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Abstract. Within the scope of the piecewise homogeneous body model with utilizing of 
the three dimensional linearized theory of electro-elastic waves in initially stressed bodies, a 
mathematical modeling the dynamical stress field problem occurred in a sandwich plate-
strip is carried out. This plate consists of a piezoelectric core perfectly bonded to the elastic 
layers with initial stress under the action of a time-harmonic force resting on a rigid founda-
tion. It is assumed that the piezoelectric material is poled perpendicular to free surface of the 
body. A governing system of the partial differential equations of motion is solved by em-
ploying the finite element method. The numerical results are presented illustrating the effect 
of certain dependencies of the problem on the propagations of the stresses and the electric 
displacements acting on the interface planes between the elastic layers and the piezoelectric 
core and between the plate-strip and the rigid foundation. In particular, an effect of the ini-
tial stress parameter and a change of the thickness of the piezoelectric core on the frequency 
response of the plate-strip is investigated. 
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plate-strip. 
 
1. Introduction. 
Sandwich structures are a kind of composite materials consisting of three layers, i.e. a 

core layer is bonded to two layers. The core material may be selected more flexible or hard-
er than the others. The use of composite sandwich structures in many engineering applica-
tions such as building construction, aerospace, nuclear and civil infrastructure has been in-
creasing especially due to their features such as good energy, sound absorption ability and 
high flexural. Hence, the subject has been under the density study. The monographs [1] pre-
sent detailed investigations on the subject. 

Many researchers investigate many different problems based on various theories. Nayak 
et al. investigate the free vibration analysis of composite sandwich plates by using the fami-
ly of new Reddy type elements based on Reddy’s higher-order theory [2]. Chakraborti and 
Seikh study the buckling of sandwich plates with laminated stiff layers subjected to partial 
edge compression based on a refined higher order shear deformation theory [3]. Hazard and 
Bouillard consider the passive damping of structural vibrations by the use of viscoelastic 
layers [4]. Pandit et al. develop an improved plate model to study the buckling of laminated 
sandwich plate with transverly flexible core [5]. To analyze the static behavior of isotropic, 
sandwich and laminated plates, Xiang et al. present a new shear deformation theory [6]. Li 
et al. investigate the transient response of an orthotropic composite sandwich plate subjected 
to point-wise impulse loading with respect to a nonlinear high order core theory [7]. Tu et 
al. carve out a simple 0C  isoparametric finite element formulation based on the refined 
higher-order shear deformation theory for the bending and free vibration analysis of compo-
site and sandwich laminate plates [8]. Hasheminejad and Gheshlaghi consider a three-
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dimensional elasticity-based formulation for the dynamic response of an arbitrarily thick 
simply supported FGM rectangular plate under transient loads of arbitrary spatial and tem-
poral variations resting on a Winkler – Pasternak elastic foundation [9]. Akbarov and 
Yahnioglu study a buckling delamination problem for a sandwich plate-strip with the piezo-
electric face and elastic core layers which has two interface inner cracks by employing the 
finite element method [10]. Loja et al. develop the static and dynamic behavior of function-
ally graded sandwich structures with piezoelectric skins by B-spline finite strip models [11]. 
Shahraeeni et al. analyze analytically free and forced vibration of piezoelectric laminated 
plates coupled with rectangular acoustic cavities based on Kirchhoff plate model [12]. 
Sanker et al. present the dynamic instability behavior of sandwich panels with carbon nano-
tube (CNT) reinforced facesheets under the periodic load [13]. 

As far to the author’s knowledge the forced vibration of a pre-stressed sandwich plate-
strip with a piezoelectric core perfectly bonded to two elastic layers subjected to a time har-
monic force resting on a rigid foundation has not been studied so far. To address the issue, 
the mathematical modeling of the problem under consideration is analytically solved by 
employing the finite element method. Most significant contributions of this work include the 
investigation of the effect of the different problem dependences on the frequency response 
of the considered sandwich plate-strip.  

