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Ñê³í÷åííîåëåìåíòíèé àíàë³ç òåðìîïðóæíîãî àðìîâàíîãî âîëîêíàìè

àí³çîòðîïíîãî ïîðîæíèñòîãî öèë³íäðà íà îñíîâ³ ìîäåë³ äâîôàçíîãî

çàï³çíþâàííÿ

À. Ä. Õîá³íè
à
, ². À. Àááàñ

à,á
, Ô. Áåðòî

â

à Äîñë³äíèöüêà ãðóïà ç íåë³í³éíîãî àíàë³çó òà ïðèêëàäíî¿ ìàòåìàòèêè, Â³ää³ëåííÿ ìàòå-

ìàòèêè, Óí³âåðñèòåò êîðîëÿ Àáäóëàç³çà, Äæèääà, Ñàóä³âñüêà Àðàâ³ÿ

á Â³ää³ëåííÿ ìàòåìàòèêè, Òåõí³÷íèé ôàêóëüòåò, Óí³âåðñèòåò Ñîõàã, Ñîõàã, ªãèïåò

â Ôàêóëüòåò òåõí³÷íîãî ïðîåêòóâàííÿ òà ìàòåð³àë³â, Íîðâåçüêèé óí³âåðñèòåò ïðèðîäíèõ ³

òåõí³÷íèõ íàóê, Òðîíõåéì, Íîðâåã³ÿ

Ïîáóäîâàíî ð³âíÿííÿ äëÿ óçàãàëüíåíî¿ òåðìîïðóæíîñò³ àðìîâàíîãî âîëîêíàìè àí³çîòðîïíîãî

ïîðîæíèñòîãî öèë³íäðà íà îñíîâ³ ìîäåë³ äâîôàçíîãî çàï³çíþâàííÿ. Äîñë³äæóºòüñÿ ïîðîæ-

íèñòèé öèë³íäð ³ç òåïëî³çîëüîâàíîþ íåíàâàíòàæåíîþ çîâí³øíüîþ ïîâåðõíåþ, â òîé ÷àñ ÿê

íåíàâàíòàæåíà âíóòð³øíÿ ïîâåðõíÿ ï³ääàºòüñÿ òåïëîâîìó óäàðó. Çàäà÷ó ðîçâ’ÿçàíî ÷èñåëüíî

ç âèêîðèñòàííÿì ìåòîäó ñê³í÷åííèõ åëåìåíò³â. Îòðèìàí³ ðåçóëüòàòè äëÿ ïåðåì³ùåíü, òåì-

ïåðàòóðè, ðàä³àëüíèõ ³ êîëîâèõ íàïðóæåíü ïîäàíî ãðàô³÷íî. Ïðîâåäåíî ïîð³âíÿííÿ ì³æ

ñïðîãíîçîâàíèìè ðåçóëüòàòàìè çà çâ’ÿçàíîþ òåîð³ºþ òåðìîïðóæíîñò³, òåîð³ºþ Ëîðäà–

Øóëüìàíà òà çà ìîäåëëþ äâîôàçíîãî çàï³çíþâàííÿ ïðè íàÿâíîñò³ ³ â³äñóòíîñò³ àðìóâàííÿ.

Êëþ÷îâ³ ñëîâà: ìîäåëü äâîôàçíîãî çàï³çíþâàííÿ, àðìóâàííÿ âîëîêíàìè, òåîð³ÿ

Ëîðäà–Øóëüìàíà, ìåòîä ñê³í÷åííèõ åëåìåíò³â.

Introduction. Materials such as resins reinforced by strong aligned fibers exhibit

highly anisotropic elastic behavior in the sense that their elastic moduli for extension in the

fiber direction are frequently of the order of 50 or more times greater than their elastic

moduli in transverse extension or in shear. Due to their low weight and high strength, the

fiber-reinforced composites are used in a variety of structures. The mechanical behavior of

many fiber-reinforced composite materials is adequately modelled by the theory of linear

elasticity for transversely isotropic materials, with the preferred direction coinciding with

the fiber direction. The theory of strongly anisotropic materials has been widely discussed
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in the literature, Belfield et al. [1] investigated the stress in plates reinforced by fibers lying

in concentric circles. Hashin and Rosen [2] studied the elastic moduli for fiber-reinforced

materials.

The first of such modeling is the extended thermoelasticity theory of Lord and

Shulman [3], who introduced the concept of thermal relaxation time into the classical

