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SPECTRUM AND STATES OF THE BCS HAMILTONIAN
IN FINITE DOMAIN. II. SPECTRA OF EXCITATIONS"

CIIEKTP TA CTAHH T'AMIJIbTOHIAHA BKIII
B CKIHYEHHIA OBJIACTL II. CHEKTPH 35Y/I3KEHD

Coincidence of averages per volume of the BCS and approximating Hamiltonians over all the excited states is
established in the thermodynamic limit. Earlier it has been established only for the ground state.

BeranossieHo, 1o y TepMoaHHaMiyHiH rpaHHUi cepeui no yeix s6yAXKeHHX CTAHAX HA OHHHINO 06'eMy Bif
MopiesieHoro raminsToniana BKIII Ta pifmoBigHoro anpoKcHMyodoro raMinsToriana siraotees, Pagimme e
OyJ10 BCTAHOBJIEHO TiJIBKH [JI OCHOBHOI'O CTaHY.

Introduction. We conceived a series of papers devoted to investigation of spectral pro-
perties of BCS Hamiltonian in finite domain and corresponding states. In the first paper
[1] we have investigated spectra of the BCS Hamiltonian in a finite cube A with peri-
odic boundary conditions. It has been proved that in certain subspace of pairs the BCS
Hamiltonian can be represented as a sum of two operators A and B. The operator A
describes the spectra of noninteracting pairs, and the operator B describes the interaction
between pairs and tends to zero as volume V(A) = V of the cube A tends to infinity.
The pairs may be in the ground or excited states with corresponding eigenvalues. The
complete description of spectra of the BCS Hamiltonian in the subspace of pairs has-been
established.

It has also been proved that the average energies per volume V' of the BCS Hamil-
tonian Hj and the approximating Hamiltonian H, » over the ground state o of Hy
coincide in the thermodynamic limit

Jim = (o, (Ha — Ha) o)y =0. W

Given paper is a direct continuation of the previous one and is devoted to the proof of the
thermodynamic equivalence of the BCS Hamiltonian Hj and the appmxm:latmg Hamil-
tonian H, 4. Namely, we prove that

V—-+ (@(?)II(Q)m H (HA - “a ) é(}’)l:(q)m)v = 0’ (2)
where
Bo),()m = G, -0 oty ...af o, &, 120, m>0, m+12123)

is the excited state of the ground state &g of Hj. (We use the same denotation as in the
previous paper [1].)
1t follows from (1), (2) that

Jim = (£, (Hx — Han))y “

for arbitrary f from certain Hilbert space which elements are linear combinations of vec-
tors é(?)ll(Q)m (2)'
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'We-also proved flrat

f
Hmy o0 %(@8,(;;{_,\ = Ha,ﬁ)@g)v =0,
i ((Pﬁ?):.("ﬂm (H — Hap ), cq)m) ®)
Plotsam) =0y - 050G, &Ly, . 0f ol B,
where ®f is the ground state :of the approximating Hamiltonian H, A The operators
:‘, o; are obtained by :the :canonical itransformation of the operator Q’F ar and ®F is
their vacoum, ‘e 8§ = 0. The first equality i(5) rad been .established by Bogolyubov
[2]. Equality(4) helds alse for arbitrary f from-certain Hilbert space which elemerits.are
linear.combination-ef vectors 'np“(‘p)l o
- Bqudlities (1) — (5) mean ithat the Hamiltonians Hp -and Hy p are thermodynamic
equivalent.
We introduced a -new conception of the thermodynamic -equivalence -on ground -and
excited statesi(1) —(5).
By using:the canenical Bogolyubev's transformation, the approximating Hamiltonian
Hg A can be diagonalized and its:spectram can be.determined-exactly. Namely, the states
“loy (@)m ATE the.eigenvectors-of H, 4 with-eigenvalues

] m
> By +2Y By +Eg, (6)
i=1 j=1
where By = +/el+c?v] is the energy of the -one-particle -excitation (g, =
= p?/2m — p ), E§ is'the energy of the ground state 3.

The spectrum ‘of the BUS Hamiltonian F 5 can’bé determined asymptotically exactly.
Namely, consider the renormalized Hamiltonian H*™ = Hy — EgN/2 where N is the
operator of number of particles-and Ey is the lowest c'lgsnvaihae of pair with eigenfunction
f2(k). Then

HE By, (q)m = (Z (Em - —) +22 (&u - —-D By ()mt

=1

+(Bwn@m + Coiadm )’ B ()1, (g)m (7

where

% ) “ (Borm FConitaim) T@(@m "V =0,
It follows from (7):that

Hr®h)(00m = (‘”Eﬂ +>j115m + 221:%) o)t
1= J=.
+ (Behdm + Conntam) Eye(@m ®

n o T e - at
é(?)h(q)m = Opy v Op Bg, Cg - -~ Qq Fgq @7,
where

!