2. Statement of Problem. 
Consider a sandwich plate-strip with length 2a  and thickness h  under the action of a 

time harmonic force resting on a rigid foundation as depicted in Fig. 1. It is consists of a 
piezoelectric core with the thickness 2h  bonded perfectly a two isotropic layer with the 

thickness 1h  and 3h  respectively. The poling direction of the piezoelectric material is as-

sumed along the direction of the 2Ox  axis.  

 

Fig. 1. Geometry of sandwich plate-strip with piezoelectric core. 
 

The locations of the positions of the layers are determined by the Lagrangian coordi-
nates, which in the natural state coincide with Cartesian coordinates. The values related to 
the upper, core and lower layers of plate-strip are denoted by the superscripts (1), (2) and 
(3), respectively, and the additional upper index 0 to the initial state. It is assumed that the 
length of plate-strip in the direction of the 3Ox  axis is infinite. However, since the force 

applied to the considered body extends to infinity in the direction of the 3Ox  axis, the plane 

deformation state appears on the 1 2Ox x  plane. All investigations are therefore made in the 

1 2Ox x  plane. The plate-strip under consideration occupies the domain 1 2 3B B B B   , 

where 
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  1 1 2 1 1 2, : , 0B x x a x a h x       ;                                     (1) 

  2 1 2 1 2 2 1, : ,B x x a x a h x h        ;                                 (2) 

  3 1 2 1 2 2, : ,B x x a x a h x h         .                                  (3) 

The general forms of the differential equations of motion for the small initial defor-
mation can be expressed as follows [14 – 15]: 

          0,
, ,

,

m m m m m
ij j kj i k i

j
u u     ;                                       (4) 

    0,
, ,

,
0m m m

i i j i j
i

D D u  ,                                             (5) 

where , , 1, 2i j k  , 1, 2,3m  ,  m  is the corresponding mass density in the natural state, 
 m

iu  and  m
iD  denote the mechanical and electrical displacements with respect to corre-

sponding coordinate ix ,  m
ij  is the stress tensor,  0, m

kj initial stress tensor and  0, m
jD  

initial electrical displacement. The dot over the displacement components is time differen-
tiation and the comma followed by the subscript i  indicates the space-coordinate differenti-
ation. Here and below, the repeated index in the subscript is summed with respect to that 
index. It should be noted that the equation in (4) is written for both the elastic phase and the 
piezoelectric phase. But the equation in (5) vanishes for the elastic phase since it concerns 
with the electrical displacements. 

Before compounding each layer with one another and with rigid foundation, the layers 
are stretched or compressed separately in the direction 1Ox  by uniformly distributed normal 

forces. Hence, uniaxial homogenous initial stress state occurs in the plate-strip. This initial 
stress is determined by utilizing the linear theory of the electro-elasticity as 

     0, 0,
11 , 0 for all 11m m m

ijq ij    ,                                 (6) 

where  mq  is the known constant for each layer. According to all the foregoing assumptions 

and due to the character of piezoelectric material, an axial homogenous initial electric dis-
placement emerges in the piezoelectric layer as 

 0, 2 0
1 1D D  and  0, 2 0

2 2 0D D  .                                        (7) 

Note that initial stress and initial electric displacement cannot be the independent from each 
other. They must be self-consistent. This statement will be explained later.  

The mechanical and geometrical relations for an isotropic elastic material and a piezoe-
lectric material can respectively be written as 

         2ij ij ij           ;                                            (8) 

,ij ijkl kl kij kc e    ,  ,i ikl kl ik kD e     ,                                   (9) 

where 1, 3 ,  m  and  m  are the Lamé constants for the elastic phase, ijklc , kije  and ik  

are mechanic, piezoelectric and dielectric constants, respectively for the piezoelectric phase, 

ij  is the Kronecker delta,   is the electric potential,  m
ij  is the strain tensor and defined 

such that       , ,

1

2
m m m

ij i j j iu u   . Note that, since the piezoelectric material is only in the 

intermediate layer, the superscript is omitted. 
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Now the boundary and contact conditions are considered.  
According to the foregoing discussions, on the free surface and on the ends of the plate-

strip the following boundary conditions are described as 

     
2 2

1 1
12 22 1

0 0
0, ;i t

o
x x

p x e   
 
                                     (10) 

