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ÓÄÊ 539.4

Ñðàâíèòåëüíûé àíàëèç èçîòåðìè÷åñêîãî è íåèçîòåðìè÷åñêîãî óñòàëîñòíûõ

ïðîöåññîâ â ëèòîì àëþìîñèëèêàòîìàãíèåâîì ñïëàâå
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Äëÿ ëèòîãî àëþìîñèëèêàòîìàãíèåâîãî ñïëàâà A356.0, øèðîêî èñïîëüçóåìîãî äëÿ èçãîòîâëåíèÿ

ãîëîâîê öèëèíäðîâ äèçåëüíûõ äâèãàòåëåé, âûïîëíåí ñðàâíèòåëüíûé àíàëèç óñòàëîñòíûõ ïðî-

öåññîâ ïðè àíòèôàçíîì òåðìîìåõàíè÷åñêîì íàãðóæåíèè, à òàêæå ïðè ìàëîöèêëîâîì íàãðó-

æåíèè ïðè êîìíàòíîé è ïîâûøåííîé òåìïåðàòóðàõ. Ïðîâåäåíû èçîòåðìè÷åñêèå è íåèçî-

òåðìè÷åñêèå öèêëè÷åñêèå èñïûòàíèÿ ñ êîíòðîëåì äåôîðìàöèé è òåìïåðàòóðû, ìîäåëèðó-

þùèå ýêñïëóàòàöèîííûå ðåæèìû íàãðóæåíèÿ ãîëîâîê öèëèíäðîâ. Ðåçóëüòàòû óñòàëîñòíûõ

èñïûòàíèé ïîêàçûâàþò, ÷òî ïëàñòè÷åñêàÿ äåôîðìàöèÿ óâåëè÷èâàåòñÿ ïðè öèêëè÷åñêîé íà-

ðàáîòêå ñ ïîñòîÿííîé àìïëèòóäîé ìåõàíè÷åñêîé äåôîðìàöèè äî ìîìåíòà ðàçðóøåíèÿ îáðàç-

öîâ. Ïðè ìàëîöèêëîâîì íàãðóæåíèè ñïëàâ õàðàêòåðèçóåòñÿ öèêëè÷åñêèì óïðî÷íåíèåì ïðè

êîìíàòíîé òåìïåðàòóðå è ðàçóïðî÷íåíèåì ïðè âûñîêèõ òåìïåðàòóðàõ, àíàëîãè÷íàÿ òåíäåí-

öèÿ íàáëþäàåòñÿ ïðè àíòèôàçíîì òåðìîìåõàíè÷åñêîì íàãðóæåíèè. Ðàäèàëüíûå è ïðîäîëü-

íûå òåìïåðàòóðíûå ãðàäèåíòû ïðè àíòèôàçíîì òåðìîìåõàíè÷åñêîì íàãðóæåíèè ñîñòàâ-

ëÿþò 2 è 3�C ñîîòâåòñòâåííî. Ñðàâíåíèå ïåòåëü ãèñòåðåçèñà íàïðÿæåíèå–äåôîðìàöèÿ

ïîêàçûâàåò, ÷òî ðàñòÿãèâàþùèå íàïðÿæåíèÿ ïðè ìèíèìàëüíûõ òåìïåðàòóðàõ â óñëîâèÿõ

àíòèôàçíîãî òåðìîìåõàíè÷åñêîãî íàãðóæåíèÿ (âñëåäñòâèå àíòèôàçíûõ óñëîâèé íàãðóæåíèÿ)

áûëè âûøå, ÷åì ïðè ìàëîöèêëîâîì íàãðóæåíèè. Ïðè ýòîì ìàêñèìàëüíûå òåìïåðàòóðû

íàáëþäàþòñÿ ïðè ñæàòèè, ìèíèìàëüíûå – ïðè ðàñòÿæåíèè. Öèêëè÷åñêàÿ äîëãîâå÷íîñòü ïðè

àíòèôàçíîì òåðìîìåõàíè÷åñêîì íàãðóæåíèè âñëåäñòâèå áîëåå íàïðÿæåííûõ óñëîâèé ýêñïëóà-

òàöèè è èçìåíåíèé òåìïåðàòóðû íèæå, ÷åì ïðè ìàëîöèêëîâîì íàãðóæåíèè.

