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Abstract. An identification problem is considered. It allows to determine the parame-
ters of dynamic system in the discrete case. First, the nonlinear discrete equation is linear-
ized by the method of quasi-linearization. Then, the quadratic functional and its gradient are
derived using the statistical data. A calculation algorithm is proposed to the solution of prob-
lem in hand. It is shown on an example that the statistical value of the coefficient of hydrau-
lic resistance differs from the obtained value on the order 10*. It shows an adequacy of the
mathematical model.
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1. Introduction.

As it is known, the identification problem plays an important role in solutions of the ap-
plied problems from physics, hydrodynamic, oil production [1, 6, 7, 10, 13, 14, 16] and etc.
There are different methods for solution of such problems. One of these methods is the op-
timization method. Choosing the corresponding optimized functional plays an important role
in this process. Firstly, the motion of the object is described by the nonlinear system of
equations in such applied problems, and further choosing such functional and solving the
corresponding problem is problematical. One of the ways to overcome these difficulties is
using the iterative method of quasilinearization [4, 9, 17]. Note that if the motion of the
object is written as the system of fractional-derivative differential equations then the
analogical method may be considered [2].

In the paper the identification problem in the discrete case is considered to determine
the parameters, of which in the right part of the system of nonlinear equations with the ini-
tial and final conditions [12]. The solution of this problem is reduced to the solution of op-
timization problem. The given system is reduced to the linear system with respect to the
phase coordinates and vector parameters with the method of quasilinearization. Using the
least quadratic method a quadratic functional is formed and the expression of the functional
gradient is derived. Calculating fundamental matrices in the continuous case [5] is a difficult
process than in the discrete case. The computational algorithm is proposed for finding the
optimal solution that allows one to define the finding parameters. The results are illustrated
in a specific practical example.
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2. Problem statement.
Let the motion of the object be described by the system of nonlinear discrete equations:

y(i+1)=f(»(i).a), i=0,N -1, (1)

where y is a n-dimensional phase vector, f is a n-dimensional continuously differentiable
function in the interval (0, 7'), « is a finding m-dimensional constant vector, N is a given

natural number.
Let the following initial conditions be given

¥ (0)=yp,, j=1L M, ()
where M is a given natural number, y,; is a given n-dimensional vector.

The problem consists of the finding of the vector & such that the solution of the Cau-
chy problem (1) — (2) satisfies the given condition

¥, (N)=yys =1, N. 3)

In these cases it is required to find the vector & such that the solution of the problem
by initial data (2) be maximally close to the measured data at the end points.

The solution of the problem (1) — (3) can be solved with the different numerical meth-
ods, for example the method of quasilinearization [9]. So in the first step we linearize the
equation (1) for the solution of the problem (1) — (3). Then selecting some nominal trajecto-

ry yO (i ) and the parameter @’ , we assume that (k-1)-th iteration has been already fulfilled.

If we linearize the equation (1) relatively these data in the order o ( y—y" a- ao)

yk—l (i),ak_l)
y

yk (i+1)=f(yk1(i),ak1)+af( i) (yk (i)—ykil(i))-i-

of (V71(i),a" (4)
4 ( () )(ak_akl)'
Ooa
After some transformations the equation (4) can be reduced to the following form
V(i+1)= A (0)y" (i) + B (i) " + (i), Q)
where
o (V' (i), e of (V' (i), "
6‘)/(1) oa
6f(yk71 (l‘),akil) af(yk*l (i),akil)
k=L _ of h=lg k-1) k=l k-1
(i) = (6" (1).¢") S’ (i) — o,
Then y (N ) from the equation (5) has the form
V*(N) =" (i) y* (0)+ @' (i) aF + @57 (d) (6)

and
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To provide that the solution y, (N ) of the linearized differential equation (5) with initial
data (2) coincides with the values of the measurements y,;, we construct the following
quadratic functional in the k- ¢4 iteration

n

1 =3 (5 (V)= s ) A(E (W)= 9hs), ™

s=1
where the symbol 7" means the operation of transpore, 4 is a nxn dimensional constant
symmetric weight matrix, that is chosen in each iteration, considering the spesifics of the
concrete problem, y&¢ is a nx1 dimensional vector of observation, y* (N) is a nxl

dimensional vector defined by (6). Then the solution of the stated problem is reduced to the
problem: Find a constant vector « , by which the solution of the equation (1) with initial
data (2) minimizes the functional (7).