      
1

j,1 1 0;m m m
j

x a
q u 


 


                                          (11) 

  1

2 2 1

0
1 1 1,1 0x a

h x h

D D u 
  

  .                                               (12) 

The surfaces of the piezoelectric layer are assumed to be mechanically free and electri-
cally open. The boundary conditions can therefore be written as 

1

2 2 1

0x a
h x h

 
  

  and 
2 1 2

1

, 0x h h
a x a

  
  

 .                                      (13) 

It is assumed that, on the interface planes between the layers of plate strip and between 
the plate-strip and rigid foundation, there exists the completely clamping state. In this case, 
the complete clamped conditions occur as 

       

2 1 2 1 2 2 2 2

1 2 2 3
2 2 2 2; ;i i i i

x h x h x h x h
   

   
                                 (14) 

       

2 1 2 1 2 2 2 2

1 2 2 3; ;i i i i
x h x h x h x h

u u u u
   

                                  (15) 

 

2

3 0j
x h

u


 .                                                      (16) 

With the above-mentioned, the formulation of the problem and the investigation of the 
governing field equations are thus exhausted. 

3. FEM Modeling. 
An analytical solution of the considered problem cannot be obtained; therefore, to solve 

this problem, the finite element method (FEM) is employed. Before starting solution, certain 
preparations are made. First of all, the dimensionless coordinate system is introduced as 

1 2
1 2ˆ ˆ;

x x
x x

h h
  .                                                    (17) 

In addition, recall the lineal load applied to the plate-strip is assumed to be time-harmonic, 
with frequency  , as  1

i t
op x e  . Thus, all the corresponding dependent variables can be 

written in the form 

         1 2 1 2, , , , , , , , ,
m m i t

ij i ij i ij i ij iu D x x t u D x x e     ,                      (18) 

where the superposed bar represents the amplitude of the corresponding quantities. After the 
coordinate transformation in (17) and substituting the expression in (18) into the foregoing 
equations and conditions, the same equations and boundary-contact conditions are obtained 

for the amplitude of the sought values by replacing the terms  2 2/m
ju t   and  1

i t
op x e   

with  2 m
ju  and  1op x , respectively.  

To obtain FEM modeling of the last boundary-contact problem, the following functional 
is presented: 

               3 2 2
2 2

, 1 2
1

1

2
m m m m m m

ij j i
m B

J u T u h u u dB 


      
  
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 
 

 

2 2

/
11

, 2 2 11
/ 0

1

2

a h
o

i i

B a h x

p x
S dB u dx




 

   ,                                  (19) 

where  
       0,

, ,k ,

0
, , ,

;

.

m m m m
ij ij in j n ijkn n ijk k

i i n i n kni n k ik k

T u w u t

S D D u t u r

  



   

   
                           .(20) 

According to the constitutive equation in (9), the notations in (20) can clearly be written 
for the piezoelectric phase as 

1111 11 1122 13 1212 44 1221 44

2112 44 2121 44 2211 13 2222 33

0 0
111 1 121 15 211 15 122 1

222 33 112 31 11 11 22 33

; ; ; ;

; ; ; ;

; ; ; ;

; ; ; .

w c q w c w c w c q

w c w c w c w c

t D t e t e t D

t e t e r r 

     

   

   

     

                        (21) 

It is should be considered that, while  m
ijT  is computed, 1iit  is equal to zero. Note that 

the notations in (21) coincide with those for the elastic layers and    
11 33 2c c      , 

 
13c   ,  

44c   ,  q q  , 31 15 33 0e e e    and 11 33 0   . In addition, all the 

components which do not insert into the relations in (21) are equal to zero. It is easily to 
confirm that 

ijkn nkjiw w , 111 122t t  and  ijk jikt t .                                 (22) 

To show the validity of the functional presented in (19), Gauss’s theorem is used. Tak-
ing the symmetry conditions in (22) into account, 

