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AHaJM3 COOCTBEHHBIX YACTOT KOJIeO0AHUI IAPHUPHO 3aKPeIIeHHOH KPYyroBoi
IUIACTUHBI ¢ OTPAHNYEHHEM 10 BPALIEHUI0, 0C/1a0/1eHHOH KPYTroBoOil TPeluHOi
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* Texnonornueckuii nHcTUTYT Bemnope, Yennaii, Tamuinan, Unaus

5 Hamna Hapcumxa Pemiu TexHuyeckuil koiutemk, Panrapemiu, Xaingapaban, Muagus

Tlonyueno mounoe pewierue 01 ONUCAHUA KOACOAHUL WAPHUPHO 3AKPENJICHHOU NO 6HEUHEMY KPAaro
KpY206Ol NIAACMUHbL C OZPAHUYEHUEeM N0 GPAWEHUIO, KOMOopds OCIAONeHd KpPYy208OU MpPeujutoll.
Paccuumanvl yacmomor wiecmu nepevix MoO KoAeOAHUL NAACMUHbL Ol PA3IUYHBIX 3HAYEHUL YAPY-
2UX XAPAKMePUCMUK WAPHUPHO20 3AUeMIIeHUs, PAOUYCa KPY20BOU MPEWuHbl U CIeneHu o0C1adae s
naacmunsl mpewunou. Hanuuue mpewunsl mooenupyemest 6 uoe (QuKmMuHo20 ynpy2o2o 3axKpenie-
HUsL naacmunsl no aunuu mpewunsl. Iloxasano, umo ociabienue niacmunsl Mmpewurol npugooum K
CHUDICeHUI0 cobcmeennol uacmomol Konebanuil Ha 30%. Ilpeononacaemcs, umo ucnonv3ogamue
PE3VILMAMOE MOUHO20 PEeUleHUsl SGISemcst NePCReKmMUGHbIM NpU OYeHKe GIUSHUS MPeuwunsbl Hd
KOeOaHUs KPYeo8oU NAACIUNbL C GHEUHUM WAPHUPHBIM 3aKPENnieHUeM U 02PAHUYeHuemM no epauje-
HUIO U Gepu@urayui OAHHBIX, NOJYYEHHLIX NPUOTIUINCCHHBIMU YUCTICHHLIMU Memooamu, 6KIYds
MEmoO KOHEUHbIX JIeMEHMO8.

Knroueeswie cnosa: KpyroBas mjacThHa, 4aCTOTa, OrpaHUYCHHUC MO BpPAIICHUIO, ocabJieH-
Hasd 1mjacTuHa.

Notation

D - flexural rigidity

Kpy — rotational spring stiffness at the outer edge

Kp, — rotational spring stiffness in the cracked region

R;; — non-dimensional rotational flexibility parameter at the outer edge
R, — non-dimensional rotational flexibility parameter in the cracked region
k — non-dimensional frequency parameter

Introduction. Vibration of circular plates is of great importance in structural design
for dynamical loads [1-6]. The problem of free vibrations of uniform isotropic circular
plates with classical boundary conditions and internal strengthening has been studied in
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detail [7-9]. Cawley and Adams [10] analyzed cracked circular plates by suitably diminishing
the values of elastic coefficients of the respective finite element at the nodal location of the
crack. Markstrdm and Storakers [11] used the method of unravelling the nodes of the
respective finite elements along the face of the crack. Aggarwala and Ariel [12] computed
the natural frequencies of cracked circular plates with simply supported boundary conditions
by utilizing the second kind of homogeneous Fredholm integral.

Leissa et al. [13] studied the influence of V-notches of different angles and depths on
the dynamic behavior of circular plates that are completely free at their boundaries. McGee
et al. [14] investigated the free vibrations of thin circular plates with free or rigidly
constrained V-notches. Using the Ritz method, Yuan and Dickinson [15] investigated the
free vibrations of circular, annular and sector plates, which were partially supported along
their boundaries or had sectorial cut-outs. Van Rens et al. [16] studied the behavior of
perforated plates by tuning the properties of the homogenized plate to be equal to the global
properties of the same plate. Huang et al. [17] examined the effect of cracks on the dynamic
characteristics of a vibrating circular plate with free edge and a radial crack initiated from
the boundary by using an optical system called the AF-ESPI method with out-of-plane
displacement. Krawczuk et al. [18] presented a finite element elastoplastic model of a plate
having a through crack. Li et al. [19] studied the vibrational power flow characteristics of
circular plates having a surface crack at the periphery. Shi et al. [20] computed the
eigenfrequency of a cracked circular clamped baffled plate in contact with water and
obtained NAVMI factor for each mode of vibration using the method of iteration. Kim and
Jung [21] obtained the eigenfrequencies of free edge-rhombus plates with V-notches using
a similar method of iteration. Demir and Mermertas [22, 23] studied the natural frequencies
of annular plates with radial periodic through cracks and angular cracks by using sector
finite elements. Recently, Huang and Leissa [24] studied the influence of side cracks on the
eigenfrequencies and mode shapes of plates of rectangular shape with simply supported or
completely free boundary conditions. Liu et al. [25] studied the crack influence on the
dynamic characteristics of a perforated plate in contact with water using the ANSYS
software.