0'—

|(B(p}l L F Cerri(@hm) oy bt ||y

V—tou ‘
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1082 _ * D.YA. PETRINA

Formulae (6), (7) determine asymptotically exactly (as V — co) spectra of the BCS
Hamiltonian that correspond to .ground state of ﬁxed number 7 of nomuteractmg pairs
and their excitations. Sl

It will be shown in the th1rd paper of the given series that the spectra (6) of the ap-
proximating Hamiltonian H, s describe excitations of the single entiré system while the
spectra (8) describe excitations of (I + 2m + 2n)-particle subsystem. It will be especially
clear for nonzero tcmperature because in this case the e-.nergy of éxcitation Ey depcnds on
temperature. . st .

- Thus there are two graund states $p- and <I> and their cxcita‘tions Pl (@)m (D) and
(:b(P)h(Q')m (5) and two'kind of the spectra:. thbse of the BCS Hamiltonian Hy (7), (8)-
and those of the approximating Hamiltonian H; 4 (6). The Hilbert spaces thaf:are linear
combinations of two different systems of vectors ®(5),,(g)im andi.@?p)'{:, (q’)'n;,-,respectively,
are unitary nonequivalent in the thermodynamic limit. These facts had been unknown
before.

" VIII. Hamiltonian BCS.and its spectra on excited states. I1.. H s on exited srates

Denote bY Fo),(@)m = fm, DU 1, a0 DE followmg state™: :

+. S
f(P):,(r;)m : a."' - Op, a‘q+1 Ggy- -qu . .
— ot N + o+
= Gpy oo Gy Qgy Ggy <o Bg O gt X
[= o]
X Z Z f:(kla'“ )kn)a;ctatkl-'-;qr“atk“ ! 0): (8.1)
n=0 k]_;éu.aék-n bt ;
where f was defined above by (1.10), f € 'pr. We will say that f,y, is excited state with
momenta py, ... ,p of [ particles and momenta (g1, —q1)," - ; (gm, —gm) of m pairs.

We suppose that any two momenta (p;, p;) do not comcide with some pairs of momenta
from the sets (k.l,~k1, sk, —kn) = (k)m n'= 1,2,...,k C D or from the set
(g1, — 1.+ s qmy—m) = (Dm, ¢ C D but some pi can commde w1th some moimenta
from sets (k)n If some momenta from (p); coincide with some momenta from (q) then
Fwy(an = |
We cons1der f(p) 1,(@)- @s an element of H* with respect to momenta (p);, (¢)m and
as an element of H{, with respect to momenta (k)n, n = Lo qle; f(?)h(q)m
e HF @ HY. _
‘We will use the denotation ( f(p) :,(q)m j g(p}h(q)m) for scalar product of two elements
F@)1,(@)m 204 9p)1,(0) rom HT @ HY. .
The scalar product of two sequences f(p),,(q),n a0d g(p);,(g) aT€ €qual to (1.11), but
these momenta from the sets (k) that coincide with some momeénta from the set (p);
should be omitted in it

ac ' i
(f(P)h(Q)m’g(P}!a(Q}m) ':-ZV"' Z i fs_(kll"' :kﬂ)gz(kll"' :kﬂ) =
- on=0 " (K}a#E(PNiFE(@m

=11 -
=ZE% . Z f;{(kl"" ’kﬂ)g;(kli'-- :kn)- (82)
n=0 """ (k)aF(@)i#(q)

The states f(p),,(g)m» 9(o)i,(a)m Delong to HF ® ’H$
Consider the action of Hj on f(p),,(q),.- BY analogy with (2.5) we obtain

* For the sake of simplicity we consider only operators'-o.;!' with spins +1.
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B 755, U B0 '_q*“ z Frby: - s ka) af 0Ty, .. af oy [0) =
E : { I:g: P 2
B B ”} +3 ( ) * (— - 2#))%(&1, ) +
k1,00 k0 i=1 (zm ) = 2m ;
95~ . i = &
+?Z[?Vk£,9fn-(k1,.__)p]___’kn)_ E :Vkixkjfn(klr---)kj)---,kn)_.

i=1 1=j#i

l

- Evki:pjfn (kh )p%?:r-' Jkn) _ZthJQJfﬂ (kll"' :qij.:--- ;kn)“ X

j=1 =1
ga;rl . a;_a; o e 5 B a.\,t ai’kl .. a,;:‘a,i-‘kn | 0) +
+ % i Z VEhnsay @ Fn (bt ooy Ba) ot o) af a.i"ql A2 af at, a ;c"la.i'kl e
7= ko
.af at, az'ﬂ“ af_k“+1 | 0 } (8.3)
This yields |
o m
Hrfo,(@m = [ZI: (5;— o #) + 2(%?: — 2#)} Fon@m +
+(A+ Bcp):.(q)m').f(p)a,(qim + Con@m @) (@m: (8.4)