Êëþ÷åâûå ñëîâà: ëèòîé àëþìèíèåâûé ñïëàâ, èçîòåðìè÷åñêàÿ è íåèçîòåðìè÷åñêàÿ

óñòàëîñòü, ìàëîöèêëîâàÿ óñòàëîñòü, òåðìîìåõàíè÷åñêàÿ óñòàëîñòü, ïåòëÿ ãèñòåðåçèñà,

öèêëè÷åñêîå óïðî÷íåíèå è ðàçóïðî÷íåíèå.

Introduction. Nowadays, cast aluminum-silicon-magnesium alloys, such as A356.0

(AlSi7Mg0.3), have been widely used in diesel engine cylinder heads due to their relatively

high strength to weight ratio, low cost, and providing affordable improvements in the fuel

efficiency. As it is known, thermal and mechanical cyclic loadings were applied on cylinder

heads during start-stop operations, and therefore, the non-isothermal fatigue behavior is
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become a major concern of automotive industries with regard to the component integrity

and its reliability [1–3].

Many researchers have been worked on isothermal and non-isothermal fatigue

behaviors of aluminum alloys. Most of them investigated high cycle fatigue (HCF) [4–13]

and low cycle fatigue (LCF) [14–16] at both low and high temperatures. However, studies

on the thermomechanical fatigue (TMF) behavior are still rare and researches have been

continued.

At present, microstructure modeling for high-temperature cyclic behavior of the

A319-T6 alloy was performed by Sehitoglu et al. [17, 18]. Beck et al. [19] performed TMF

tests on two aluminum alloys (AlSi10Mg0.3 and AlSi10Mg0.6), un-reinforced and

reinforced with 15% discontinuous Al2O3 (Saffil) fibers. Luft et al. [20] and Beck et al. [21]

described TMF and superimposed TMF/HCF behaviors of the AlSi7Mg0.3 cast alloy. By

metallographic investigations and scanning electron microscopy studies, they found that the

crack initiation generally took place at the interface between eutectic silicon particles and

the �-Al matrix. In another research, Beck et al. [22] studied the out-of-phase TMF material

behavior with superimposed HCF loadings on the AlSi6Cu4 alloy. Their results showed

that at the maximum temperature of 300�C, the lifetime for pure TMF loading was about

2000 cycles for 180 s and 3000 cycles for tests without dwell time and for lower maximum

temperature (250�C), this difference was become almost twice. Thomas et al. [23, 24]

presented fatigue lifetime prediction models based on energy and classical approaches such

as Smith–Watson–Topper (SWT) theory for the A356.0 alloy under TMF and LCF (at

different temperatures) conditions.

The effect of different casting processes on isothermal (at low and high temperatures)

and non-isothermal fatigue behaviors of aluminum-silicon alloys was studied by Bose-

Filho et al. [25]. Riedler et al. [26, 27] presented a special modified energy method,

“unified energy approach” and compared to conventional approaches for the AlSi7MgCu0.5

alloy by using TMF tests results. Takahashi and Sasaki [28] checked the effect of artificial

ageing on the TMF lifetime of the A356.0-T6 alloy. They found that the ageing time was so

effective for the loop-end stress amplitude change rate. The change rate could be expressed

as a state of the stress relaxation and there was a significant correlation (a reverse relation)

between the change rate and the fatigue lifetime. Grieb et al. [29] performed TMF tests on

cast aluminum alloys by using near-component-similar samples (such a valve bridge in

cylinder heads) and derived an ageing model from experimental results.