Utilizing the Mindlin thick plate theory, Huang et al. [26] implemented the Ritz
method to accurately determine the frequencies and nodal patterns of cracked rectangular
plates. Using the Rayleigh-Ritz method, Si et al. [27-29] studied the free vibration
behavior of a completely clamped cracked circular plate, a baffled cracked circular plate,
and a cracked rectangular plate, respectively, considering the influence of water on one
side. Chen et al. [30] studied the vibration characteristics of a cantilever rectangular plate
with side crack using Ritz method. Chen et al. [31, 32] performed mathematical analysis
and numerical study of true and spurious eigenequations for free vibration of plates using
the imaginary-part boundary element method (BEM). Lee et al. [33] performed the
analytical study and numerical experiments of true and spurious eigensolutions of free
vibration of circular plates using the real-part BEM. Lee et al. [34-37] performed the
analysis of a circular plate with multiple holes by using indirect BIEMs, the multipole
Trefftz method, the direct BIEM and the addition theorem, respectively.

However, weakening of a plate may be induced by the presence of partial cracks and
internal notching. Only two papers authored by Wang [38] and Yu [39] dealing with free
vibration characteristics of circular plates with internal and having simply supported or
clamped boundary conditions, as well as movable or free edge conditions, respectively,
could be found in the available literature In both studies, the weakened portion was
modeled as a hinge with an appropriately computed rotational restraint parameter
depending upon the characteristics of the crack present in the plate. Even though the
circular symmetry of the plate permits for a substantial interpretation of the problem, very
often difficulties escalate due to the intricacy of the respective boundary condition
involved. Here the complexity is due to realistic situations where boundary conditions are
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complex and do not fall under the usual classical boundary conditions. Using the
appropriate elastic linear and rotational restraints [40—43], solutions for these complex
boundary conditions can be obtained. In a recent study of Bhaskara Rao and Kameswara
Rao [44], the vibrations of circular plates weakened along the interior circle and with
elastic edge restrictions against translation were analyzed.

As per authors’ knowledge, no other research paper addressing the non-classical
complex boundary conditions, such as rotationally restrained and simply supported
condition at the edge of plate, has yet been published. Therefore, the aim of this paper is to
study the effect of weakening of a rotationally restrained and simply supported along the
outer edge thin circular plate along a concentric circle due to an angular crack by using the
exact method of solution approach. Here, the angular crack is modeled as a hinge with a
rotational restraint parameter, while the natural frequencies of a circular plate for different
values of the rotational restraint parameter along the plate edge, the radius of the weakened
circle, Poisson’s ratio and the rotational restraint with hinge of the cracked region are
obtained for the further use in the design of cracked and weakened circular plates, which
are applied in engineering, e.g., in the design of doors and hatches used in aircraft and
spacecraft, as well as in vibration control and structural design.

1. Analytical Formulations. The plate is rotationally restrained and simply supported
at the outer edge, i.c., at a radius of R from the center, as shown in Fig. 1. The radius of
the weakened circle because of crack is considered as bR, where b is only a fraction of 1.
Here, all lengths are normalized with respect to R, i.e., the radius of the outer region is 1,
while the radius of the inner cracked region is b. The subscript / corresponds to the outer
region b<r<1, and subscript // to the inner region 0<r=<b. Here, h, v, R, and F
represent the plate thickness, Poisson’s ratio, radius, and elastic modulus, respectively.

i bR

7 K

E o—t

Fig. 1. A circular plate with rotationally restrained and simply supported edge and an angular crack.

