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KoneunosneMeHTHOE MOJeTHPOBAHUE TKAHOI0 MATEPHAJIa HA OCHOBE aHAJIU3A
HUCXO0JAHOH KOHPUTrypauuu HUTEH

JIzx. C. ®eppanto, C. W. Jyo
Yuusepcuter Hesanpl, Peno, CIIA

Ilpeonosicena memoouxa npoeHoO3UPOSAHUs. NPOUHOCMU MKAHO20 MAMEPUANd npu pacmsadicenuu ¢
UCNONBL30BAHUEM MEMOOd KOHEUHLIX IJ1eMeHMOo8 O MOOeIUPOSaHUs Nepeniemerull UsHa4aIbHO
npsameix Humeil. [Ipu oyenke npoyHOCMU U MEXAHUYECKUX XAPAKMEPUCIUK MKAHU PACMASUBAIOWUe
YCUNUA NPUKIAOBIBAIOMCA C NOULACOBbIM NOBbIUUEHUEM HAPY3KU. B dannom nooxoode ucnonv3zyromes
UHHOBAYUOHHbIE SPAHUYHBIE YCAOBUS U YUUMbIGACTNCS HECKOIbKO YPOBHel CUMMEmpUuU, 4mo no3eo-
JISlem  peanuzoeams NpeOodNCeHHYI0 MOOelb ¢ NOMOWbIO CMAHOAPMHbIX, HEMOOUDUYUDOBAHHBIX
KOHEUHOIIeMEeHMHbIX naxkemos. 11ockoibKy mooenupyemcs mKkaykuii npoyecc, 8 Kaiecmee UcxoOHbIX
OAHHBIX UCROTBL3VIOMCS MONLKO 2COMEMPUs U C8OUICMBA MAMEPUAna Humetl, 4mo oaen 603MOICHOCHIb
ObICMPO OYEHUNb XAPAKMEPUCIMUKY SUNOMEMUYecKUx mraueli 0e3 nposeoeHuss IKCNepuUMeHmos.

Knrwouegvie cnoga: nepenieTeHne HUTEH, TKaHb, METOJ KOHEYHBIX 3JIEMEHTOB, MOJEINH-
poBaHue.

Introduction. Woven fabrics and flexible composites are an important class of
materials with a wide variety of uses. Flexible composites reinforced with woven fabric
have many inherently positive characteristics, the potential for high strength, ease of use,
and ease of lay-up in the forming process.

Clothing, composite reinforcements, flexible composites, cloth structures, ballistic
armors, parachutes, sails and numerous other applications make extensive use of woven
fabrics. There is currently a large demand for lightweight military armor made of woven
fiber flexible material. Here the large strains allow significantly higher energy absorption
and dissipation than a stiff composite, as well as allowing for movement and articulation in
the case of body armor. Prior to the curing process many rigid composites behave as
flexible composite. The uncured matrix material is liquid and does not affect the structural
properties, therefore the flexible woven fabric reinforcement will entirely determine the
uncured structural properties. Understanding the mechanics of a composite material with an
uncured matrix conforming to a tool shape could improve the lay-up process currently used
within industry.

Many biological structures, such as skeletal muscles consisting of striated fiber
bundles suspended in an extracellular matrix, may be thought of as wavy fiber flexible
composites and modeled accordingly.

Modeling the mechanical behavior of this class of material presents a significant
engineering challenge due to the geometric complexity of yarns undulating around each
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other. The yarns have a complex shape and may interact with yarns oriented in other
directions. Mechanical properties may be both nonlinear and completely different under
various loading conditions (uniaxial tension, biaxial tension, shear, bending, etc.).

There are a number of different approaches to modeling the mechanics of woven
materials. Modeling approaches are generally classified into three broad categories.
Macroscale models treat the fabric as a continuum. Mesoscale models look at the effects of
the yarns that are woven around each other, treating the yarns as a continuous material.
Microscale models include the effects of the fibers that when bundled together comprise
most yarns.

Macroscale analytical models such as the model developed by Peng [1] treat the
material as a continuous material with nonlinear orthotropic properties. Macroscale models
do not model yarn undulation in the fabric. These models are simple but because they do
not fully model yarn interactions, they have difficulties in capturing the effects of crimp
interchange and shear angle reorientation. Further these models require time consuming
material testing for each fabric to be examined.