                 
3 2

2 2
, , , , 1 2

1

1

2
m m m m m m m m

ijkn n k j i ijk j i k
m B

J u w u u t u h u u dB    


         
  

 
 

 

2 2

/
11

, , , , 2 2 11
/ 0

1

2

a h
o

kni n k i ik k i

B a h x

p x
t u r dB u dx


  

 


      


   

                
3

2 2
, , , ,

1

1
2

2
m m m m m m m

ijnk knji n k j i ijk jik j i k j j
m B

w w u u t t u h u u dB     


         

 
 

 

2 2

/
11

, , , , 2 2 11
/ 0

a h
o

kni n k i ik i k

B a h x

p x
t u r dB u dx


   

 

                    (23) 

           
3

2 2
, , ,

1

m m m m m m
ijnk n k j i ijk j i k j j

m B

w u u t u h u u dB     


       

 
 

 

2 2

/
11

, , , 2 2 11
/ 0

a h
o

kni n k i ik i k

B a h x

p x
t u r dB u dx


   

 

        

     
 

 

2

/3
11

, , 2 11
1 / 0

a h
m m o

ijnk n k ijk k i j
m S a h x

p x
w u t n u dS u dx


  

  

        
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            
3

2 2
, , ,,

1

m m m m m
ijnk n k ijk k j jii

m B

w u t h u u dB   


        

   
2 2

, , 2 , 2,,
,kni n k ik i i kni n k ik i ki

B B

t u r n dS t u r dB              

in which 2S  denotes the boundary of the domain 2B  and in  is the components of n , the 

outward unit vector normal to all the boundaries in the domain B . 
Considering the statement 

   0J mu ,                                                      (24) 

the equations of motion and the corresponding boundary-contact conditions given in (4)-(5) 
and (10) – (16) are obtained. So, the validity of the functional (19) suggested for the corre-
sponding mathematical modeling is proven. 

For the functional given in (19), the FEM modeling of the considered problem is created 
by the virtual work principle and the standard Rayleigh-Ritz method [17]. According to this 
approach, the domain B  is divided into a finite element of sub-domains whose structures 
are four-node smooth rectangular elements. It is immediately specified that the number of 
the finite elements is determined from the desired numerical convergence requirement. Ac-
cording to the well-known procedure, after fairly extensive mathematical arrangements, a 
system of algebraic equations is obtained as 

 2M K - u F ,                                                 (25) 

where K  is the stiffness matrix, M  is the mass matrix, u  is the column vector of un-
known nodal displacements, and F  is the force vector. To reduce the size of the present 
paper the explicit forms of the above-stated matrices and vectors are not given here. Howev-
er, their explicit forms are directly derived from the equations (19) and (23) by using the 
considered procedure. So, with the above-stated the FEM modeling of the problem is ex-
hausted. 

4. Numerical Results. 
Getting started with this section, certain remarks are made to more easily understand the 

numerical investigations. Certain notations are first introduced as 

 

 

3

1

E
e

E
 ,  

 

 h



 



 and  

 

 
q








                                  (26) 

for the elastic layers and  

44

h
c

   and 
44

q

c
                                              (27) 

for the piezoelectric core. In the equations (26) and (27),  E   is the Young modulus for the 

elastic layer,  m  is the dimensionless frequency parameter, and  m  is the initial stress 

parameter.  
Throughout the paper, all the numerical investigations are made at the interface planes 

between the upper elastic layer and the piezoelectric core (named “upper interface”), be-
tween the piezoelectric core and the lower elastic layer (named “lower interface” and be-
tween the plate-strip and rigid foundation (named “bottom surface”). Note that, when the 
corresponding parameters are equal, the superscript “  m ” will be omitted. It is assumed 

that, for all considered examples, the two elastic layers have the same thickness ( 1 3h h ), 
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and the material 3BaTiO  is selected for the piezoelectric core. The following cases are also 

considered under / 2 0, 2h a  , 2 / 0,5h h  , 0   and 0   unless specified otherwise: 

Case I: Aluminum (Upper layer) + 3BaTiO  (Core layer) + Steel (Lower layer) 

       Case II:    1 3 1E E  ,    1 3 0,33   . 

