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Hccnedosana mediccnolinds 653K0CHb paspyuenus 06pasyos, npedcmasiaouux cooou 08yXKoHCOb-
HyI0 OanKy, U3 YAPOYHEHHBIX BONOKHAMU Y2AeNAACMUKOBLIX KOMNO3UMOB C YYemom nogopoma
eepuunbl mpewunsl. Ilpu usmepenuu nazpy3ox, nepemeujenuii u OAUHbL MPeWuH Mo2ym umems
Mecmo 3Hauumenvivle nozpewnocmu. i ymenvuenus pazopoca OAHHbIX Npeonazaemcs Ucnoib-
306aMb MeMoO 636EULEHHbIX HEGA30K, NO3GONAIOWUL MUHUMUSUPOGAMY 6NUAHUE NOSDEUWHOCTell
U3Mepenus Ha OYeHKY KPUMuUUecKol dHepauu paspyuleHus u noayyums 01 Kaxcoo2o obpasya ceoe
3HaueHue.

Knrwoueeste cnoea: KOHCTPyKuUs camoiieTa, oOpas3ernl B BHAE ABYXKOHCOJBHOHN Oaykw,
paccioeHue, YrJeIacTUK ¢ 3MOKCHAHON cmoiol, yriemnactuku tuna PEEK, PES u
PEK-C.

Notation

a — crack length

B — width of the DCB specimen

C — compliance of the specimen

E — longitudinal tensile modulus (the Young modulus)
G — strain energy release rate (SERR)

Gy, — fracture toughness or critical strain energy release rate
2h — specimen thickness

1 — moment of inertia

K — rotational spring stiffness

n — number of fracture data

P — applied load on both sides of the specimen

0 — crack mouth opening displacement

I1 — potential energy
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Introduction. Preventing failure of composite material systems has been an important
issue in engineering design. There are two types of physical failures that occur in laminated
composite structures and interact in complex manner are intralaminar and interlaminar
failures. Intralaminar failure is manifest in micromechanical components of the lamina such
as fiber breakage, matrix cracking, and debonding of the fiber—matrix interface. Generally,
aircraft structures made of fiber reinforces composite materials are designed such that the
fibers carry the bulk of the applied load. Interlaminar failure such as delamination refers to
debonding of adjacent lamina. The possibility that intralaminar and interlaminar failure
occur in structural components is considered a design limit, and establishes restrictions on
the usage of full potential of composites. Due to the lack of through-the-thickness
reinforcement, structures made from laminated composite materials and adhesively bonded
joints are highly susceptible to failure caused by interfacial crack initiation and growth. The
delamination phenomenon in a laminated composite structure may reduce the structural
stiffness and strength, redistribute the load in a way that the structural failure is delayed, or
may lead to structural collapse. Therefore, delamination is not necessarily the ultimate
structural failure, but rather it is the part of the failure process which may ultimately lead to
loss of structural integrity.

Most of the components on the aircraft are increasingly being replaced with composite
materials. The main attraction is the effective reduction in mass with a comparative increase
in stiffness, strength, fatigue and impact resistance, thermal conductivity and corrosion
resistance. Through these replacements, the structural weight can be reduced, which will in
turn lead to a more economical commercial aircraft [1]. The major structural applications
for fiber-reinforced composites are in the field of military and commercial aircrafts, for
which weight reduction is critical for higher speeds and increased payloads. Ever since the
production application of boron fiber-reinforced epoxy skins for F-14 horizontal stabilizers,
the use of fiber-reinforced polymers has experienced a steady growth in the aircraft
industry. Carbon fiber-reinforced epoxy has become the primary material in many wings,
fuselage, and empennage components. The structural integrity and durability of these early
components have built up confidence in their performance and prompted developments of
other structural aircraft components, resulting in an increasing amount of composites being
used in military aircrafts. The F-22 fighter aircraft also contains nearly 25% by weight of
carbon fiber-reinforced polymers. The outer skin of B-2 and other stealth aircrafts is almost
all made of carbon fiber-reinforced polymers. The stealth characteristics of these aircrafts
are due to the use of carbon fibers, special coatings, and other design features that reduce
radar reflection and heat radiation [2].