The general form of the lateral displacement of vibration of a classical plate can be
expressed as w= u(r)cos(n@)e’gt , where (7, ) are polar coordinates, n is the number of

modal diameters, w is transverse displacement, Q is frequency, and ¢ is time. The
function u(r) is a linear combination of the Bessel functions J, (kr), Y, (kr), I, (kr), and
K, (kr),and k= R(pQ2 / D)l/ 4 where k is the square root of non-dimensional frequency

[2] and p is the density. General solution for regions I and II are as follows:
uy (ry=CJ, (kr)+CyY, (kr)+Csl, (kr)+Cy4K,, (kr), 1)

uy (r)=CsJ, (kr)+C¢l,, (kr), 2
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where r designates the distance measured from the center of plate, whose maximum value
is R. Considering a simply supported and rotationally restrained outer edge, the boundary
conditions at outer edge are

owy (r, 0)

M, (r,0)=Kp, — (3)

wy (r, 0)=0, “

where the bending moment is defined as

D|o*w (r, 0) 1ow;(r,0) 1 a%w (r, 0)
M, (r,0)=——|—F—+v|-— +5 . (5)
R or roor r 90
Equations (3) and (5) yield the following expression:
3w (r, 0) 1ow;(r,0) 1 32w (r, 0) ow; (r, 0)
[ - +V( l R R | I 9Tl (6)
ar r ar r 00 or
Equations (4) and (6) can be expressed as
ul (r)+v[up (r)—n’u; ()= —Ryuj (r), 7)
up (r)=0, (®)

where R = Kz R/D is the normalized spring constant Ky, of the rotational spring
stiffness.

At r=b, the plate, except for the slope, is continuous in terms of displacement,
moment, and shear, whereas the continuity requirement [38] at the interface of regions I
and II can be formulated as

up (b)=uy (b), ©)

buy (b)+vuy (b)= buy; (b)+vuy (b), (10)

b2uj (b)—[1+n* 2= v)+v]u) (b)= b2uj; (b)—[1+n* 2= v)+v]uy (b). (1)
The moment is set to be proportional to the difference of the slopes

b>ujy (b)+v [bujy (b)=nuy (b)]= b*Royp[uj (b)—uy (b1, (12)

where R,, = K z,R/D is the normalized spring constant and K p, is the rotational spring
stiffness, which is utilized for modeling the rotational restraint created by the angular crack
at r= b. Damage detection experiments can establish the values of rotational stiffness of
the crack by matching the theoretically estimated frequency with the one obtained from the
experimental studies. Evidently, the stiffness coefficient value K p, depends on the crack
depth and inclination angle. The non-trivial solutions to Eqs. (7)—(12) are sought.
Eventually, Egs. (1), (2) and (7)—(12) yield the following dependencies:
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b2k . k( 3b%k?
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where
P =J, 1 (k)=J 1 (k),  Py=J, 5(k)+J,15(k),  Py=J, 3(k)=J,1;5(k),
O =Y, (k)=Y,41(k), Or=Y, 5 (k)+Y,42(k), Q3=Y, 3(k)=Y,3(k),
Ry=1,(k)+1,1(k), Ry=1, ,(k)+1,15(k), Ry=1I, 3(k)+1,;5(k),

S1 =K, (b)+K, 1 (k), Sy;=K, ,(k)+K,,(k), K3=K, 3(k)+K, ;5(k),
Pl =J, (kD)= J 4 (kb),  Py=J, 5 (kb)+J, 5 (kb),  P3=J, 3(kb)—J, 3(kb),
O =Y, (kb)=Y, (kb), Oy =Y, ,(kb)+Y, 5 (kb), QO3=Y, 5(kb)—Y, 3(kD),
Ry =1, (kb)+1,4(kb), Ry=1, ,(kb)+1,,,(kb),  Ry=1, 5(kb)+1,,5(kb),

Si =K, 1 (kb)+K, 1 (kb), S;=K, 5(kb)+K,,(kb),
Sy =K, 5(kb)+K (kD).

2. Results and Discussion. The above equations are used to obtain the exact
characteristic equation by eliminating the coefficients of C;, C,, C3, C4, C5,and Cy. For
a non-trivial solution, the determinant of [C]gy must be equal to zero. The frequency
parameter & can be obtained by solving the characteristic equation via a simple root search
method for a given set of n, v, R;;, Ry, and b. Using the mathematica software with
symbolic competencies, the exact solutions to this problem are obtained. The numerical
result of frequency parameter k obtained from analysis is presented in a pictographic
format. Poisson’s ratio employed here is 0.3. The frequency values for various magnitudes
of R,, and a constant R;; (R;; = 2) are tabulated in Table 1. The values of frequency
parameter k& for n<5 modes with R,, =0, 2, 4, 6, 8, 10, 25, 50, 100, and 10'° and

Ry =2 are obtained. For h=1 and R,, = 0, the plate frequencies can be seen to be the
same as those of the plate with no weakening crack.