The electromechanical properties of materials considered are listed in Table. Changing val-
ues in any case under consideration will be specifically indicated.  

Table. Values of material properties 

Property 
Elastic layer Core Layer 

Aluminum Steel 3BaTiO  

E (GPa) 70 210 - 

  0,35 0,29 - 

11c  (GPa) - - 150 

13c  (GPa) - - 66 

33c  (GPa) - - 146 

44c  (GPa) - - 44 

31e  (cm-2) - - -4,35 

33e  (cm-2) - - 17,5 

15e  (cm-2) - - 11,4 

11  (nFm-1) - - 11,15 

33  (nFm-1) - - 12,6 

  (kgm-3) 2712 7850 7280 

 
As previously mentioned, the self-consistent condition of the initial stress (stretching or 

compressing) field for the piezoelectric phase should be satisfied. In this study, a case such 
that only a uniformly distributed normal initial stress field is considered. Then considering 

the constitutive equations, the equation      20 2
1 13 33 33 31 13 11 33/D q c e c e c c c    can directly 

be derived for the piezoelectric phase. The values of the initial stress parameter  m  are 

chosen at asymmetric interval – 0,07 to 0,07. 
Before starting to present numerical results, the validity of the numerical algorithms and 

programs composed by the author under consideration must be verified. To do this, certain 
special cases are considered, and it will be shown that the obtained numerical results con-
verge to the previous ones and the findings agree well with the foregoing discussion.  

In Fig. 2, the distribution of the normal stress 22 0/h p  with respect to the line 1 /x h  on 

the bottom surface for Case II and  2h h  is displayed. This figure gives the opportunity 

to compare the numerical results obtained by using the present FEM algorithm with the ones 
given by Uflyand [18] for the plate with infinite length. Note that the starred graph in Fig. 2 
means the one in [18]. The geometry of the considered body begins to resemble a semi-
infinite structure as / 2 0h a  . In this case, the present numerical results must converge to  
the corresponding ones obtained in Ref. [18] as / 2 0h a  . This statement is demonstrated 
by the graphs in Fig. 2 plotted on the bottom surface. 
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Fig. 2. The variation of 22 0/h p  versus the line 1 /x h  for different thickness ratios 

 under Case II on the bottom surface. 

 
 

Fig. 3, a. The variation of  22 0/h p  versus the line 1 /x h  for different piezoelectric thickness 

ratios under Case I at the upper interface. 

 
Fig. 3, b The variation of  22 0/h p  versus the line 1 /x h for different piezoelectric thickness ratios 

under Case I on the bottom surface. 
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Fig. 3 shows the distribution of the normal stress 22 0/h p  with respect to the line 

1 /x h  for various thicknesses of the piezoelectric core under Case I at the upper interface 

and on the bottom surface. Note that the notation      means the corresponding one in 

Ref. [16], and the solid (dashed) line graphs are plotted for 0,1    1,0  . The geome-

try of the plate-strip begins to resemble that in Ref [16] as 2 0h  . It can easily be observed 

from the graphs in Fig. 3 that the numerical results converge to the corresponding ones giv-
en in Ref. (16) for both interface and bottom surface under the condition 2 0h  .  

Now, the effect of the ratio of the Young modulus of the elastic layers on 22 0/h p  and 

2 0/D h p  along the line 1 /x h  is given in Fig. 4 under Case II, 2 / 0,75h h   and 0,3  . 

According to the well-known mechanical consideration, an increase in the values of the ra-
tio e  must give rise to a decrease in the absolute values of 22 0/h p  for the multi-layered 

body. Indeed, this prediction is clearly observed from the graphs in Fig. 4. In addition, it can 
be said that there exist certain locations where the values of 22 0/h p  and 2 0/D h p  are in-

dependent of the ratio e . 

 
Fig. 4, a. The variation of 22 0/h p  versus the line 1 /x h  for various e  under Case II and 

0,3   at the upper interface. 
 