Mesoscale analytical models examine a representative volume element (RVE) or unit
cell. This is a small piece of the material that can represent the whole using periodic
symmetry. These models predict the effects of the yarns and are more likely to closely
describe crimp and shear effects. Mesoscale models developed by Assid [2], Barbero [3, 4],
Luo [5] and Boljen [6] treat yarn undulation as a sinusoidal function. Crimp interchange is
modeled with either Eulerian or Timoshenko based beam bending. These models can be
quite accurate, however the underlying assumptions of sinusoidal shape and beam like
crimp interchange are not thoroughly tested across a wide range of parameters.

Another common approach to analytical modeling used by Kato [7] and King [8] is to
treat each yarn as a series of straight beams pinned together at crossover points. Flattening
is modeled with spring elements between intersecting perpendicular yarns. These models
have the advantage of simplicity, however they are limited by not modeling realistic yarn
undulation shape and mechanics.

FEA modeling techniques are able to more closely match the true physics of fabric
mechanics. These models are generally more cumbersome, requiring extensive set up and
computer run time. With these models, creating a 3D model of the initial shape of an
RVE/unit cell is often the greatest challenge.

Sherburn [9] and Lomov [10, 11] generate 3D models based energy minimization of
an assumed shape function for the yarn path. The 3D models can then be used as a basis for
mesoscale FEA. They do not account for flattening or cross sectional variations which may
cause an incorrect crimp arrangement. Further, the underlying assumption of a shape
function is difficult to test across a wide range of parameters. Although they have verified it
in certain instances, it is unclear how changes in fabric parameters will affect it.

Tavana [12] and Barbero [3] both utilize mesoscale FEA models of unit cells
generated by digitizing photomicrographs of the fabric. Naouar [13] takes a similar
approach using X-ray tomography. This approach gives good results but requires
photomicrography and analysis. This makes it unsuitable for parametric modeling, or
predicting the properties of a fabric before manufacturing.

Hamila [14] used a macroscale FEA model, in which a node exists at each yarn
crossover. This method models the yarn reorientation during fabric shear, but has no
mechanism to account for crimp interactions or multiaxial loading.

Durville [15] created a microscale FEA model in which individual fibers of each yarn
are modeled as beam elements. Contact elements then deform the yarns until the unit cell
reaches its initial shape. This method most closely models the real physics of fabric
formation and deformation, however it requires finite element software with special
algorithms and optimizations for the extremely large amount of contact elements. It is able
to make predictions about the deformed shape of the yarn, and the effects of fiber
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reorientation within the yarn. It is unclear whether this model will be stable for more
complex fabrics or load states.

In this work, we have established a mesoscale FEA model, referred to hereafter as the
straight-yarn model, that can predict the shape and mechanical properties of a plain weave
fabric based on preformed yarn geometry, that is to say without taking measurements from
the woven fabric. Similar to Durville’s [15] approach, the model begins with the yarns in a
straight configuration, and then deforms the yarns into a woven configuration. The model
simulates the effect of the fibrous microstructure by treating the yarn as a transversely
orthotropic material. The model is further simplified by taking advantage of the reflective
symmetry inherent to a RVE/Unit Cell. With this second symmetry simplification, only one
eighth of the RVE needs to be studied. Using these simplifications allows the model to run
very quickly with unmodified off the shelf FEA packages, such as ANSYS workbench.

The straight-yarn model described in this paper has a number of advantages.

1. It requires no testing or examination of the fabric, but only the material properties
of the pre-woven yarns. Hypothetical fabrics can be easily examined with this approach,
allowing fabric properties to be optimized before manufacture.

2. The model inherently predicts the deformation of the yarns including the change in
cross section caused by the yarns pressing against each other at the crossover points, i.e.,
flattening effects, This is entirely without assumptions about the yarn path or crimp
relationship.

3. Due to simplified boundary conditions this approach can produce realistic results
quickly and easily using standard FEA packages.

1. FEA Modeling.

1.1. Unit Cells and the Symmetric Modeling Region. A unit cell or RVE is the
smallest piece of a fabric that can represent the entire structure with periodic symmetry. As
shown in Fig. la, the entire fabric is comprised of these unit cells side by side. For a plain
weave fabric a unit cell contains four crossover points. The unit cell still contains reflective
symmetry and for modeling purposes it is only necessary to model the shaded region in
Fig. 1a. In Fig. 1b one can see the modeling region corresponding to the shaded region in
Fig. la. Figure 1c shows the modeling region prior to the forming/weaving load step.

a b c

Fig. 1. Unit cel/RVE for plain weave fabric: (a) unit cell; (b) modeling region; (c) pre-woven
modeling region.

