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Afeedforword neural network ofmulti-layer topologiesfor systems with hysteretic nonlinearity was
constructed based on the Bouc-Wen differential model. The proposed model not only reflects the
hysteresis force characteristics of the Bouc-Wen model, but can also determine the corresponding
parameters. The simulation results demonstrate that the restoringforce-displacement curve hysteresis
loop closely represents real curves. The trained model can accurately predict the time response ofthe
system. By comparing results obtained by the proposed model with real responses, the model was
validated in the presence ofnoise and exhibits increased modeling precision, good generalizability
and anti-interference capability.
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Introduction. Piezoelectric ceramic actuators such as magneto rheological damper, as
well as dry friction damping steel wire rope and nonlinear delay systems exist in
mechanical isolation systems, earthquake engineering, civil engineering, aerospace structural
damping systems, etc. [1, 2]. Accurate modeling is important to the analysis and response
prediction of a dynamic system, and has attracted wide research attention. The Bouc-Wen
model is a widely used non-linear phenomenological model which describes the smooth
hysteresis behavior of the lag element according to a nonlinear differential equation [3, 4].
The nonlinear restoring force is divided into two components' the nonlinear an hysteretic
restoring force related only to the instantaneous displacement and speed of the structure,
and the pure lag restoring force related to the structure of the displacement time history
which can be described by a first-order nonlinear differential equation [5-7].

In the present study, the use of Bouc-Wen model is used for the topological design
of the neural network layer. The corresponding relationship between network weights and
the model parameters was established. A neural network model is obtained by network
training, which reflects not only the hysteresis force characteristics of the Bouc-Wen
model, but also the corresponding model parameters.

1 Mathematical Model of Hysteresis Nonlinear Systems. In practical engineering
applications, it is necessary to establish the mathematical description of the hysteretic
nonlinear force in order to analyze the hysteresis nonlinear dynamics of the system. The
Bouc-Wen differential model can describe the various forms of smooth hysteresis
nonlinearity [8-10]. As long as it is appropriate to change its parameters, the proposed
model can describe the various types of hysteresis loops, described as follows'

R(t)= bx(t)+ 2(t), )
Z= TIX(O)—P\X(t)|z| z|n 1—yX(t)[z|n . )

Equation (2) can be rewritten as follows'
Z(t)= IX(t)—ftX(t)[|Z (t)In sgn[Z()]—y X (H)IZ(D)In . (3)
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In Egs. (1)-(3), R(t) is the system lag restoring force, bx(t) is the non-lag
component, Z(t) is the lag component, b, 3, y,and n are the parameters to be identified.
Among the identifiable parameters, b, ~, 3, and y control the shape of the hysteresis
curve, while n controls smoothness of the transition zone in the hysteresis curve.

2. Modeling Principles Based on the Bouc-Wen Model. The Bouc-Wen differential
model reflects the relationship between the lag force and the deformation displacement.
The relationship between the restoring force and deformation is determined by the five
unknown parameters.

According to the relationship between the restoring force and deformation, by
constructing a series of activation function, describing the differential equation by specific
neural network topology structure, correspond to the network weights and model parameters.
The neural network model of the system is able to obtain the lag resilience by the training
of the custom network. The modeling principle is shown in Fig. 1

Fig. 1. Principle of hysteresis nonlinear system modeling.

3. Neural Network Topology Based on the Bouc-Wen Model. In order to construct
a neural network topology, Eq. (1) must be discretized to obtain the following:

R(t)= bx(t)+ z(t). @)
After the first order differential forward on Eqgs. (2) and (3) can be written as follows:

rk)- r(k- ) b[x(k)-x(k- T)],.» _
T = t +z(tN (5)

Z(t)= Ay « - D]- Ne (O)z(t)|z(t)r-i- rl-z(t> & )-x<k-1)], (6)

where T is the sampling interval, and k and k- 1 define the sampling time. Equations (5)
and (6) are then combined, and the difference equation indicates the relationship between
the restoring force, displacement and speed as follows:

R(k)= R (k- 1)+b[x(k) - x(k- 1)]+TaX(k- 1)- TfiX(k- D[R (k- 1)- bx(k- 1)]Ir X

X sgn[R (k —1)—bx(k —1)]—Tyx(k —1)|[R (k —1)—bx(k — D)]|" )
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4. Construction of Neural Network Topology. According to Eqg. (7), the neural
network topology shown in Fig. 2 can be constructed to achieve hysteresis nonlinearity
multilayer feedforward neural network modeling between the restoring force and
displacement.