The operator A is defined by the third -and fourth terms, the operator By, (q), 18 ’
defined by the ﬁfth—seventh terms and the, operator C(y), (q),. is defined by the last eighth
term in (8.3). The operator Bip)i,(g)m -i0.(8.8),.(8.4) differs from the operator B (2.7) by
the additional termsiin (8.3).connected with the momenta (p);

n I . T
A A
—% ZVki;pjfn‘(kls-“ 1 Piye e kn) +ZVku9’an(k1: L TR :kn) .
i=1 | j=1 =1

If some p; & D then Vk;, p; = 0.and this term is absent in (8.3), (8.4). Note that the
terms with some k; = k;,.k; = p;, or-k; = g; are equal to zero.

L
A = fP 2(,'{3 )
2. Estimate of the- tor Hy—A— = — 21 > —2p |Io
stimate of the-operator H ,?=1( ) ,_1(2‘”’1« o n
the excited states f(p),,(q) - - Consider the exited states f(;), (s),, Where the sequences

f satisfy:the same.conditions as‘in Theorem 4. The action of Hamiltonian H on the
excited states f(;), (). Was defined by-formulae: (8.3), (8.4) and we have

2g2
[HA A-— z(Pz —2#)I Z(‘é‘f‘i_?’#) I} f(?)l:(?)m =

i=1
= [Beu@ + Con(@m] Foh(@m> (8:5)

where I is the unit operator.
For the operator By, (q),, We have

ISSN 0041-6053..Ykp.mam. sxypH., 2001, m, 53; N®-8



1084 : N s * D. YA. PETRINA
‘(f(P)!|(Q)m=B(P)h(Q)m!f(P}!-(‘I)m)V| <Y TyE 2 Ml k)l X

. n=2 k;_;l‘-' wFEkn
x{z [ S [V |

fﬂ (kli v :kn)
Li=t Li=jpi
fu (kl B ,kn)‘+
fﬁ- (kli"‘ :?ij-:"- :kﬂ.)”}s

ij_n(nHm 1) an  Jolo? GEmt 1) $L anf
il A vV (=2~

i

l

=1

+Z]Vks,q3-l

I/\

2 3 :
< 19]” (E;m“l"l)an‘ieafz’
Now estimate the operator Ciy), (4),..- We have

1>0, m>0. " (8.6)

|(Fon@ms Copmtarm Ftam)y| <

w T if.«_z(kl, ) 'Q'D"%=%|<

n=0 kﬁ"-‘---#kn j=1

]g|m . 2 o:fz :
<S> Ve n.' =™ . BT

n=0

Further we have

(]lG(p)x.(q)m Foytarm v ) = Canm f(p)c,(q)m Clopu(aim f(p):.(q)m)v =

—‘Zvn Z ( 2EE|an+1=q%| o

n=0 k1. i=1 kn.;. 1

"_g“‘i Z VQs'IQ'iHVQjIle) |fn(k1)--- ;kn)lz S

< Z V“nf fg" (—cw m - Vm v ) < %e“-"z (cw"‘m—+— v ) (8.8)

Obtaining estimates (8. ’?) (8.8) oné subscribes factor (V™/2) L to Falks, .- s kn)
and performs a standard calculation with the operators of creation and anmhﬂatl.on (It is

easy to prove that || By, fz), ||+ ténds to zero as V = 00.) -

Thus, averages (f(p).,(@)m B@)i(@m F@)@m)y 204 (Fo)i @ Covunt@ Faor@m )y
tend to zero as V' — oo.

It implies that the following analog of Theorem 4 is true. s,
Theorem 7. If the states of pairs _f = (1,0, fi (k1) ,--. , fn(k1,... ,kpn),...) sat-
isfy the conditions

]fﬂ(kli"':kn)léfn; f<OO, '.’1.21,
uniformly with respect to V' and have supports in D™, then

ISSN 0041-6053. Yxp. mam. xypi., 2001, m.53;N* 8
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(f{:r)n(q}m: [HA ~—~A— Zi: (.2%% = P-) Foe Z (2f12

j=1

!