Airbus was the first commercial aircraft manufacturer to make extensive use of
composites in their A310 aircraft. The composite components weighed about 10% of the
aircrafts weight and included such components as the lower access panels and top panels of
the wing leading edge, outer deflector doors, nose wheel doors, main wheel leg fairing
doors, engine cowling panels, elevators and fin box, leading and trailing edges of fins, flap
access doors, flap track fairings, rear and forward wingbody fairings, nose radome, pylon
fairings, cooling air inlet fairings, tail leading edges, upper surface skin panels above the
main wheel bay, glide slope antenna cover, and rudder. The composite vertical stabilizer,
which is 7.8 m wide by 8.3 m high at the base, is about 400 kg lighter than the aluminium
vertical stabilizer previously used [3]. The Airbus A320 was the first commercial aircraft to
use an all-composite tail, which includes the tail cone, vertical stabilizer, and horizontal
stabilizer. The composite usage in Airbus A380 during last decade was about 25% of its
weight. Among the major composite components in A380 are the rear-pressure bulkhead
(a dome-shaped partition that separates the passenger cabin from the rear part of the plane
that is not pressurized), the central torsion box (which links the left and right wings under
the fuselage), the tail, and the flight control surfaces, such as the spoilers, flaps, and
ailerons.
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Starting with Boeing 777, Boeing has started making use of composites in the
empennage (which include vertical stabilizer, horizontal stabilizer, elevator, and rudder),
most of the control surfaces, engine cowlings, and fuselage floor beams (see Fig. 1). About
10% of Boeing 777’s structural weight is made of carbon fiber-reinforced epoxy. About
50% of the structural weight of Boeings next line of airplanes, called the Boeing 787
Dreamliner, will be made of carbon fiber-reinforced composites. Two of the major
composite components in 787 will be the fuselage and the forward section, both of which
will use carbon fiber-reinforced epoxy as the major material of construction. Publications
by Boeing [4, 5] and NASA [6] reveal that the residual strength prediction of composite
structures with discrete source damage is an area in which more research is needed.

Leading and
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Fin torque box
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outboard spoilers

=
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Fig. 1. Use of laminated composites in Boeing 777 [2].

The present study aims to derive a simple expression for critical fracture energy based
on weighted residual approach, considering non-zero slope at the crack tip of the DCB
specimen and to demonstrate its potentiality by comparing the calculated critical load, P,
and the corresponding displacement, 0, for the measured crack length.

1. Data Reduction for Critical Fracture Energy. Tamuzs et al. [7] investigated the
dependence of crack growth resistance curves on the geometry of DCB specimens was by
for unidirectional carbon/epoxy composite laminates and they modified the beam theory to
calculate the energy release rate in terms of P— 0 record. Usually the energy release rate in

a DCB specimen is defined as
oIl

G=_B76a' (1)

The potential energy of a linearly elastic system is equal to
1 u
H=§f0ij8ijdv —_OfP(u)du, ?)
v

where o; and &; are the stress and strain, v is the volume, and P(u) is the force
applied, which is a function of displacement. The first term is an energy stored in the
linearly elastic body and the second one is the work produced by the applied external force.
The displacement u is a full opening of the DCB specimen at the point, where P is
applied. The first term is also expressed through the force acting on the system

l u
M= Pu- { P(u)du. 3)
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From Egs. (1) and (3), the SERR can be written by

_P*aC
4
) da “®
Considering root rotation at crack tip, the compliance C is given by
o 2 2
LB L 5)
P 3EI K
Using Eq. (4) and eliminating K in Eq. (5), one gets [8, 9]
PXa® PS
Gy = +—. 6
'“" 3BEI " Ba ©

The critical load P, at the initiation of the delamination growth in DCB specimen can be
determined as
5 -
a 2 a
Pcr = GIc {‘l—} . (7

1.1. Weighted Residual Approach to Evaluate G|,. There may be chances to prone
errors in the parameters viz., load P, displacement &, and crack length a as they are
measured quantities. To minimize the scatter in measurements, the weighted residual
approach is used to derive the fracture energy. From Eq. (6), one can write the error £,, as

P} 2
= a. 8
2 et ¢ ®
The energy release rate can be maxima when
aErr
=0.
Gy, ©)

From Egs. (8) and (9), one gets the critical energy release rate as

G =, EZ (10)
i=1

Piz a; PI (5, a;
3BEI

Similarly the rotational spring constant K can be obtained from

*—Z EM (11)

3EI

P;
Using Eq. (11) in Eq. (7), the critical load P,, at the initiation of the delamination
growth in DCB specimen can be obtained. The displacement o, corresponding to the

load P, can be obtained from Eq. (5).