For a given set of values of b and v, the first frequency for a value of n= 0, the
modal frequency converges to that of the plate with no weakening as R,, is increased
starting from a value of 0. When v = 0.3, the first six frequencies of the plate with no
weakening are obtained as 2.60309 (n=0), 3.97077 (n=1), 5.24447 (n=2), 6.47023
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Table 1
Fundamental Frequency Parameter k for a Circular Hinge with v =0.3, R, =0,
and Different Values of R,

b 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
R,, =12.60312|2.56339|2.47855|2.40828|2.38445|2.41551|2.49588|2.58649|2.58137|2.43418|2.22145

R, =12.95826|2.91071|2.81960|2.76548|2.78082|2.86027(2.94944|2.91290|2.71201|2.45934|2.22145

=13.19296|3.135833.03446|2.988813.03054|3.13626|3.18937|3.03205|2.74937|2.46594|2.22145

—6—R9o=0

—{—Ryy=2
——Ryo=4
—X=—Roo=6
—X—R9o=8
—0—Rpy=10
—+—R9>=25
——R95=50

Frequency parameter, k

—=—R92=100

2 ‘ ; ! ! —o0—Ry9=10E+16
0 0.2 0.4 0.6 0.8 1
Internal concentric weakened radius, b

Fig. 2. The fundamental frequency and concentric weakened radius parameter for different R,,,
R =2,v=03,and n=0.

(n=13),7.66549 (n= 4), and 8.8391 (n=5). Noteworthy is that the fundamental frequency
of the plate weakened along an internal concentric circle and resting on the elastically
restrained edge against rotation and simply supported edge occurs at n= 0 mode. The
variation of the plate fundamental frequency for variable values of the weakened circle
radius and the rotational restraint parameter of hinge is presented in Fig. 2. Here, frequency
decreases with R,,, and is the lowest for R,, = 0, which is a case of a frictionless circular
hinge. The internal weakening decreases the fundamental frequency by 2.60309, which
makes it lower than that of a plate with no weakening by less than 15% (14.662%). For a
given value of R,,, the frequency k decreases from 2.60309 to 2.38445, then increases to
2.58649 and finally drops to 2.22145 as the radius b of the weakened circle varies from 0
to 1. The local maximum frequency 2.60309 occurs at b= 0.7. This is the optimal location,
where the plate requires to be notched (as a closed hatch). The internal weakening has a
minute effect, i.e., it decreases the fundamental frequency by less than 9% (8.4%)] when
0= b= 0.4. Moreover, it has a more pronounced effect on the fundamental frequency, i.e.,
decreases the fundamental frequency by less than 15%, when 5>0.7.

The frequency values for various magnitudes of R,, and a constant R;; (R;; = 10)
are tabulated in Table 1. The first frequencies (k) of n <35 modes with R,, =0, 2, 4, 6, &,
10, 25, 50, 100, and 10'® and R;; =2 are obtained. For =1 and R,, = 0, the plate
frequencies are same as those of the plate with no weakening. For the given values of b
and v, the first frequency of »= 0 mode converges to that of a plate with no weakening as

R,, increases from 0. When v = 0.3, the first six frequencies of the plate with no
weakening are: 2.95829 (n=0), 4.30618 (n=1), 5.55404 (n=2),6.75602 (n = 3), 7.93028
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(n=4), and 9.08575 (n=5). Noteworthy is that the fundamental frequency of the plate
weakened along an internal concentric circle and resting on the elastically restrained edge
against rotation and simply supported edge occurs at »= 0 mode. The plate fundamental
frequencies varying with the radius of the weakened circle and the elastic rotational
restraint of the hinge are presented in Fig. 3. The frequency decreases with R,,, and is the
lowest for R,, = 0, which is a case of a frictionless circular hinge. The internal weakening
decreases the fundamental frequency by 2.95829 making it less than that of the plate with
no weakening by 25%.