) f] fcph,(q)m)
v

8.9
tends to zero when V' — co for arbitrary fixed l, m and the estimates (8.6) — (8.8) hc(Jld )
Note that the numbers ! and m can tend to infinity together with V' but in such away
that (I + m)/V tends to zero. Remark that m +1 < N = oV.
Corollary 2. It is obvious that theorem also holds for the excitations of the ground
state $g

i T 7 A s
Q(P):-(QJm = Opyee o Qp Ggy Cogyr o2 Og, Ogy (I)':'

because the eigenfunction fQ (k) of ground state of one pair is uniformly bounded with
respect to V (see Section 5).
3. Hamiltonian H s on normalized excited states. Consider a normalized analog of

states f(p);

=3 > (@) fn((k)n) af; - afiah oty af oy 0) =
n=0 (p)1,(k)n

=30 (@) foyr @i=1,---,2), ®)n=(k1,... k), (810)
(2

where the functions aﬁz((p);) is antisymmetric with respect to (p); and equal to zero if
p; = —p; for some (3,7) C (1,...,l) and the function f, ((k).) satisfies the condition
of Theorem 7. Linear operations with (8.10) are obvious.

Now introduce the following scalar product of two elements f; and

= h((®)) 9oy 90 =

(P):
> hi()) gn((R)n)af; ... afak oty .. af oty |0), (8.11)
(P)h(k)n

-

(Fo9) =Y o 3 @M@ (R)on (). (B12)
£ n=0 (P)i7#(k)n

Note that summation in (8.12) is carried out over momenta py #...% p; 7# k1 #. .. '
. # k,, and sets that differ only by permutation are identified. Scalar product (8.12) will
be useful for performing the thermodynamic limit.

? ! ! 1! 2
‘We introduce the following norm || filly = (( il f;)v) . The Hilbert space with

elements fj, g and scalar product (8.12) will be denoted by HE ® HE. The normalized
states f; belong to Hi ® HE.

Now consider the Hamiltonian Hy s on fi. H follows from (8.4) and (8.10) that

Hpyfi= Z’#’I (P)1) [Z( 4 —P')I"‘A"'B(p)::} Ty (8.13)
(Ph

where the operators A and By, have been defined by (8.3).
‘We have the following estimates that are an analog of estimates (8.6)

ISSN 0041-6053. Ykp. mam. xypH., 2001, m. 53, N2 8



1086 ‘ D. YA. PETRINA

> 2 | @) e (@) By Fan) | <
(2t e

< e 3 @R (R X

_ n=1 OO _ .
X{Z} Lg I%,k,llfn((k)n)im_lkj + X]; [Vies,p5 || Fn (B n )Ik‘-%p,-} } <

i Nl“f‘ﬂ 1}2?’],(?‘!. -+ - 1) o 2If2n <
TVl vt () o)

IA

|g|'LIQ = C‘I—Fn 2(1+n) 19|U2 2o cxx -
e B ™ S e | (8.14)
Y= (@)l M =swplfa(®)),  x=max(, f}.
Pt n

The series in (8.14) are convergent and tend to zero as V' — oo uniformly with respect
to numbers [. :

Now we are able to prove the following analog of Theorem 7. -

Theorem 8. If states of pairs f = (1,0, fi(k1),... , fa((K)n),...) and functions
Wi ((p)1) satisfy the conditions

!fﬂ((k)n)! S fn: f < 00, (L 2 1: |¢:((P)I)] < ¢I= 1:‘,) < 00:

uniformly with respect to V' and have supports-in D with respécr to each variables, then

(p-1-£@-1s),-

!
= 2 S w(@) (f@;, #()) [HA _4-3 ( Pi_ ) I] f@.) (8:15)
(2 i=1 Vv
tends to zero as V' — oo uniformly with respect to numbers | and estimates (8.12) hold.
Proof follows directly from (8.13), (8.14). Note that, according to (8.14), expressions
(8.15) tend to zero as V' — oo uniformly with respect to ! while in Theorem 7 ana'ogical
. expressions (8.9) for f{;), depend on [ accordingly to (8.6), (8.7). _
Corollary 3. It is obvious that Theorem 8 also holds for normalized excitations of the
ground state &g ' ‘

n=|

&= h((P))® ) - (816)
(P '
. because the ez;ge}iﬁtncrzons (k) of the pair with lowest eigenvalue Eq is uniformly
bounded with respect to V' (see Section 5) and we suppose that ﬁmcrzons i(p): satisfy
the conditions of Theorem 8.
Also consider the following states

Bim =D Y(@))xm((Dm)af, ;qa;*,atgl .a} at, ®o (8.17)
@n@m

where functions t;((p):) are antisymmetric,- |'¢'l((27)£)| 5 "!’i and furictions xm(CQ) m)
are symmetric, [Xmn((@)m)] < x™

ISSN 0041-6053. Yxp. mam..xypK., 2001; m. 53, N 8
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. ®im is a state where [ electrons are excited with wave function 1;((p):), m pairs are
excited with wave function X (@) and the rest of pairs are in ground state with wave
function f{ (k). ®i,, can be represented as follows

Bim = Z"l{’l((p)i)"’;—;“ E Z fa((k)n) k1 —k1 "-I,,afk,. 0) =

(Ph n=m (k). '
=D ((®)) ), = f:, (8.18)
()

where ' ' |

f"’ ((k)'ﬂ) = n(n 5t 1) . .]in —m— 1) sym [XM((k)m) f]? (km-{-l) LS .fl (kn)]; n = m,

and
n((B)n)] < X™ 7™ < (max {, FY)™ |2 < f, n>m.