Azadi et al. [30] presented a failure analysis on a gasoline engine cylinder head, made

of aluminum alloy. Their results showed that there were many casting pores due to poor

quality of casting in the failed cylinder head, which had certainly played a crucial role in

initiating the crack. In another article, Azadi and Shirazabad [31] investigated the heat

treatment effect on the A356.0 alloy under out-of-phase thermomechanical fatigue and low

cycle fatigue (at different temperatures) loadings. Experimental fatigue results showed that

the heat treatment process had a considerable influence on mechanical and low cycle

fatigue behaviors, especially at low temperatures. However, its effect on thermomechanical

fatigue lifetime was not significant. Azadi [32] presented effects of the strain rate and the

mean strain on the cyclic behavior and the lifetime of aluminum-silicon alloys. He found

that the strain ratio effect on high-temperature LCF behavior of the A357.0 alloy was more

significant than that of the A356 alloy. He illustrated that increasing the strain rate

increased the high-temperature LCF lifetime in the A357 alloy. No change could be

observed in the out-of-phase TMF lifetime when the strain ratio increased. Azadi et al. [33]

studied the effect of various parameters on out-of-phase TMF lifetime of the A356.0 cast

aluminum alloy. Scanning electron microscopy images revealed that the A356.0 alloy had a

ductile behavior. The cyclic softening phenomenon was also observed during stress-strain

hysteresis loops. TMF tests results demonstrated that the dwell time had no significant

effect upon the lifetime.
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Farrahi et al. [34] proposed a novel fatigue lifetime prediction model for the A356.0

alloy. This model was based on the plastic strain energy density per cycle including two

correction factors, in order to consider the effect of the mean stress and the maximum

temperature. In another article, Farrahi et al. [35] simulated a cylinder head, made from the

A356.0 alloy, by the finite element method to obtain elasto-visco-plastic stresses. Farrahi et

al. [36] presented numerical simulations of cyclic behaviors in light alloys under isothermal

and thermomechanical fatigue loadings. For this purpose, an aluminum alloy (A356) a

magnesium alloy (AZ91) were considered to study their stress-strain hysteresis loops by

using two plasticity approaches including the Chaboche hardening model and the Nagode

spring-slider model. Their results demonstrated a good agreement with experimental data at

the mid-life cycle of fatigue tests. Tabibian et al. [37, 38] investigated lost foam casting)

process affects on the microstructure, mechanical properties, damage mechanisms and the

fatigue failure of aluminum alloys (A356.0 and A319.0). Besides, they observed a good

agreement between predicted fatigue lifetimes and experimental results, obtained from

different TMF and LCF loading conditions. Charkaluk et al. [39] proposed a novel method

to establish and identify a probability density function, characterizing the fatigue lifetime.

The method was initiated with a quantitative analysis of the microstructure of aluminum

alloys. They showed that estimated lifetimes using the novel technique had a good

agreement with experimental data.

In the present article, high-temperature fatigue behaviors of the A356.0 aluminum

alloy have been investigated. According to this objective, TMF and LCF tests were

conducted under various conditions (different temperatures and strain amplitudes).

Isothermal and non-isothermal fatigue test results have been presented in figures to

compare LCF and TMF behaviors of the material.

1. Materials and Experiments. The considered material in this research is a cast

aluminum-silicon-magnesium alloy, entitled as A356.0 (AlSi7Mg0.3), which has been

utilized in diesel engine cylinder heads. The element composition was measured as 7.06% Si,

0.37% Mg, 0.15% Fe, 0.01% Cu, 0.02% Mn, 0.13% Ti and Al was remainder. The production

process of this alloy was performed in permanent molds by the gravity casting method.

Strain/temperature-controlled isothermal and non-isothermal fatigue tests were

conducted including out-of- phase TMF, room-temperature LCF and high-temperature LCF

tests under various conditions. Related equipments of testing can be seen in Figs. 1 and 2.

The strain was measured by a high-temperature extensometer during cycles. The temperature

was measured by K-type thermocouples. The induction system was used for heating the

specimen and the compressed air jet was used for cooling the specimen.

It is noteworthy that, in LCF tests, the temperature was constant during cycles, within

a variation interval of � �2 C. Since LCF tests had isothermal conditions, based on

ASTM-E606 standard (a standard practice for strain-controlled fatigue testing, 1992).