1.2. Material Properties. Fabric yarns commonly consist of bundles of small fibers.
Microscale approaches such as Durville et al. [15] examine individual fibers and can use
the material properties of the fiber material along with an appropriate contact behavior.
Mesoscale models do not include the effects of fiber interaction however Naouar [13]
asserts that based on his X-ray tomography studies, fiber bundles may be treated as a
continuous material with transversly isotropic properties. The modeling technique in this
paper follows the Naouar approach treating fiber bundles as continuous transversely
isotropic material. Monofilament yarns may be modeled with standard material properties.
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1.3. Cross Section. Micrographs show that fiber bundles most commonly assume a
lenticular cross section at the yarn contact. This is approximated using an elliptical cross
section of the same cross sectional area, and either yarn thickness, width or moment of
inertia. Note that the elliptical cross section is applied to the pre-deformed yarn. As the yarn
deforms from the straight to the initial position of a fabric, the cross section will be
modified by the model.

1.4. Boundary and Initial Conditions. Boundary conditions for this model are
specifically chosen to follow the actual formation/looming of a woven fabric. In order to
model the formation of yarn geometry, we must examine how a loom works.

In all looms, the warp yarns are moved vertically into a shed configuration by some
form of heddle or jacquard. As the heddles reorient, wrapping the warp yarn around the
weft yarn, the warp is drawn from a spool with a tensioning device. In the direction of the
warp yarns, the RVE is free to expand or contract until internal forces find equilibrium with
the applied tension.

As the weft yarn is passed through the warp shed (whether byshuttle, rapier, projectile
or jet) it is unconstrained. When the heddles reorient the warp yarns, they are pressed into
the weft yarns. The RVE is now locked into place through yarn friction. There is likely an
unknown tension force in the weft yarn provided by the taught warp yarn, however after
removal from the loom the fabric must reorient so as to zero all in plane forces, as required
for static equilibrium.

In order to model a RVE as it passes through the loom, we can begin with two
perpendicular straight yarns with length S, (shown in Fig. lc). The ends are free to
translate in the yarn directions as lateral (crimp) displacement is applied via the loading
elements. They will translate until the length of the RVE changes from § to the RVE/unit
cell length L. In this model, S, and the cross-sectional shape of the yarn are the only
required geometric inputs, with L, being determined by the model. This allows the model
to predict initial fabric shapes with only the yarn geometric parameters known.

The most accessible fabric parameters are the picks/length (n), and the crimp. The
picks/length gives the length of the RVE (n=1/L;). Crimp gives the length of the yarn in
the RVE before the loom deforms it, i.e., the straight length (crimp= S, /Ly —1). Picks are
casily counted, and as crimp is simply the ratio of the length of yarn used to the length of
fabric produced it will be well known by the manufacturer. This allows for a simple
verification of the model, checking to see if the predicted picks/in are equal to the observed
amount in a real fabric.

Observing a plain weave RVE (Fig. 1) it is apparent that the RVE is a symmetric
structure (a loom will not apply shear deformation). For this reason, with the appropriate
boundary conditions, the fabric RVE may be reduced to a symmetric one eighth model. The
symmetric area modeled can be seen in Fig. 1b. Aside from the standard symmetric
boundary conditions, this model leaves the two yarns dangling in space. It is necessary to
formulate a boundary condition that constrains the Z (normal to the fabric plane) position
of these dangling yarns. In Fig. 2, it can be seen that the amplitudes of the two yarns, 4,
and 4, must follow the approximate relationship without considering the flattening effect
or other changes in yarn cross section. R, and R, are the yarn radii, or one half the yarn
thickness for non-circular yarns,

A, +A4,=R.+R,. 1)

Equation (1) is good initial estimate for yarn amplitudes and would hold true if we
could assume constant cross section. In reality the yarn amplitudes and diameters are not
constant as load is applied. Further as the two yarns bite into each other they may deviate
from their initial (unwoven) cross sectional shape. for the FEA model we must define a
symmetry parameter that accounts for these variations.
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Fig. 2. Approximate relationship between yarn radius and amplitude.

In order to represent the periodicity of a fabric structure a relationship between the
amplitudes of the yarns must be maintained. This is approximated by Eq. (1), however, as
the yarns may not remain circular at the contact point a generalized parameter must be
defined that will determine whether the quarter model is periodically symmetric.

In Fig. 3, if we begin at a yarn crossover point and travel along the yarn paths to the
diagonally adjacent crossover point, we can see two paths to follow. If we define the Z
direction as normal to the fabric plane, and place the origin at crossover point 4 we can find
the Z position of crossover point B by following either of the two indicated paths. 4., 4,
are the yarn amplitudes and D,,, D,, are the yarn thicknesses.