3.2 —0— R22=0

—0—Ro9p=2

>~ 3

g & —2&— Rog=4

g 28 —Xx—Rgy=6

@

5] —X— Roo=8

g -6 22

2 —0—R99=10

c

S 24 —+—Rpp=25

o —=—R99=50

L 95 22
—=—R99=100

2 : . —O— Roy=10E+16

0 0.2 0.4 0.6 0.8 1

Internal concentric weakened radius, b

Fig. 3. The fundamental frequency and concentric weakened radius parameter for different R,,,
R;; =10, v=10.3, and n=0.

For a given value of R,,, the frequency & decreases from 2.95829 to 2.76548, then
increases to 2.94944 and finally drops to 2.22145 as the radius b of the weakened circle
varies from 0 to 1. The local maximum frequency 2.95829 occurs at b= 0.6. This is the
optimum location where the plate needs to be notched. For 0<b=<0.3 the internal
weakening has a feeble effect on the fundamental frequency, decreasing it by less than 7%.
A stronger effect on the fundamental frequency is observed for 5> 0.6 — it drops by less
than 25%. The plate higher-mode frequencies of plate varying with radius of the weakened
circle and elastic rotational restraint of the hinge are presented in Figs. 4-8.

5
45 & —0—Rpp=0
4 r ——Rop=2
jisj' 35 —&—Rgo=4
£ 3 —x—Rp6
g 2.5 —%—Rpp=8
g2t —0—Rgo=10
% 15 ——Ryy=25
o1 ——R99=50
0.5 —=—Ry»=100
0

0 0.2 0.4 0.6 0.8 1
Internal concentric weakened radius, b

Fig. 4. The fundamental frequency and concentric weakened radius parameter for different R,,,
R =10,v=03,and n=1
The frequencies for various values of R,, and constant R;; (R;; =1000) are

tabulated in Table 1. The first frequencies (k) of n=<5 modes with R,, =0, 2, 4, 6, 8§, 10,
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== Rp5=0
—O—Rpp=2
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8— 22
w 1} ——Ry5=50
—=—Rp5=100
0 . . . .

—0—Rp»=10E+16
0 0.2 0.4 0.6 0.8 1

Intemal concentric weakened radius, b

Fig. 5. The fundamental frequency and concentric weakened radius parameter for different R,,,
R =10,v=03, and n=2

8 —o—Ryp=0
—O—Ryy=2
- —&—Rg5=4
2 —Xx—Ra5=6
§ | —X—Ry5=8
8 a4} 22
g .l —0—Rop=10
% —+—Rpp=25
L2y —— Ry9=50
11 ———Ry,=100
0 X . . . —0—Ry,=10E+16

0 02 04 06 08 1

Internal concentric weakened radius, b

Fig. 6. The fundamental frequency and concentric weakened radius parameter for different R,,,
R;; =10, v=0.3, and n=3.

82 —0—Rp5=0
—0—Ry5=2
—a—Ry5=4
—X—Ry5=6
—X—Ry,=8
—0—R35=10

—+—Ryy=25

Frequency parameter, k

——Rp2=50

——Ry5=100

6.6 n n . .

—0—Ry,=10E+16
0 0.2 04 0.6 0.8 1

Internal concentric weakened radius, b

Fig. 7. The fundamental frequency and concentric weakened radius parameter for different R,,,
Ry =10, v=0.3, and n=4.

25, 50, 100, and 10'® and Ry =1000 are determined. For b=1 and R,, = 0, the plate

frequency is equal that with no weakening. For the specified values of b and v, the first
frequency of n=0 mode converges to that with weakening as R,, increases from O.
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[ s |
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Internal concentric weakened radius, b

Fig. 8. The fundamental frequency and concentric weakened radius parameter for different R,,,
R, =10, v=03, and n=>5.

When v = 0.3, the first six frequencies of the plate with no weakening are: 3.19297 (n = 0),
4.60631 (n=1), 5.89977 (n=2), 7.13636 (n= 3), 8.33825 (n=4), and 9.51625 (n=5). It is
observed that the fundamental frequency of the plate weakened along an internal concentric
circle and resting on elastically restrained edge against rotation and simply supported edge
occurs at n= 0 mode.

The plate fundamental frequency variations with the radius of weakened circle and
clastic rotational restraint of the hinge are presented in Fig. 9, where frequency decreases
with R,,, and is the lowest for R,, = 0, which is a case of a frictionless circular hinge.
Here, the internal weakening decreases the fundamental frequency 3.19297 that is less than
that with no weakening by 31%. For the given value of R,,, the frequency decreases from
3.19297 to 2.98881, then increases to 3.18937, and finally drops to 2.22145, as the radius b
of the weakened circle varies from 0 to 1. The local maximum frequency 3.19297 occurs at
b=0.6. This is the optimum location where the plate needs to be notched. The internal
weakening has a feeble effect on the fundamental frequency (drops it by less than 7%)
when 0=<5=<0.3. For the case of > 0.6, the fundamental frequency drops drastically (by
31%).