Then substituting »* (N) from (6) into (7) we get

Jh = bzl(qf”()yv (0)+ @k (1)a* + @k (i) yhs) A

ek . . @®)
x( @7 (1) 04 (0)+ O () + @57 (1) = yis ).
The gradient of the functional gt with respect to the parameter a* has the form
YA KT k1T k-1 k1T k-1
&= ST @@ T () a0l (1) -0k 1 (1) 0t 15t (0)+
s=1
+(D{(;1T()A(Désl() (Dk IT())//;/ST‘F(DI( IT()(Dk 1() )
k T k-1 k-1 k-1 k
s Of! (1) + 20 (1) 40f (1)a*).
Equating the expression (9) to zero we get
3 (2047 ()4 @4 (1)) ==X (14T (o)t 1T (1) 4l (5)+
s=1 s=1
(10)

+of T (1) a0yt (0)+of T (1) a0k (1)- 0l (1) "),

Solving the equation (10) with respect to the parameter ab we get the expression for

the parameter at

ot =3 3| (oh (a0 (e | ot kT (i) ol )+

s=1
(Dk 1T( )A(Dlg‘l( ) (Dk 1T( ) yhe +(Dk 1T( )(D{cs—l (i)_ylli]STq){‘;l (i)}

where is assumed that ((I)k 1( )A<I>k 1( ) k)_l exists.

Thus we offer the following computational algorithm for the solution of the
identification problem (1) — (3):
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Algorithm.

1. The initial data and parameters from (5) are introduced;

0

2. The nominal trajectory »° (i ) and the parameter o are selected;

3. 44 (i), B (i), C*7' (i) from (5) are calculated;

4. The fundamental matrix ®"~' (i) and the matrices @' (i), ®57' (i) from (6) are
calculated;

5. The functional J* from 8) is formed and the solution of the equation (10) is found;

6. For the sufficiently small number & the condition
oJ"
oa*

<e )

is checked. If the condition (11) is satisfied, the calculation process stops, otherwise go to
the step 2.

Example. For illustration of the offered algorithm we consider the example of the gas-
lift process [6, 15]. It is known that the mathematical model describing the gas-lift process is
in the form of the system of partial differential equations

oP O ( PO, )
——=——"2+2apw,; 12
o o PO, (12)
o(po
2P _ 20pe) (13)
o ox
where P = P(x,t) is a pressure of gas and or gas-liquid mixture (GLM; ¢, x — the time and
space variables, respectively cis a speed of sound in the gas or GLM; 2a = £ /;a[); , & —
1)

c
acceleration of free fall; A — coefficient of hydraulic resistance; @, — averaged over the
cross section velocity of the mixture; D — effective internal diameter of the lift and the an-
nular space; pw, =Q/F , Q= po.F — mass flow rate of injected gas in the annular space
and the GLM in the lift; F — constant cross section area of the pump-compressor pipe.

Using time-averaging method the partial differential equations of flow of gas and GLM
may be replaced by the ordinary differential equations

. 2a(A.)pFQ’
~ g 20 (14)
2 2 2
p=-22P 0 po)=p, (15)
cpF°—

The equation (14) doesn’t depend on the equation (15), so this equation can be solved by the
method of the variables separated.

The discrete nonlinear equations corresponding to the system of the nonlinear differen-
tial equations (14), (15) have the following form:

a(%) pFO’ (i)

Q(i+1):Q(i)+hczszz—(l)
)

; 0(0)=u; (16)
2ac szQ(l

P(i+1)=P(i)- Czszz—_Q(l);

P(0)=F,. 17)
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The equation (16) includes the coefficient of hydraulic resistance A, [3, 8, 11, 16],

which affects to the correctness of calculation of Q in the annular space and lift.
The equation (16) in the intervals 0<;i< N—-1 and N+1<i<2N is substituted with
the following equations:

. . 2a PlFlQ2 (’) :

0(i+1)=0(i)+h——H2 =52 0<i<N-1; (18)

012P12F12 -0 (’)

20,0, F,0° (i

0(i +1)= (i) + h—222520 (2’). . N+1<i<2N; (19)

¢ py By =07 (i)
0(0)=u. (20)

At the point N the equations (18), (19) are connected with each other as follows:

Q(N+1)=}/Q(N—l)+(—53(Q(N—l)—§2)2+51)Q @1

where y and 6, &, , J; are constant real numbers. For simplicity, assume that the parame-
ters y,d;, 0,, 0, are known, Q is the volume of fluids in the mixture zone.

Some nominal trajectory QO (z) and the parameterao are selected and assume that

(k-1)-th iteration has been already fulfilled. We linearize the system (18), (19) relatively
these data and get

OF (i+1)=4(0" (1)," ) 0" (i) + B, (07 (i),a* " )" +
+G (071 (i),@" ), 0<i<N-L; 22)
OF (i+1) = 4, (0" (i),&* )0 (i) + B, (047 (1), @ ) +

+C, (Ql“1 (i),a"’l), N+1<i<2N, (23)
where

>

k=1.2 33,4k,
PO i -l
4 ’ 2 252 2kl 10
(C./ pi ;=0 (’))

Zaf—lcjijjgzk—l (z)
cjzpszjz _ ¥ (z)

Bj (Qk—l (l-)’ak—l): h

2a/ 7 p PO (i)
CjzpszjZ _szf4l (l)