However, in TMF tests, besides the mechanical strain, the temperature changed between the

minimum value and maximum values, based on COP-EUR22281EN standard (a validated

code-of-practice for strain-controlled thermomechanical fatigue testing, 2006). The strain

rate was 60%/min in LCF tests. In TMF tests, heating/cooling rate was constant as 10�C/s.

As an initial condition, tests began with 0.03% of the mechanical strain, compared to initial

cylinder head loadings. This load is comparable to initial bolts forces and valve seat insert

effects. Thus, the strain ratio (the ratio of minimum to maximum strains), was almost equal

to minus infinity. TMF tests started at a minimum temperature, which was constant as 50�C.

However, maximum temperatures were variable in tests (constant in a test) as 200 and

250�C, according to operation conditions of cylinder heads. The constraint factor (or the

thermomechanical loading factor) has been defined as the ratio of the mechanical strain

amplitude to the thermal strain amplitude, which was considered as the thermal expansion

coefficient multiplied to the temperature range. This constraint factor was constant during a

TMF test and applied as 125% for all tests.

Comparison between Isothermal and Non-Isothermal Fatigue Behavior ...
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In the case of out-of-phase loading conditions, when the temperature reached its

maximum value, the mechanical strain had the maximum compressive values and vice

versa, which has been comparable to real conditions in cylinder heads. The out-of-phase

loading condition during a TMF test (considering 225�C for the maximum temperature,
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Fig. 1. TMF equipments with related accessories including induction heating and air jet cooling

systems.

Fig. 2. LCF equipments with related accessories including induction heating system.



150% for the strain constraint and 60 s for the dwell time), as well as the geometry of used

specimens are shown in Fig. 3. As it can be seen, an axial hole with 1.5 mm diameter in the

middle of specimens was drilled to measure and control the temperature by the

thermocouple.

Before each LCF test, the elastic modulus of the material was measured to check the

obtained value with references. Before each TMF test, a zero-force test was performed to

find the thermal strain of the material at different temperatures. In this case, firstly, the

heating/cooling rate was considered as 2�C/s under a zero mechanical stress level (including

one cycle). The allowable value for stresses is less than 4 MPa due to COP-EUR22281EN

standard. This low heating/cooling rate was due to the absence of transient temperature

behavior and to find the thermal expansion coefficient of the material. Then, the test was

repeated at 10�C/s (including one cycle) to find the real material behavior and measure the

correction factor for the thermal strain. This process, which was temperature-based, is

shown in Fig. 4, including the thermal strain, the correction factor and stress values during

the zero-force test. As it can be seen, the stress was less than 2 MPa, which showed an

agreement with the standard.

In brief, the configuration of out-of-phase TMF tests is listed as follows:

(i) initial strain: 0.03%;

(ii) start temperature: 50�C;

(iii) minimum temperature: 50�C;

(iv) maximum temperature: 200 and 250�C;

(v) constraint factor: 125%;

(vi) dwell time (at the maximum temperature): 5 s;

(vii) heating/cooling rate: 10�C/s.
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Fig. 3. Loading conditions during a TMF test and specimen geometry and dimensions in mm.



Meanwhile, the configuration of room-temperature and high-temperature LCF tests

was as follows:

(i) temperature: 25, 200, and 250�C;

(ii) strain rate: 60%/min;

(iii) strain amplitude: 0.20 and 0.30% (measured from the mid-life cycle of TMF tests

results);

(iv) strain ratio: �12.3 and �19.0 (measured from the mid-life cycle of TMF tests

results).

2. Results and Discussion. In TMF tests, the temperature was controlled according to

the demanded temperature. The difference between demanded and real temperatures was

measured as 4.7�C at the maximum temperature. This temperature difference should be less

than 5�C according to COP-EUR22281EN standard. The longitudinal temperature gradient

within 12 mm of the gauge length was almost 3�C and the radial temperature gradient was

2�C. These temperature gradients are shown in Fig. 5. These gradients were also in a good

agreement with the standard.

Before analyzing the results obtained for hysteresis loops at different cycles, it should

be noted that the specimen failure was defined as the first drop in the history of the

maximum stress versus the time. This definition shows the fatigue lifetime of the specimen.