Fourier law of heat conduction. Subsequently, modifying the stress versus strain

relationship as well as the entropy relationship with relaxation time, Green and Lindsay [4]

proposed the temperature rate-dependent thermoelasticity (GL) theory. The theory was

extended for anisotropic body by Dhaliwal and Sherief [5]. Tzou [6, 7] proposed the

dual-phase-lag (DPL) model, which describes the interactions between phonons and

electrons on the microscopic level as retarding sources causing a delayed response on the

macroscopic scale. The DPL model proposed by Tzou [8] is such a modification of the

classical thermoelastic model in which the Fourier law is replaced by an approximation to a

modified Fourier law with two different time translations: a phase-lag of the heat flux t q

and a phase-lag of temperature gradient t
�

. Abouelregal [9] studied a problem of a

semi-infinite medium subjected to exponential heating using a dual-phase-lag thermoelastic

model. Verma [10] studied the shear waves in self-reinforced bodies. Singh [11] discussed

the wave propagation in thermally conducting linear fiber-reinforced composite materials

with one relaxation time. Othman and Abbas [12] studied the effect of rotation on plane

waves at the free surface of a fiber-reinforced thermoelastic halfspace. Abbas [13]

investigated the effect of magnetic field on thermoelastic interaction in a fiber-reinforced

anisotropic hollow cylinder. Chattopadhyay and Choudhury [14] investigated the

propagation, reflection and transmission of magnetoelastic shear waves in a self-reinforced

media. Chattopadhyay and Choudhury [15] studied the propagation of magnetoelastic shear

waves in an infinite self-reinforced plate. Tian et al. [16], Abbas et. al [17–23], applied the

finite element method in different generalized thermoelastic problems.

In the present paper, we have considered a problem of dual-phase-lag model on

generalized thermoelasticity of a fiber-reinforced anisotropic hollow cylinder. The problem

has been solved numerically using a finite element method (FEM). Numerical results for

the temperature distribution, displacement, radial stress and hoop stress are represented

graphically. The results indicate that the different between the coupled theory (CT), Lord

and Shulman (LS) theory, and DPL model are very pronounced.

Basic Equations and Formulation of the Problem. For a fiber-reinforced linearly

thermoelastic anisotropic medium, the constitutive equations preferred to whose direction is

that of a unit vector a [11]:

� � � � � � � �ij kk ij T ij k m km ij i j kk L Te e a a e a a e� 	 	 	 	 
2 2( ) ( )(a a e a a ei k kj j k ki	 	)
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The equation of heat conduction under DPL model [9]
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The equation of motion

� �ij j i iF u,
�� ,	 � i j, , , .�1 2 3 (4)
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Three cases arise:

(i) classical dynamical coupled theory

t t q�
� � 0;

(ii) LS theory

t t
�
� �0 0, t q � 0;

(iii) DPL model

0� �t t q�
,

where ui are the displacement vector components, � is the mass density, eij is the strain

tensor, T is the temperature change of a material particle, � ij is the stress tensor, � ij is

the thermal elastic coupling tensor, ce is the specific heat at constant strain, T0 is the

reference uniform temperature of the body, t q is a phase-lag of heat flux, t
�

is a

phase-lag of temperature gradient, K ij is the thermal conductivity, �, �, ( )� �L T
 are

reinforced anisotropic elastic parameters, and � and �T are elastic parameters and the

component of the vector a are (a a a1 2 3, , ), where a a a1
2

2
2

3
2 1	 	 � .

Let us consider a fiber-reinforced hollow cylinder with an external radius b and

internal radius a. By using the cylindrical system of coordinates ( , , )r z� with the z-axis

lying along the axis of the cylinder. Due to symmetry, the displacement vector has the

components

u u r tr � ( , ), u r t
�

( , ) ,� 0 u r tz ( , ) .� 0 (5)

For circumferential reinforcement, the equation of motion in the absence of body

forces is given by
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The energy equation without heat sources has the form
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with
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where

� � � � � � �11 11 222� 	 	 	( ) ( ) ,T � � � � � � � � � �22 11 222 2 4 2� 	 	 	 	 
 	( ) ( ) ,L T

and �11 and �22 are coefficients of linear thermal expansion. It is convenient to change

the preceding equations into the dimensionless forms. To do this, the dimensionless

parameters are introduced as

( , , ) ( , , ),� � � �t t t c t t tq q� �
�1

2 ( , ) ( , ),� � �r u c r u1 � ( , ) ( , ),� �� � � �
�� ��rr rr

A

1
(10a)
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From Eqs. (10) into Eqs. (6)–(9) one may obtain (after dropping the superscript � for

convenience)
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From preceding description, the initial and boundary conditions may be expressed as
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where a and b are inner and outer radii of the hollow cylinder, respectively, and H t( ) is

the Heaviside unit step function.

Finite Element Method. The FEM is a powerful technique originally developed for

the numerical solution of complex problems in structural mechanics, and it remains the

method of choice for complex systems. In this section, the governing equations of

generalized thermoelasticity with dual-phase-lag are summarized, using the corresponding

finite element equations. In the FEM, the three isoperimetric, quadrilateral element is used for

displacement and temperature. Thus, the displacement component u and temperature T

are related to the corresponding nodal values by

u N u ti i

i

m

�

�

� ( ),
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T N T ti i

i

m

�
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� ( ),

1

(17)
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where m denotes the number of nodes per element, and N the shape functions. In the

framework of standard Galerkin procedure, the weighting functions and the shape functions

coincide:

� �u N ui i
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Thus, Eqs. (11) and (12) corresponding to the finite element equations can be written

as
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where me is the total number of elements. Appendix presented the coefficients of Eq. (21).