cr
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2. Results and Discussions. Fracture analysis has been carried out on the double
cantilever beam specimens made of carbon-fibre/PEEK, carbon/polyether sulphone,
carbon/epoxy, and carbon/PEK-C composites and compared with the published results. The
tensile opening (mode I) fracture energy Gy, is evaluated from the load—displacement data
for DCB specimens with cracks, using weighted residual approach derived from
displacement method. The results (Figs. 2-9) obtained by this approach is in good
agreement with published test results.
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Fig. 2. Comparison of load—displacement curves of DCB specimens made of carbon/PEEK [10].
(Here and in Figs. 3-9: dash line corresponds to test results and solid line — present analysis.)
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Fig. 3. Comparison of load—displacement curves of DCB specimens made of carbon/epoxy [10].

The rotational stiffness of the support at the crack tip of the DCB specimen, K, is
determined by substituting the initially recorded fracture data (viz. load P, displacement 9,
and crack size a) from the loading/unloading curves, and the Young modulus E of the
material in Eq. (11). Using the fracture data of the DCB specimen, the value of Gj. was
calculated using Eq. (10). This modified weighted residual method gives a unique value of
Gy, and is found to be in good agreement with published results (see Table 1). If the
stiffness of is too large, the effect of K on Gj, may not significant in that particular case.
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Table 1

Comparison of Fracture Energy of Carbon Fiber-Reinforced Composites

Material Critical energy release rate Gy, Jm?
Eq. (6) Cubic law [8] Power law [8] | Present analysis
Eq. (10)
Carbon/PEEK [10] 2006.37 2051.68 2149.03 2045.48
Carbon/epoxy [10] 262.73 261.60 287.90 261.56
Carbon/PES [11] 2150.64 2121.76 2230.22 2298.68
T300-634 DDS [12] 642.13 641.01 641.80 597.26
Carbon/epoxy [13] 364.07 361.60 428.94 355.36
CYCOM-982 [14] 262.33 264.10 271.79 261.47
APC-2 [14] 1563.81 1582.46 1655.85 1578.25
Carbon/PEK-C [15] 877.33 873.70 875.12 899.09
300 T
250
4
g 200 -
A
E
& 150 1
E1004F 0 TeihTme—
O T
50 ':
0 T T T T T 1
0 10 20 30 40 50 60

Fig. 4. Comparison of load—displacement curves of DCB specimens made of carbon/PES [11].
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Fig. 5. Comparison of load—displacement curves of DCB specimens made of T300-634 DDS [12].
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Fig. 6. Comparison of load—displacement curves of DCB specimens made of carbon/epoxy [13].
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Fig. 7. Comparison of load—displacement curves of DCB specimens made of CYCOM-982 [14].
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Fig. 8. Comparison of load—displacement curves of DCB specimens made of APC-2 [14].
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Fig. 9. Comparison of load—displacement curves of DCB specimens made of carbon/PEK-C [15].

3. Concluding Remarks. To minimize the error in measurements of load,
displacement and crack length, weighted residual equation for determination of energy
release rate was derived in the present study. The critical fracture energy Gj. was
evaluated based on the proposed approach gives a unique value of Gy, for the particular
specimen which is in good agreement with the published test results. From the Figs. 2-9, it
is observed that of P—0 curve by the present approach is almost in line with the
experimental results.

Pe3wome

JlocmimKeHo MIKIIapoBY B’SI3KICTh pyWHYBAHHS 3pa3KiB, IO SBISIOTH COOOI0 ABOKOHCOJb-
Hy 0anKy, 31 3MIiIHCHUX BOJOKHAMH BYTJICIIACTUKOBHX KOMITO3HTIB 3 ypaxyBaHHSIM IOBO-
poTy BepmHMHHM TpimuHA. [Ipu BUMIpIOBaHHI HaBaHTaKEHb, MEPEMIIIEHb Ta JOBXKHHU
TPIIUH MOXKYTh MaTH MICIe 3HAuHI MOXHOKW. [l 3MEHIICHHS PO3KUIY NaHHUX MPOIIO-
HYETBCSI BUKOPHUCTOBYBATH METO]] 3BAKECHHX HEB’S30K, IO J03BOJISIE MiHIMI3yBaTH BILIHB
MMOXHOOK TIPY BUMIPIOBaHHI Ha OIIIHKY KPUTHYHOI CHEpTii pyHHYBaHHS i OTPUMATH IS
KOJKHOTO 3pa3ka CBO€ 3HAYCHHSI.
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