Stress-strain and stress-temperature hysteresis loops at different cycles are shown in Fig. 6

for a TMF test. In this experiment, the maximum temperature was 225�C. The enhancement

of the plastic strain could be observed during cycles and therefore, the cyclic softening

behavior occurred in the A356.0 alloy. According to [40–42], if the ultimate tensile strength
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Fig. 4. Thermal expansion coefficient, thermal strain and its correction factor measurement in TMF

tests.
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Fig. 5. Radial and axial temperature gradients during a TMF test with a dwell time.

Fig. 6. Stress-strain and stress-temperature hysteresis loops for different cycles in TMF tests.



to the 0.2% offset yield strength is greater than 1.4, the cyclic hardening behavior will

occur and if this ratio is smaller than 1.2, the cyclic softening behavior will occur in the

material. It is noteworthy that the ratio of ultimate stresses to yield ones was measured as

1.1 for the A356.0 alloy according to tensile tests at high temperatures (between 150 to

250�C). Hysteresis loops for room-temperature and high-temperature LCF tests are shown

in Fig. 7. Obtained results demonstrated that the cyclic hardening behavior at the room

temperature and the cyclic softening behavior at high temperatures (250�C) for the A356.0

aluminum-silicon-magnesium alloy. In the case of the cyclic hardening behavior, the stress

increased and the plastic strain decreased during cycles. However, in the case of the cyclic

softening behavior, the stress decreased and the plastic strain increased during cycling.

The maximum and minimum stresses, the stress amplitude and the mean stress are

depicted in Fig. 8 for both TMF and high-temperature LCF tests versus the fatigue lifetime

(in a logarithmic scale). In addition, the total mechanical strain and the plastic strain versus

the fatigue lifetime (in a logarithmic scale) and also stress-strain hysteresis loops are shown

in Fig. 9. It should be mentioned that plastic strain was calculated by the fatness of the

hysteresis loop, where the mean stress was zero. Then, the elastic part was calculated as the

difference between the total mechanical strain and the plastic strain.

Figures 8 and 9 (including stress and strain histories) show the cyclic softening

behavior of the A356.0 alloy under TMF and high-temperature LCF loadings, as also

illustrated in Figs. 6 and 7. Moreover, the maximum stress at TMF tests was more than that

one at high-temperature LCF tests. The reason was due to the time when the minimum
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Fig. 7. Stress-strain hysteresis loops for different cycles in LCF tests at room temperature and 250 �C.



temperature occurred at the tensile stress under the out-of-phase loading condition. At the

minimum temperature, the stress had almost the same value in both TMF and LCF tests

(Fig. 9). Although in LCF tests, the temperature was constant according to isothermal

conditions, but the LCF lifetime was higher than the TMF one. This was due to have

transient temperatures and severe conditions in non-isothermal TMF tests in comparison to

isothermal LCF tests. It should be mentioned that we attempted to compare TMF and LCF

behaviors of the A356.0 alloy for the same value of the mechanical strain. However, small

differences existed in results of the total mechanical strain amplitude, which could be

negligible for comparing TMF and LCF lives. In the LCF test at 250�C, the strain amplitude

was somewhat higher, but the lifetime also exceeded the TMF one. The plastic strain in this

case was higher in the LCF test, in comparison to that in the TMF test, but at lower

temperatures (200�C), the respective plastic strains were almost identical.

Conclusions. High-temperature fatigue behaviors of the A356.0 alloy has been

studied by considering different test types including TMF and LCF conditions. Isothermal

fatigue test results showed that the cyclic softening behavior occurred for the A356.0 alloy

at high temperatures and the cyclic hardening behavior occurred at the room temperature.

Besides, for non-isothermal fatigue tests, the cyclic softening behavior occurred for the

A356.0 alloy. In addition, the TMF lifetime was less than the high-temperature LCF

lifetime at the same condition for the A356.0 alloy. This is attributed to severe

non-isothermal loadings conditions (transient temperatures) in TMF tests.
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Fig. 8. The maximum and minimum stresses, mean stress, and stress amplitude in TMF/LCF tests.