It is obvious that Theorem 8 holds for the state @gm with [ excited electrons and m
excited pairs (uniformly with respect to I and m) because functions f,, ((k)n) in (8.18)
satisfy the conditions of Theorem 8. - ¢

Namely, the following theorem is true.

Theorem 8’.
L p?
o s F () e)-
i=1

(f;, [HA A- 2 (-—- -~ ,u) I] .ﬂ) ;(8-15’5 |

tends to zero asV — oo uniformly with respect to numbers | and m and estimates (8.12)
hold (with fi, f+((k)»)), n > m, determined according to (8.18). _
4. Spectra of renor;ﬁafizqd Hamiltonian. Consider the renormalized Hamiltonian

HA.I‘ =Hj — %N: " N= Z a%_a"fl (819)

where Eg = E(L) is the lowest eigenvalue of one pair. It is obvious that the ground state
@, is the asymptotical (in the limit A 7 R3) eigenstate of Hy , with eigenvalue equal to
zero. It follows directly from formula

Hp 0 = (Hﬁ - ) B = B,

and the fact that ||[B®]|;, — 0,V — oo (see (5. 8), (5 11).
Consider, for example, excited state $(g), = aql at 2 Po-
‘We have

B
Hpr®(g), = (H’-ﬂ"L - TGN) Q(Qh =
: 2 .
- (_E 2 (2_ - )) ®(g), + (Bla + Cla)a) B(g)s-

Taking into account that ||B(q)1‘§(q)1 ”v —+ 0,V — oo, ”0(9)1‘:'(9)1 ”V -0,V —
— oo (see (8.6), (8. 8)) we conclude that the excited state ®(,), is the asymptotical (in

ISSN 0041-6053. Yxp. mam. s#ypH., 2001, m. 53, N* 8



1088 : ¢ U . -D.YA PETRINA

the limit A ~ R®) mge.nstate of HA » With elgenvalue —Eg+2 (—- — ) > |A| (see
Section VI from [1]). :
For the general excited states (), () = @ry- - - Oph a.+ S a'q"m afq ®o,

1 >0,m>0,m+1!> 0, one obtains

Ey
Har @) @)m = (HA -5 N ) L@)im =

[ (&) + 5

2¢ Eo
e 2#) ==l 2m)] 2@y (a)m t+

+ (B(pn.(q),‘n + O(P}r-(q)m)q)(ip)h(q:!ﬁa . ' (8.20)

and
”B(p):.cc)m @@)l‘(q)m“; =0, V— o0,

”C(p)t (@)m @(P}.I.a(Q);n”!‘ — U,: V — 0.

It follows from the above obtained formulae that the elgenvalue 'of eigenstate é(p), (@)m
are asymptotically equal to :

! .
Z(_E+__ >+Z( E0+2q‘—2p). (8.21)
i=1 2 =l
Thus there exists the gap equal to |A|/2 in eigenvalues of the excitations of the ground
states $ (), , the gap equal to |A| for B4y, , and [A[l/2 4 [A|m for @), ,(q)m-

There also exists the gap equal to A\ in spectra of H» that corresponds to the eigenvec-
tors fi(k) of exited pairs (see Section VI). We are not able to control behavior of f, (k)
as V' — co. It seems to us that vectors @(P)I (@)m 8180 descnbe correctly excited pairs in
the thermodynamic limit.

IX. Hamiltonian BCS and approximating Hamiltonian ‘on excifed states.
1. Operators AY, At, and A= on excited states. Consider the following excitations
of the ground state &¢

R : + A
Do), (@) = Gpy- -+ Oy ffqi aty,...a; af, &o. . (91)

Momenta (p)1, (g)m satisfy the same conditions as for F(o)e,(a)m (5€€ Sectmn VIIL1).
Consider the approximating Hamiltonian

A= Za%‘af (‘2%?1- — p) + czvpa;'afp b cz:'vpa_pap —g 1V,
7 P P

c= %Evpff(p)‘

By analogy with the ground state (see Section VII) and accerdmg to (8.3),(8.4) we
have

AI@(P)Is(E’)m = A+®(P)l:(q‘)m? = szp -p: TA_ = szpa'—pap:

A7 8 (), (g)m =97 V‘b@)t,(q)m +C-B(p)¢.(q}m@(1=):.(q)m +CZ”;‘£ O (q} 5 (92

=1

ISSN 0041-6053. Ykp. mam. xypu., 2001, m.53, N*-&
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whare!th&nparﬁteriggp) (4) 55 definetiastini(77) fout onethas i B vrFL(k)
k=(k)n k=(p)tsk=(g)m
instead:of 3 5,y Wil (k),-and A7 -is:the:part-of: ithe-operator A thatidescribes interac-
‘tion —:the*fourth iterm -on-the Tight:hand -side. 6f:¢8:3). If some momenta from the set
(p);, (g)m :do-not: belong tosthe ‘domam 1+ then they shetild be:omitted :in the operator

(p) L(g)m
Byanalogy with:(7:8)ithefollowingestimates-arewbsious

1 _ \/ 1 af?
7 (Ben@n Blu@nBehu@n), < 7ol +m+ Lufless,

- (93)
1_ -m 5 i “;m @ \'.!I " 1 2 9. af?
-V E'”ﬂf'.(p).,(qu’.._ 08 | U
.,= by
It:followsifrom.(9.8):that:the averages
1 . T
% -If%h.cq;m: B%p);,(q)n;_i’m..,cq)m).v 5
{m “m !
1 e i ™ . i 3 -
?_‘ I:;(gﬂq‘:@ﬁ?)n(';}ﬁ’ :;:'Uq,-@(p)”@)m) | B ©4)
1 i s i i
‘-V":,(@'(p)“ﬁ‘ﬂ“""--qu"@(n)t.(giﬁm)‘f' e @mlly ’Zl”q‘ @ (q)m

tend:to.zero.as V' — -eo for.arbitrary :fixed .l :and #m and even for.l.and m :that tend to
infinity :together withV ibut:in-such.ax weay; that Hmy,e0 (I +m)/V) = 0. Note that
D (p)15(g).m 38 Orthogonalito > 10, vy, !I)(p) _+-and:theirscalar:;productis-equal to zero.
2. Asymptotic:coincidence.of F 5: -and: - n Nowwe.are able to;prove:the following
analog of Theorem 6 about the thermodynamic-equivalence of:the Hamiltonians H and
H,,:0n'the excitations.of:the.ground states: @(P)“(?)m
'Dhemm9 .The.awerages

= > @ s A~ Ha ) B 1)y (9.5)

tend.to zero-in the thermodynamic:limit as'V — oo for-arbitrary.fixedl,m.
Proof. Consider-the identity

1 o ; !
7 (B, @ mr EA —Hap) By (g)m) =

'1--. i . .._E i pf e
=1§|(¢,(p):,(q)mw '(‘HA —4 _Z (;gm i )I -
i

207 '
-3 (3 -2 )%,E%) +

2
o .
R Al % N 'p‘i RE
+3—<(¢?cp>a,cq)m: ____(A +‘§ (Em ~ P)I %
. .2q-2 \
+_Z-(_~2—ﬂ;-~'2ﬁ)1 —Ha [Do),(@)m | - ©:6)
=1 / 2%

ASSN.004746053. Figp. sam. #ypi.,2001,m.253,/N*8
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Acccrdmg to (8.6), (8.7) the first term in (9.6) tends to zero as V' — oo (even without

term 1/V).

To estimate the second term in (9.6) we use the following ide.ntititf.s

; . ] i w
HG‘AZZ (P_ - )a;,l'a;~,+A++A“ —g"1c2V,

2m
P
©.7)
2 l 2 m 2
W, =3 N SR I, <0 & LT ol
A= Xﬁ: (2m p) ap.ar.,+A ; (2m ,u,) I ; <2m 2,11.) I,
take into account identities (9.2), and represent the second term in (9.5) as follows

1 = %

7 (%)x.mm: [&B(lp);,cq)m@(p)htq)m & CZ"’@*‘I’@:},.(&")MD . (98
i=1 v

1t follows from (9.3), (9.4) that average (9.8) tends to zero as V' — co. Thus, both
terms on the right-hand side of (9.6) tend to zero as V' — oo for arbitrary fixed I, m, and [,
m can even tend to infinity together with V but in such a way that limy .o (I + m)/V) =
0. The theorem is proved.