  
 

Fig. 4, b The variation of 22 0/h p  versus the line 1 /x h  for various e  under Case II 

 and 0,3   at the lower interface. 
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Fig. 4, c .The variation of 2 0/D h p  versus the line 1 /x h  for various e  under Case II  

and 0,3   at the lower interface. 

 
Fig. 4, d. The variation of 22 0/h p  versus the line 1 /x h   for various e  under Case II  

and 0,3   on the bottom surface. 
 

The numerical results obtained from Figs. 2 and 3 show that, under certain special cas-
es, the distributions of the stress 22 0/h p  converge to the previous ones. Besides, the find-

ings in Fig. 4 agree well with the well-known foregoing mechanical considerations. In this 
way, the validity and trustiness of the algorithm and programs has been shown.  

In Fig. 5, the effect of the initial stretching (compressing)   on the distribution of 

22 0/h p  and 2 0/D h p  with respect to the line 1 /x h  under Case I, 2 / 0,75h h   and 

0,3   at the upper and lower interfaces and on the bottom surface is displayed. It can be 

shown from the graphs in Fig. 5 that, under * *
1 1 1/ / /x h x h x h    the absolute values of 

22 0/h p  and 2 0/D h p  decrease (increase) with increasing the initial stretching (compress-

ing) parameter. But under ** *
1 1 1/ / /x h x h x h     and * **

1 1 1/ / /x h x h x h  , the abso-

lute values of 22 0/h p  and 2 0/D h p  decrease with (increasing) the initial stretching (com-

pressing) parameter. Note that the values of *
1 /x h  and **

1 /x h  can be observed in Fig. 5 

and are different at the upper and lower interfaces and on the bottom surface. As can be seen 
from Fig. 5, the effect of the initial stretching parameter applied to the body on 22 0/h p  

and 2 0/D h p  is the opposite of that for the initial compressing parameter. 
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Fig. 5, a. The variation of 22 0/h p  versus the line 1 /x h   for various   under Case I and 

0,3  at the upper interface. 

 
Fig. 5, b. The variation of 2 0/D h p  versus the line 1 /x h   for various   under Case I  

and 0,3  at the lower interface. 

 
 

Fig. 5, c. The variation of 22 0/h p  versus the line 1 /x h   for various   under Case I  

and 0,3  at the lower interface. 
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Fig. 5, d. The variation of 22 0/h p  versus the line 1 /x h   for various   under Case I 

 and 0,3  on the bottom surface. 
 
To observe an influence of a change in values of the thickness of the piezoelectric core 

on this effect, Fig. 6 is now considered, which displays the variations of 22 0/h p  and 

2 0/D h p  with respect to the initial stress parameter   at the points  10, /h h ,  20, /h h  

and  0, 1  under the same assumptions in Fig. 5. Both the stress 22 0/h p  and the electri-

cal displacement 2 0/D h p  depend linearly on the initial stress parameter. It can be shown 

that the slope of this linear dependence increases towards to the bottom surface. The type of 
material used in each layer causes to this result. By the same token, the slope of each graph 
decrease with increasing the thickness of the core layer. It can be said from this result that, 
when the thickness of the piezoelectric core decreases, the effect of both the initial stretch-
ing and initial compressing on 22  and 2D  increases.  

 

 
 

Fig. 6, a.  The dependencies between 22 0/h p  and   for  various 2 / 2h a  under Case I 

 and 0,3  at the point  10, /h h . 
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Fig. 6, b. The dependencies between 22 0/h p  and   for  various 2 / 2h a  under Case I and 

0,3  at the point  20, /h h . 

 
Fig. 6, c. The dependencies between 2 0/D h p  and   for  various 2 / 2h a  under Case I and 

0,3   at the point  20, /h h . 