Ð å ç þ ì å

Äëÿ ëèòîãî àëþìîñèë³êàòîìàãí³ºâîãî ñïëàâó A356.0, ùî øèðîêî âèêîðèñòîâóºòüñÿ äëÿ

âèãîòîâëåííÿ ãîëîâîê öèë³íäð³â äèçåëüíèõ äâèãóí³â, âèêîíàíî ïîð³âíÿëüíèé àíàë³ç

âòîìíèõ ïðîöåñ³â ïðè àíòèôàçíîìó òåðìîìåõàí³÷íîìó íàâàíòàæåíí³ òà ïðè ìàëî-

öèêëîâîìó íàâàíòàæåíí³ çà ê³ìíàòíî¿ ³ ï³äâèùåíî¿ òåìïåðàòóð. Ïðîâåäåíî ³çîòåð-

ì³÷í³ ³ íå³çîòåðì³÷í³ öèêë³÷í³ âèïðîáóâàííÿ ç êîíòðîëåì äåôîðìàö³é ³ òåìïåðàòóðè,

ùî ìîäåëþþòü åêñïëóàòàö³éí³ ðåæèìè íàâàíòàæåííÿ ãîëîâîê öèë³íäð³â. Ðåçóëüòàòè

âòîìíèõ âèïðîáóâàíü ïîêàçóþòü, ùî ïëàñòè÷íà äåôîðìàö³ÿ çá³ëüøóºòüñÿ ïðè öèêë³÷-

íîìó íàïðàöþâàíí³ ç ïîñò³éíîþ àìïë³òóäîþ ìåõàí³÷íî¿ äåôîðìàö³¿ äî ìîìåíòó ðóé-

íóâàííÿ çðàçê³â. Ïðè ìàëîöèêëîâîìó íàâàíòàæåíí³ ñïëàâ õàðàêòåðèçóºòüñÿ öèêë³÷íèì

çì³öíåííÿì çà ê³ìíàòíî¿ òåìïåðàòóðè é çíåì³öíåííÿì ïðè âèñîêèõ òåìïåðàòóðàõ, àíà-

ëîã³÷íà òåíäåíö³ÿ ñïîñòåð³ãàºòüñÿ ïðè àíòèôàçíîìó òåðìîìåõàí³÷íîìó íàâàíòàæåíí³.

Ðàä³àëüí³ ³ ïîçäîâæí³ òåìïåðàòóðí³ ãðàä³ºíòè ïðè àíòèôàçíîìó òåðìîìåõàí³÷íîìó

íàâàíòàæåíí³ ñòàíîâëÿòü 2 ³ 3�C â³äïîâ³äíî. Ïîð³âíÿííÿ ïåòåëü ã³ñòåðåçèñó íàïðóæåííÿ–

äåôîðìàö³ÿ ïîêàçóº, ùî ðîçòÿæí³ íàïðóæåííÿ ïðè ì³í³ìàëüíèõ òåìïåðàòóðàõ â óìîâàõ

àíòèôàçíîãî òåðìîìåõàí³÷íîãî íàâàíòàæåííÿ (âíàñë³äîê àíòèôàçíèõ óìîâ íàâàíòàæåí-

íÿ) áóëè âèùèìè, í³æ ïðè ìàëîöèêëîâîìó íàâàíòàæåíí³. Ïðè öüîìó ìàêñèìàëüí³ òåì-

ïåðàòóðè â³äì³÷àþòüñÿ ïðè ñòèñêó, ì³í³ìàëüí³ – ïðè ðîçòÿç³. Öèêë³÷íà äîâãîâ³÷í³ñòü

ïðè àíòèôàçíîìó òåðìîìåõàí³÷íîìó íàâàíòàæåíí³ âíàñë³äîê á³ëüø íàïðóæåíèõ óìîâ

åêñïëóàòàö³¿ òà çì³í òåìïåðàòóðè íèæ÷à, í³æ ïðè ìàëîöèêëîâîìó íàâàíòàæåíí³.
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Fig. 9. Total and plastic strains and stress-strain hysteresis loop in TMF/LCF tests.
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