Note that averages

1

. v ”(Hf‘L — Ha,n) <§(P)t,(q)m ”V (9.9)
also tend to zero as V —+ 00. The proof is almost the same as in Theorcm 9

Remark. Theorem 8-also holds for arbltrary states

W= Z _Zfl(kl aiaty,. Zfl(kn)%., -—km|0>

if functions f; (k) satisfy the following condition f = supy, |f1 (k)| < oo uniformly with
respect to V. To every such states there exists corresponding approximating Hamiltonian
Ha,a with ¢ = (¢/V) 3, vp f1(p)-

Now consider the operators A7, A+, A~ on normalized excitations of the ground states

®im (8.17). By analogy with (8.13) we have the following modification of formulae (9.2)
A=Y (@) xm(@)m) A @y (g)m =
@(g)m

5 'ﬁl(@):)x‘m ((G‘)m)A+‘:D(p)z,(Q)m’
(,‘P}l,(q)m
(9.10)

A B =gV Bm+ . hi((0)1) Xm ((©)m) eBloys (@) o) (@) +
(P)E:(Q)m

+ 3 %b:((p)z)xm((q)m)cz"q o
®)1(g)m

The following estimates hold

ISSN 0041-6053. Ykp. mam. xypH., 2001, m. 53, N* 8
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11
Vv

E :»ZV ("ﬁ&&@)l«)'&m‘(@g m)m(:p‘)l g )mr ) 2 ((Q)m)B(p} : _{g)m@(p), ,(.qg,,) =
(Pritadm

Ay e T OIPRA@IPHRIP S lonr2) <
=l (PIrAlg)m A e)n P
‘J‘“—‘(‘P)l
k=(g)m

o AT ] o4 Rn) L, <
J‘?‘. Ailktmrhr, r(I "“W‘i'”ﬂf}l

m=0
1 ~ : i
7 j ‘_.Ga —(3 o ﬁ? —-‘uﬁ e, ©.11)

where:

Fril (i) = T J“f(w’ﬂn)
(@] <, | e iahd| <3
Fsupfle)],  B—mexfoh A

‘Series-(9:11)-is-.convergent-anditendsito-zereasV — couniformly with-zespectito. L. m.
‘Wethave alsosthe followingsestimatestby using:(9:3)

1 1
Vv |

I Z’ (W#L((’P) 26 Z’*‘q B i

(‘p; Ly (‘q')m

Wil S ), |

g ’%vaiwn ZJ - (P}Jlgi’xm \ |#a®)Prw? <
=0 AP R

Nitri-ﬂ'h+n ‘@2(1+m+a'l.)m

1 o Lmen g2(l+4m-+n) 1 1 3 cxﬁﬂ L
< —0 vy 1912
=0 Z @ B o r——— < 7 af%e™P . (9:12)

=0

Bheovem0:. Fheaverages V" (B (Hip — Hoo JBim,) -tend to-zero-in:the thermo-
-dynamic:limit.as'V —- co.uniformilywith respeet-toland m.

' Progf risssomermodificationiof thesproof of Theosem-9. Indeed, consider: the identity

ASSNOOHILEO5E: ¥ man: siaypr., OO, i 58, N8
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1 '
"i;@’tm; (HA - Ha,A)fI'Im);V =

= (V:+m S w0 xm (@) )@(P}:.(Q)m1¢!((P)I)Xm((_‘?)m._)X
(®)1s(@)m ¥ s

v
P; (24 -
[ - (*—— ) Z(Eé_2“)rjl@(ﬂn(ﬂm> s
i+1 =1 v

T/‘( Tm Z P ((P)r, Xm((Q)m)(I)(p};, q}m:¢£(@)£)Xm((Q)m) x

(?)I (@)m

i+1 J-1

{A+Z(——#)I+Z( 2;.-,)1 Ha i ]@'-cp)i,mm) . (9.13)
Sy

According to (8.15’) the first term in (9.13) tends to zero as V' — co (even without
factor 1/V). The second term in (9.13) can be represented as follows:

1 5
v V;+.m > (@) xm(( QJm)%}:.cq)m»
@)ir@)m .

. o ,
b (@) xm ((0)rm) [Btlp):,(q)m B o@D Vas é(p),,(g,m]) (9.14)
i=1 v

and, according to (9.11), (9.12), it tends to zero as V' — o0 umformly with respect to I, m.
To estimate the second term in (9.3) we use mequahty snmlar to the last inequality (9.4).

X. Hilbert space of excited: states. I "Ground state of the BCS Hamiltonian as
vacuum for quasiparticles. Consider the following operators

oy = ugag + w—a"'k, , al'f-'- = u;d%' +wra_g, - (10.1)

where real functions uk, i satisfy conditions
wifwE=1, ur=u_x =—W_gy Up=Uk, W= (10.2)
E E E=U_E» W= —&ky UR = Uk, k= Wk ;

and o, at < satisfy canonical anticommutation relations.

Itis easy to check that operators Qs ak also sansfy canomcal anucommutanon rela-
tions

{% oy =8m {omomr} =0, { } — (10.3)

We will say that the operator o a%' are respectively the operators of annihilation and
creation of quasiparticles.