 
Fig. 6, d. The dependencies between 22 0/h p  and   for  various 2 / 2h a  under Case I 

 and 0,3   at the point  0, 1 . 
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The numerical results obtained have been presented for the constant values of   until 
now. But the one of the main aims of the present paper is to investigate certain problem pa-
rameters on the frequency response of the stress 22 0/h p  and the electrical displacement 

2 0/D h p . Thereafter, the influence of the relevant parameters on the frequency response of 

22 0/h p  and 2 0/D h p  will be analyzed at the points  10, /h h ,  20, /h h  and  0, 1  

under Case I unless otherwise. 
Fig. 7 presents the variation of the stress 22 0/h p  and the electrical displacement 

2 0/D h p  with the dimensionless frequency   for various thickness 2h . As can be seen 

from the graphs in this figure, the absolute values of 22 0/h p  and 2 0/D h p  decrease with 

the dimensionless frequency  . Also, while the absolute values of 22 0/h p  decrease with 

the thickness 2h  at  10, /h h , the absolute values of 22 0/h p  and 2 0/D h p  decrease with 

increasing the thickness 2h  at the other points.  

 
Fig. 7, a. The dependencies between 22 0/h p  and   for various 2 / 2h a  under Case I  

at the point  10, /h h . 

 

 
 

Fig. 7, b. The dependencies between 22 0/h p  and   for various 2 / 2h a  under Case I  

at the point  20, /h h . 
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This difference in Fig. 7, a is a natural result of its proximity to free surface of the in-
vestigated point. It follows from the investigations of the graphs that there exist locations 
where 22 0/h p  and 2 0/D h p  reach the extrema for the certain values of  . These values 

are called as its “resonance” values and denoted  
*

m . The graphs show that the resonance 

values of   decrease with increasing the thickness 2h . Moreover, the numerical results 

prove that the “resonance” values of   depend on the selected material and on the material 
type. For instance, the resonance values of   for elastic layers are significantly smaller 

than that for the piezoelectric core. Clearly,      3

* * *
BaTiOAl St     . An increase in the 

values of the thickness 2h  causes to increase the number of the local extremums of 22  with 

respect to  . The dependences between 22 0/h p  and   and between 2 0/D h p  and   

are non-monotonic. This result agrees well with the previous mechanical consideration. In 
addition, for 1,2  , the oscillating characters of 22 0/h p  and 2 0/D h p  become more 

sensitive for the present system. It follows from the foregoing investigations that the ob-
tained results coincide with the ones in Ref. [16]. Thus, the validity and trustiness of the PC 
program composed by the author is confirmed again.  

 
Fig. 7, c. The dependencies between 2 0/D h p  and   for various 2 / 2h a  under Case I  

at the point  20, /h h . 

 
Fig. 7, d. The dependencies between 22 0/h p  and   for various 2 / 2h a  under Case I  

at the point  0, 1 . 
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It can be shown from the above discussions that the oscillating character of the distribu-
tion of 22 0/h p

 
is to be similar to that for 2 0/D h p

 
(in the qualitative sense). Thereafter, to 

reduce the size of the paper, so all the numerical investigations are only made at the points 
 20, /h h  and  0, 1  for the normal stress 22 0/h p .  

The numerical results given in Fig. 8 allow to obtain certain conclusions on the influ-
ence of a changes of the ratio / 2h a  on the frequency response of the sandwich plate- strip. 
According to the graphs in Fig. 8, an increase in the values of / 2h a  causes to decrease of 
the numbers of the local maximums and minimums of 22 0/h p

 
with respect to the dimen-

sionless frequency  . The values of  
*

m  decrease with increasing the ratio / 2h a . While 

the values of the ratio / 2h a  decrease, the oscillating character of the distribution of 

22 0/h p  becomes more sensitive.  

 

 
Fig. 8, a. The dependencies between 22 0/h p  and   for various / 2h a  under Case I 

 at the point  20, /h h . 

 

 
Fig. 8, b. The dependencies between 22 0/h p  and   for various / 2h a  under Case I  

at the point  0, 1 . 
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To investigate the effect of the initial stretching and compressing parameters on the dis-
tribution of 22 0/h p  with respect to the dimensionless frequency  , Fig. 9 is now consid-

ered. It follows from the graphs in Fig. 9 that the influence of the initial stretching and com-
pressing parameters on the frequency response of the stress 22 0/h p  is significantly not 

only in the quantitative sense but also in the qualitative sense. Moreover, it can be shown 
that there exist certain locations where the parametric resonance of 22 0/h p  occurs for 

some values of the parameter  . An increase in the values of the initial stretching (com-

pressing) parameter   causes to increase (decrease) the values of  
*

m . Under the medium 

without the initial stress, i.e. 0  , the resonance of the current system occur on the point 

where 1,2  . The initial stretching prevents the resonance value of 22 0/h p , but the ini-

tial compressing exceeds the corresponding resonance value. 
 

