}} \\
\times\left[C_{1}+C_{2} \int x^{-2 s_{1}}(x-1)^{-2 s_{2}}(x-a)^{-2 s_{3}} \exp \left(-\int p(x) d x\right) d x\right] . \tag{44}
\end{gather*}
$$

The cases where the condition (19) or (43) is violated and the comparison of general solutions of the forms (32) and (44) are not considered in this paper.

REFERENCES

1. Golubev V. V. Lectures on Analytic Theory of Differential Equations [in Russian], Moscow; Leningrad (1950).