Crossover Point B

Crossover Point A

Fig. 3. Eighth model symmetry requirement.

Following the left side path we can see that
Zg==24,+Dy+D,,—24,. )
Following the right side path we get
Zg=24,-D,, =D,y +24,. 3)
Combining Eq. (2) and Eq. (3) yields:
Zy=—Zz =0 @)
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This indicates that crossover points A and B have identical Z coordinates and are
coplanar with the fabric plane. When using a symmetric one eighth model, constraining the
dangling crossover points to have identical Z coordinates is a necessary symmetric
boundary condition.

To maintain the symmetry as the model is reduced to one eighth, an output parameter
called distance from symmetry (DFS) is defined as the distance Z between points 4 and B.
When DFS is equal to zero, then the one eighth model will represent a periodic fabric.

Figure 4 shows a yarn configuration with a non-zero DFS. This indicates that it
cannot be considered a unit cell of fabric. In order to correct this, lateral displacement must
be applied until DFS is equal to zero.

Fig. 4. Distance from symmetry (DFS).

1.5. Loading Elements. In order to apply forces in the most realistic fashion, the
model includes loading elements. As shown in Fig. 5, the lateral loading elements used to
push the ends into their symmetric position Z consist of small portions of the yarn that was
removed when converting the model into it’s one eighth symmetric form. This allows the
displacement to be applied in the same fashion as yarns pressing against each other.
Applying displacement Z with lateral loading elements models yarn flattening at these
points allows the previously mentioned DFS to be calculated. The model then iteratively
corrects the displacement Z applied to the loading elements until the DFS becomes zero.

Fig. 5. Boundary conditions, applied loads and loading elements: (a) frictionless support; (b) Z
displacement (crimp) is applied to the lateral loading elements; (c) tensile force can be applied to
rigid bodies with all other DOF constrained (zero tensile force represents the initial shape and is used
in the first load step).

1.6. End Conditions/Tensile Loading. In the initial (unloaded) woven condition, there
must be no resultant forces in the fabric plane, however the ends of the RVE must be free to
deform in the yarn directions. To facilitate this, the end conditions are controlled through
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rigid body contact as per Durville [15]. Shown in Fig. 5, rigid bodies are created
perpendicular to the yarn at the RVE ends. The rigid bodies are constrained in all degrees of
freedom, except translation in the yarn direction. The yarns are then attached to the rigid
body through a ‘no separation’ type contact element. In subsequent load steps, tensile
forces may be applied to the rigid body. In this way, the end surfaces maintain the
symmetry requirements while allowing the addition of an external tensile force.

1.7. Contact Type, Meshing, and Analysis Settings. Due to the improved boundary
conditions, the model is easily able to run with standard auto-meshing. ANSYS 15
auto-mesh with quad/tri elements and a sweep method was used for this study. Element size
was allowed small variations in order to optimize mesh quality, however it was commonly
between 40 and 60 um for the fabrics examined.

Frictionless contact was used between yarns, as inter-yarn friction must be zero
without an applied shear force. No separation contact was used between the rigid surfaces
and the yarns.

Large deformation was used with substeps allowed to range between 10 and 100.

2. Results and Validation. Table 1 shows the properties of the fabrics used to test and
validate the straight-yarn model. These fabrics are as reported by Freestone [16] and
Barbero [3] in Table 1. D,; and D, are the yarn widths, D,, and D,, are the yarn
thicknesses, S,y and S,y are the arc lengths of the woven yarn without external loading.

Table 1
Properties of Test Fabrics

Material Freestone Barbero/CERL

Saran Carbon AS4-D
Warp D, (mm) 0.259 0.203
D, (mm) 0.259 0.630
Weft D, (mm) 0.259 0.179
D, (mm) 0.259 0.770
Warp S.o (mm) 1.709 1.865
Weft S, (mm) 1.603 1.907
Warp E. (GPa) 1.00 170.80
E, (GPa) 1.00 24.23
Weft E, (GPa) 1.00 170.80
E, (GPa) 1.00 24.23
v 0.350 0.324

2.1. Straight-Yarn Model Residual Inter-Yarn Force (Crimp Force) Validation. As
the yarns are deformed from straight to woven configurations, there will be a residual
contact force (force perpendicular to the fabric plane, at the crossover points) remaining in
the weave. In reality, this forming force may remain as an internal force, or it may
experience a stress relaxation effect. In order to examine this, a monofilament saran weave
was generated with the model. The saran was deformed into its initial configuration, and
then the crimp (yarn amplitude, d) was varied. This is compared to a second model in
which the same saran weave was deformed into the woven configuration, then the
geometry is exported as a parasolid to a new model, thus zeroing all internal forces, before
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Fig. 6. Initial inter-yarn contact force.

adjusting the crimp. As shown in Fig. 6, each model produces identical results after the
crimp force (P) has been normalized. This indicates that residual crimp forces will have no
effect on the shape or behavior of the fabric.