 
 

Fig. 9, a. The dependencies between 22 0/h p  and   for various   under Case I  

at the point  20, /h h . 

 

 
 

Fig. 9, б. The dependencies between 22 0/h p  and   for various   under Case I  

at the point  20, /h h . 
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Fig. 10, a. The dependencies between 22 0/h p  and   for various e  under Case I 

 at the point  20, /h h . 

 

   
 

Fig. 10, b. The dependencies between 22 0/h p  and   for various e  under Case I 

 at the point  0, 1 . 

 
Fig. 10 displays the effect of the parameter e  on the variation of 22 0/h p  with respect 

to the dimensionless frequency   under Case II. The numerical results observed in Fig. 10 

indicate that the values of  
*

m  decrease with the parameter e . An increase in the values 

of the parameter e  causes to decrease the numbers of the local maximums and minimums of 

22 0/h p
 
with respect to  . Moreover, when the values of   decrease, the effect of the 

parameter e  on the variation of 22 0/h p  damps rapidly. The resonance values at the lower 

interface are less than those on the bottom surface.  

5. Conclusion. 
In the present paper, the forced vibration problem for a pre-stressed sandwich plate-strip 
with a piezoelectric core perfectly bonded to two elastic layers under the action of a time-
harmonic force on the rigid foundation is investigated within the scope of the exact equa-
tions of electro-elasticity in framework of the piecewise homogeneous body model. The 
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considered problem is numerically solved by employing the finite element method. The ef-
fect of various problem parameters on the frequency response of the sandwich plate-strip is 
examined. According to all the numerical investigations, certain inferences of the important 
results can be drawn as follows: 

the effect of the initial stretching on the corresponding stress and electrical displacement 
components is opposite of that of the initial compressing; 

an increase in the thickness of the piezoelectric core causes to increase the number of 
the local extremums of 22  with respect to  ; 

the resonance values of the piezoelectric material are smaller than those of the elastic 
materials; 

by increasing the length of the plate-strip for fixed thickness of that, or by decreasing 
the thickness of the plate for fixed length of that the numbers of the local extremums of 22  

decrease; 
by decreasing the ratio of Young modulus of the elastic layers, the resonance values of 

the current system decrease; 
while the initial stretching prevents the resonance value of the external force, the initial 

compressing exceeds this resonance value. 
The numerical results listed above have been presented under two different cases, but 

note that they also have a general validity in a qualitative sense. Moreover, these numerical 
results are encountered daily in the engineering practice under an impact treatment of metals 
which lie on the others. 
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Р Е З Ю М Е . В рамках моделі кусково-однорідного тіла з використанням триви-

мірної теорії електропружних хвиль в початково напружених тілах проведено матема-
тичне моделювання задачі про поле динамічних напружень, що виникає в шаруватій 
плиті-полосі. Ця плита складається з п’єзоелектричного ядра, яке граничить з пруж-
ним шарами з початковими напруженнями, і перебуває на абсолютно твердій основі. 
Приймається, що п’єзопружний матеріал поляризований перпендикулярно до вільної 
поверхні пластини. Основна система диференціальних рівнянь з частинними похід-
ними розв’язана методом скінченних елементів. Представлено числові результати, які 
ілюструють вплив певних залежностей задачі про поширення напружень і електрич-
них зміщень, які діють на площинах розділу пружних шарів і п’єзоелектричного ядра 
та плитою і абсолютно твердою основою. Зокрема, вивчено вплив параметра початко-
вого напруження і зміни товщини п’єзопружного ядра на частотні характеристики 
плити-стержня. 
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