As shown in Fig. 2, the model parameter information and structural information is
embedded in the multilayer feedforward neural network which is integrated into the
structure, and must be identified by previous knowledge of the model. In the MATLAB
environment, a custom neural network is generated by the command net = network, known
as the init function, which initializes the network with a weight-defined initialization
function to create a hybrid network, training and learning, until the requirements of training
performance indicators are met.

Fig. 2. Multilayer feedforward neural network modeling.

230 ISSN 0556-171X. Mpob6nemsbl npoyHocTK, 2017, N2 1



Modeling of Nonlinear Isolation System

5. Construction of Neural Network Topology. Using three groups of experimental
response data, custom neural network training is achieved as shown in Fig. 2. Because the
created network is static, training is achieved through the improved BP algorithm. The
training result parameter values are presented in Table 1. With the exception of parameter v,
all parameters are nearly identical to their nominal values.

Table 1
Neural Network Modeling Results Based on the Bouc-Wen Model

Parameter Parameter values training of differential model
Nominal value No noise £=5% £=10% £=15%
b 0.1 0.1089 0.1317 0.1613 0.1668
1.0 0.9894 1.0385 1.0710 0.9468
R 0.8 0.9954 1.1689 1.7103 2.2500
15 1.4980 1.6111 1.6860 1.3010
Vv 0.2 0.0060 0.1746 0.4144 0.3021

By comparing Fig. 3, results indicate that the restoring force-displacement hysteresis
loop curve and the real hysteresis loop curve are nearly identical.

As shown in Fig. 4, the contrast between the predicted steady-state response and the
real system response under the three levels of motivation indicates that the training model
can accurately predict the time response of the system.

Real curve Predicted curve

Fig. 3. Three types of real and predicted horizontal excitation resilience-displacement hysteresis
curves.

30 35 /Is 40 45 50

Fig. 4. Comparison of steady-state responses under the three levels of motivation (solid lines
correspond to real curve and dashed lines - predicted curve).
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Fig. 5. Hybrid models to predict compared with real response for Xg4 = 6.0: (a) restoring force;
(b) acceleration.

In order to test the training ability of the hybrid network model, the predicted response
is calculated and compared to the real response, as shown in Fig. 5. The hybride network
model is still able to accurately predict the system response and the hysteresis curve, and
exhibits good generalizability.

6. Model Performance in the Presence of Noise. It is assumed that the restoring
force data representing the three levels of motivation is polluted by noise, expressed as
follows:

Rj (t)= Rj (t)+£rjRjo, (8)

where rj is the normal distribution with zero mean unit variance random signal sequence,
Rjo is the magnitude of the restoring force j, and £ is the noise level.

Fig. 6. Hybrid models to predict compared with real response for £ = 5%: (a) restoring force; (b)
acceleration.

The hybrid network is separately trained in the use of data where £ is equal to 5,
10, and 15%. The training parameters are shown in Table 1. When the noise level is equal
to 5%, the training parameters exhibit some deviation. However, the simulation model is
still able to accurately predict the response of the system with hysteresis characteristics as
shown in Fig. 6. Additionally, the results depicted in Table 1 also indicate that the value of
the error parameter during training gradually increases with noise level. Thus, the influence
of noise can be reduced by increasing the training sample data.
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Conclusions

1. In the present study, a Bouc-Wen differential model of delayed nonlinear systems

was presented, a multilayer feedforward neural network model of neural network topology
was constructed and the proposed model was trained with experimental response data.

2. Simulation results indicate that the obtained restoring force-displacement hysteresis

loop curves and the real hysteresis loop curves were nearly identical, demonstrating that the
trained model can accurately predict the time response of the system.

3. Results indicate that the model exhibits good generalizability based on comparison

with real response data.
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