The matrix form of Eq. (21) can be written as

Md Cd Kd F ext
�� � ,	 	 � (22)

where d u T T
� [ ] , F ext , M , C , and K represent external force vectors, the mass,

damping, and stiffness matrices, respectively. Finally, the Newmark time integration

method or other methods have to be used to determine the time derivatives of the unknown

variables (see [24]).

Numerical Example. To study the effect of reinforcement on wave propagation, we

use the following physical constants for generalized fiber-reinforced thermoelastic materials

[11]: �� 2660 kg/m3, �� '565 1010. N/m2, �T � '2 46 1010. N/m2, �L � '566 1010. N/m2,

��
 '1 28 1010. N/m2, �� '22090 1010. N/m2, �11
40017 10� '


. deg
1, T1 1� , �22 �

� '

0015 10 4. deg
1, ce � '0787 103. J/(kg'deg), T0 293� K, t q � 0.2, t

�
� 0.1, K11 �

� '00921 103. J/(m's'deg), K 22
300963 10� '. J/(m's'deg), and t� 0.5.

These physical quantities are represented and plotted in Figs. 1–8 with respect to

radial distance for T1 1� and t� 0.5. Furthermore, all the variables and parameters are

taken in non-dimensional forms. In Figs. 1, 3, 5, and 7 refer to thermoelastic solid without

reinforcement (NRE), while in Figs. 2, 4, 6, and 8 – with reinforcement (WRE).

From Figs. 1–8 is seen that, there is no significant difference in the value of

temperature for WRE and NRE as in Figs. 3 and 4. Figures 1 and 2 show the variation of

displacement for NRE and WRE. It is noticed that the displacement is continuous and the

displacement gradually decreases with r and is zero at r b� . This is also in agreement with

the theoretical result where beyond the thermal wave front displacement vanishes.

Figures 5 and 6 represent the variation of stress with respect to distance, which we

observed that, the stress, always starts from the zero value and terminates at the zero value

to obey the boundary conditions. Figures 7 and 8 gives the variation of hoop stress versus r.
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Fig. 1. Displacement distribution for different theories without reinforcement.

Fig. 2. Displacement distribution for different theories with reinforcement.

Fig. 3. Temperature distribution for different theories without reinforcement.
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Fig. 4. Temperature distribution for different theories with reinforcement.

Fig. 5. Radial stress distribution for different theories without reinforcement.

Fig. 6. Radial stress distribution for different theories with reinforcement.
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Fig. 7. Hoop stress distribution for different theories without reinforcement.

Fig. 8. Hoop stress distribution for different theories with reinforcement.

Fig. 9. Displacement distribution with reinforcement.
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Also, for each theory the hoop stress have a maximum magnitude at the boundary. Figures 9,

10, 11, and 12 display the distribution of the displacement, temperature, radial and hoop

stresses for a wide range of r (1 4( (r ) and for a wide range of dimensionless time t

( . ).0 05( (t The reinforcement has a great effect on the distribution of displacement and

stresses. Finally, it is obvious that the phase-lag parameters t
�

and t q have very

pronounced effect on the temperature and displacement, radial and hoop stresses.

Appendix. The coefficients in Eq. (21) are given by
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Fig. 10. Temperature distribution with reinforcement.

Fig. 11. Radial stress distribution with reinforcement.
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where � represent the component of the traction, and q represents heat flux.
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Ð å ç þ ì å

Ïîñòðîåíû óðàâíåíèÿ äëÿ îáîáùåííîé òåðìîóïðóãîñòè àðìèðîâàííîãî âîëîêíàìè

àíèçîòðîïíîãî ïîëîãî öèëèíäðà íà îñíîâå ìîäåëè äâóõôàçíîãî çàïàçäûâàíèÿ. Èññëå-

äóåòñÿ ïîëûé öèëèíäð ñ òåïëîèçîëèðîâàííîé íåíàãðóæåííîé âíåøíåé ïîâåðõíîñ-

òüþ, â òî âðåìÿ êàê íåíàãðóæåííàÿ âíóòðåííÿÿ ïîâåðõíîñòü ïîäâåðãíóòà òåïëîâîìó

óäàðó. Çàäà÷à ðåøåíà ÷èñëåííî ñ èñïîëüçîâàíèåì ìåòîäà êîíå÷íûõ ýëåìåíòîâ. Ïîëó-

÷åííûå ðåçóëüòàòû äëÿ ïåðåìåùåíèÿ, òåìïåðàòóðû, ðàäèàëüíûõ è îêðóæíûõ íàïðÿ-

æåíèé ïðåäñòàâëåíû ãðàôè÷åñêè. Ïðîâåäåíî ñðàâíåíèå ìåæäó ïðîãíîçèðóåìûìè

ðåçóëüòàòàìè ïî ñâÿçàííîé òåîðèè òåðìîóïðóãîñòè, òåîðèè Ëîðäà–Øóëüìàíà è ïî

ìîäåëè äâóõôàçíîãî çàïàçäûâàíèÿ ïðè íàëè÷èè è îòñóòñòâèè àðìèðîâàíèÿ.
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Fig. 12. Hoop stress distribution with reinforcement.
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