C; (07 (1).a" ) = 0" (i) +

4a"e 2 pPFP0N (i) 0 (1) 2p,F,0% (i)
2

E+h
(e p/F7 0% (1)) o P -O0)

a7 (j=12)

and /4 sufficiently small number.
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The equations (22) — (23) may be written at the end of the intervals as

0" (N-1)={ " (i) 0" (0)+ @, 'a* + @5 (i), 0<i< N-1; (24)

0" (2N) =5 (i) 0" (N +1)+ @5 (i) a* + @4 (i), N+1<i<2N,  (25)

where
o7 ()= T1 40 () 0 ()= ] 42(0" (.
cD{cl—l (l) _ A_lz[i_lil_z/ll (Qk—l (i),ak_l )jBI (Qk—l (j—l),ak_l )+Bl (Qk—l (N—Z),ak_l);
5" (i) = 2;\:1[1.;[1 4 (Qk’l (i),akl)Jﬂz (Qkfl (j_l)’ak—l)+Bz (Qk—l (2N—1),ak’l);

ok (1) = N3[i_ij 4 (Qk—l (i).at )JCI (Qk—l (j).a*! )+C1 (Qk—l (N-2),a*" );

(Dgl (1) _ 2gz[l j+l 4, (Qkfl (i),ak’l )] c, (Qkfl (j),ak’1)+C2 (Qkfl (2N—1),ak71).

Let’s have some statistical data that at the given initial volumes of gas Q, (0) the debit

O, (2N) is measured at the output, i.c. O, (0) and O, (2N) are known (s = 1,5 ), where s is

the number of measurements.
As in for determining the coefficient of hydraulic resistance we introduce the next quad-

ratic functional:
5

Jh =3 |0k (28) -0k ()], 26)
s=1
Putting (25) into (26) we get:
gk = i‘cp’;;l ()0 (N +1)+ @) (1)a* + @1 (1)-0F (2N)| ’ @7)
s=1

For the solution of the initial optimization problem ontumuzamuu (20), (24) — (26) we
obtain the gradient of the functional J ks

AN 1y N A 1y
= 23|04 (1) 0 (N +1)+ @l (i) o + @31 (1) - OF (2|0l (1) =
=1

= zi D5 (i) 0l () OF (N +1)+ k) (1)) (1) - @] (1) 0F (2N) +(@f) (i))2 ot
s=1

(28)

Equating (29) to zero we get:

S|(@ts! (1)) [ -

s=1
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5
==Ykt (k) () 0 (V+1)+ okl (k) () -0k ()0 2V @9)
s=1
Solving the equation (29) with respect to a* we have [18]

. 3 CY0)

s=1

-1
S0 ()0 (1)0F (N +1)+ 05! (1) (1) - 15! (1) 0% (2M).
s=1

(@ ()

Let the parameters from equations (16) — (17) be given by [ =1485 m, ¢ =331m/san,

where is assumed that exists.

p=0,717xkg/m*, d =+114*>-732-10°m, A = 0,01 for 0<i<N-1; ¢=850m/san,

p=0,7001<g/m3, d=0,073m, 1=023for N+1<i<2N.
By using algorithm described above, we see that to achieve the accuracy 107 is needed
44 iterations and finally the following result is obtained A, = 0,298342. Here ﬂjc =0,23,

where 1, is the hydraulic resistance value from practice. Note that A, differs from 1, to
the order10, and it shows the efficiency of the proposed algorithm.

3. Conclusions.

In the considered problem, the quadratic functional is formed for the solution of the
identification problem and it allows to find the coefficient of hydraulic resistance. The of-
fered calculation algorithm confirm the adequacy of the constructed mathematical model
with practice.

PE3IOME. Posrnsnyro 3amauy igeHTH(ikalii, sika J03BOJISE BU3HAYMTH MapaMeTpH IMHAMIYHOT
CHCTEMH y JUCKpEeTHOMY Bumanky. CrodaTky HeliHilHe MUCKpETHE PIiBHSHHS JiHEApH3YEThCS METOIOM
KBasimiHeapu3anii. Jlami 3a JOIIOMOTOI0 CTATHCTHYHHUX JAHHX OTPHUMYETHCS KBaJpaTHYHHN (YHKIIOHAN i
Horo rpazieHT. To/i MPONOHYETHCS AITOPUTM OOYMCIICHHS Ul 3a1adi, 10 po3risgaeTbes. [lokazaHo Ha
NPUKIaJl, 10 CTATUCTUYHE 3HA4YEeHHs KoedillieHTa TiipaBJIiyHOrO OMNOPY BiJPI3HAETHCA Bill OTPUMAHOIO
4uCcenbHO Ha nopsaok 107, Le CBimuTh PO afeKBaTHICTh BUKOPHCTAHOT MATEMATHYHOT MOJIETI.
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