2.2. Freestone Stress—Strain Curves. The straight-yarn model was used to recreate
experiments performed by Freestone et al. [16]. Results indicate a close correlation between
Freestone’s experiments and the straight-yarn model. Freestone’s experiments involved a
monofilament saran yarn, and tension was applied in several multiaxial load states. Figure 7
shows the stress strain curve for pure biaxial tension as well as a mixed state where the y
stress is twice the x stress. N, and N, refer to applied fabric stress, that is force per
length of fabric.
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Fig. 7. Freestone stress—strain curves compared to straight-yarn model (FEA).

2.3. Experimental Patterns (from Barbero [3]). The straight-yarn model was used to
generate the initial shape of a fabric tested by CERL and reported by Barbero et al. [4].
CERL measured, with photomicrography, the initial shape of yarns in an AS4/vinylester
plain weave fabric. The fibrous construction of the yarns was simulated using transversly
isotropic material properties as per Barbero [3] and Naouar [13]. The cross section of the
CERL yarn can be seen to be lenticular and is approximated with an ellipse. Figure 8 shows
that the straight-yarn model FEA approach gives a shape nearly identical to the micrograph
from CERL.
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Fig. 9. Yarn flattening.

2.4. Yarn Flattening. In Fig. 9, the effect of flattening can be seen in a hypothetical
saran fabric. An inherent advantage to the straight yarn model is that it models the fabric
forming/weaving process and therefore includes the effect of yarn flattening where the two
yarns bite into each other.

Conclusions. A technique using standard unmodified FEA software to determine the
initial shape and tensile behavior of plain weave fabric has been developed and verified.
This method models mesoscale unit cells of plain weave to a high degree of accuracy. By
taking advantage of symmetries within the unit cell/RVE the straight yarn model can be run
on standard off the shelf FEA packages without special optimization algorithms. Using only
information about the fibers, yarns and weaving method, the FEA based straight-yarn
modeling technique can quickly and easily determine the shape and tensile behavior of
fabrics as well as predict yarn flattening without a requirement for fabric testing and
characterization. The technique can be used to verify or calibrate theoretical fabric models
and to design fabrics with properties tuned to specific applications, e.g., the prediction of
long-term deformations in woven materials using the relations of linear and nonlinear
viscoelasticity, as in [17].

Pe3ome

3anpornoHOBaHO METOANKY MPOTHO3YBaHHS MIITHOCTI TKAHOTO MaTepiary MPH PO3TATYBaHHI
3 BUKOPUCTaHHSIM METOAY CKIHUCHHHX €JIEMEHTIB JUIl MOJCIIOBAHHS NEpEeIUIeTCHb Iovar-
KOBO MNPsIMUX HHUTOK. IIpW OIIHII MIIHOCTI 1 MEXaHIYHHMX XapaKTEPUCTUK TKAaHWHH PO3-
TSDKHI 3yCHJUISL TIPUKIIAJAlOThCS 3 MOKPOKOBHUM ITiIBHIICHHSIM HAaBaHTAXXEHHsS. Y TaHOMY
MiAX0A1 BUKOPHUCTOBYIOThCS 1HHOBAIIHI TPaHMYHI YMOBH 1 BPAaXOBYETHCS KillbKa PiBHIB
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CHUMETPIi, IO JTO3BOJISIE PeaTi3yBaTH 3allPONIOHOBAHY MOJICNb 32 JIOTIOMOTOK CTaHIAPTHHUX,
HeMOIU(DIKOBAaHUX CKIHYCHHOCIEMEHTHUX MaKeTiB. OCKUTBKH MOJETIOETHCS TKAIbKUI
Tporiec, sIK BUXITHI JaHI BUKOPHCTOBYIOTBCS JIMIIE TEOMETPis Ta BIACTUBOCTI MaTepiairy
HUTOK, IO J03BOJISIE IIBHIKO OLIHUTH XapaKTCPUCTHKH TIMOTCTHYHHX TKAHHH O€3 Mpo-
BE/ICHHSI €KCIIEPHMEHTIB.
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