—0—Ry5=0
—O—Ryy=2
=~ —
é' —&—Rgyp=4
Q
—x—Ry,=6
5 22
g —¥—Ryy=8
=
2 —0—Ryy=10
[
=
g ——Rypy=25
= ——Rgy=50
——Rypp=100

—0—Ryy=10E+16

0 0.2 04 0.6 0.8 1

Internal concentric weakened radius, b

Fig. 9. The fundamental frequency and concentric weakened radius parameter for different R,,,
R;; =1000, v=0.3, and n=0.

In all above-discussed cases, if b= 1, the system is reduced to the case of a circular
plate with elastic edge restraints. A fundamental frequency for the case of R,, = 0, which
models a through circular crack, is tabulated in Table 1.
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To the best of the authors’ knowledge, the results for a circular plate with rotationally
restrained and simply supported boundary presented here, are quite new and, hence, can be
compared only with those available for the classical boundary conditions, such as simply
supported and clamped plate [38] by setting the rotational restraint with R;; =0 and
R;; = o, respectively, as well as non-classical boundaries, such as a plate with an edge,
which is elastically restrained from translation [44] with R;; - o by setting R;; = 0. Here,
the internal weakening decreases the fundamental frequency by less than 1% for the
clamped plate and less than 1% when b is 0 or 1 for the simply supported plate.

Conclusions. The circular plate frequency variation versus the values of elastic
rotational restraint, elastic rotational restraint of hinge and the radius of the weakened circle
is determined. The crack-induced internal weakening of a plate with elastically restrained
rotation and simply supported edge is found to decrease the fundamental frequency by less
than 15% for to R;; = 2,about 25% for R|; =10 and 31% for R;; =1000. It is observed
that internal weakening provides a stronger reduction of the fundamental frequency at
higher values of elastic rotational restraint: at Rj; =2 the respective drop is 14.662%,
whereas at R;; = 1000 it is 30.4266%. In addition, frequencies are obtained for different
rotational parameters: a clamped boundary is simulated by R;; - % and a simply supported
boundary by R;; = 0. Accuracy of the results obtained is provided by the closed form of
the proposed solution.

Pe3zwome

OTpuMaHO TOYHMH PO3B’SI30K JUIS ONKCY KOJHMBaHb IIAPHIPHO 3aKpilUICHOT MO 30BHIII-
HBOMY Kparo KpyroBOi IIACTHHH 3 OOMEXEHHAM II0 00epTaHHIO, sSKa TOciabiieHa Kpyro-
BOIO TPIIMHOK. P0O3paxoBaHO 4YacTOTH INECTH MEPUIMX MOJl KOJHMBaHb ILIACTHHHU JUIS
pI3HUX 3HAYCHb MNPYKHUX XapaKTEPHCTHK INAPHIPHOTO 3aTHCHEHHS, pajiyca Kpyronoi
TPIIIMHY Ta MipU TOCIa0IeHHS IUTACTHHY TPIHHO0. HasiBHICTD TPILIMHU MOJIEIIOETHCS Y
BHTIIAII (PIKTHBHOTO TPY>KHOTO 3aKPIiIUICHHS TUIACTHHU 1O JiHii TpimuHu. [Toka3aHo, mo
MOCIIa0IeHHS TUTACTHHH TPIIIMHOIO MPHU3BOAUTH 110 3HMIKCHHS BJIACHOI YaCTOTH KOJIMBaHb
Ha 30%. IlpumyckaeTbes, 0 BUKOPUCTAHHS pe3yJbTaTiB TOYHOTO PO3B’SI3KY € IMEPCIIEK-
THBHUM TIPU OIIHIII BIUIMBY TPIIIMHWA Ha KOJWBaHHS KPYTroBOil IJIACTHMHM 13 30BHIIIHIM
LIAPHIPHUM 3aKPIIUICHHSIM 1 OOMEXEHHSIM 110 00epTaHHIO Ta BepUdikalii JaHuX, 10 OTPH-
MaHi HaOIMKEHNMH YHCIOBIMHU METOAAMH, BKITIOYAIOUH 3 METO]] CKIHUEHHHX EJIEMEHTIB.
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