Let us show that the ground state @g is the vacuum for the operators af, if functions
UL, Wy are chosen as follows

—f0
— =B o T (10.4)

Ve mr %'_ R

Indeed, we havg_(k = (k,1), =k = (—=k,=1), ap.= ak1,ak = ak,1,0 tk = afk,-—l)

Wy =

- ISSN 0041-6053. Yxp. mam..xyp#.,.2001, m:53, N* 8
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ap®g = (Ukak +‘wka_,;) Z Zfl (kl) G‘kx -—kx Zfl (kn) ak —J. [ 0> =

[)

= (wf} k)“—k+wk“'—k)z 'Zfl (k1) aff, 0y, - Zfl )ai oty |0)=

n=0

= tukff (k) + 'wk,) afk@g = 1 (k) — 1 (k) tat, B0 =0. (10.5)
VI+RE? 14+ 5 (8)?

Obviously e ®g = 0.

It follows from (10.5) that the ground state ®y is the vacuum for the operators o, o
of quasiparticles.

If kK ¢ D then o = ay, a;“ = a,f and operators of creation and annihilation of
quasiparticles coincide with corresponding operators of particles.

Remark. Note that we used, according to [2, 3], an odd potential v, = —v_j and odd
functions fﬂ.(kl) SR R n n) = _fn(kla ) ') i !kn)l f](_)(_k) = _ff(k)'
It can also-be used, accordlng to, [4], an even potent1a1 v—r = v} and even function
fn(kl;--- | t: L :kﬂ-) fﬂ(kl:"' y gy :}"ﬂ) ( ;"’) f]?(k')'

In the second case instead of (10.1) we havc

Cap =urar+wpaly, o =ural +wia_k,
| (10.17)
k= UkaG—_k — Wka}, at, = upat, — wpa.

In what follows we will use both cases.

The ground states $¢ can also be represented as follows

%o =T] (1 + 7 (k) afaty) |0) =
k
e !
=2 2, fHk)...f (ka)aiaky,...af o, |0),
=0k, .7k, :
’ 1 2
(@0, 80)y = [T (1+ 5 (200)°). 106
k
Consider the states
1
=of...atatat +
PE)(Dm = Qg g a0 al, @ (To, Bo)y (10.7)

that are excitations created by quasiparticles where momenta (p);, (¢)rm satisfy the same
conditions as for ® (), (g)m> Pim-
Itis easy to check that

+q;0 = (“;oa +wpa_p)Po =4/1+ (R 20 H 1+ 17 k)a‘k G—k)io)

k#p
o:fptliu = (upat, +wpay)Po = 1+ (f:{] (P)I)zaip H(l + f(k)axaty)|0),
. k#p
ofat B0 = (—f9(q) +aFat,) T] (1 + £ (k)afat,)|0). (10.8)

k#q

ISSN 0041-6053. Yp. mam. xypn., 2001, m. 53, N° 8
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By using formulae (10.8) we represent ¢(p), (q), 2 follows

1

PONiIm = 11 (\/1 + (7 (p))ﬁa;) X
) w5 i=1" ' A
1 (R +agat,) TI  (1+A@atat)io. @09
=1 i k#(2)i1#(q)m ’ :

We define scalar product of ©(), ,(q). s before for &y, (g, - Namely, we-use usual
calculation with the operators of -creation and annihilation a.}f, at k> @k, a—p, and'then,
in the sums over (p)i, (¢)m, (k)n in the expression cbtained, we insert the factor V-—-+m+n

or multiply each of fP(p1),..., f2(m), f(qr),- -, 1L (gm), FL (K1), , 2 (n) by
V~1/2, For example, . oy
(o0 0ty = (14 HEOF) ook 3 (R ()
n=0 ki FEknFEp

Obviously scalar pmducts of Y(p),,(q)rm With different form either (p); or (g)m are equal
te zero. For example, ;

' 1 1 N i O '
(@0, 0fot,30)y = (~5: 2+ T;ff(q)) IT (1+ 52 ) =o.
: kP
It is easy to check that states @(y),,(q), areorthogenal. Further we have

H( fl._(q’) +af;-5 —qj) =

3-—1

=> > (—U’ff(q:-l) S@)ad oty o af oty ., (10.36)

§=0 (i1, 41a)

(jl  ALL] Jrrl—a)
where summation is carried over all dccoﬁposiﬁons of the set of mumbers (1,...,m)
into two subsets Bryeas 88)s (v admes)s

Inserting this formu]a in (10.9)-we see that @(p), (q),, 16 the finite sum: of 2™ terms
D@ (p)1,(g)m—» Where 0 < s < m and therefore the Theorems 7 :and-9:are also true for
PO (@)m It is sufficient to put ¢(y), (q).. instead of _;"(,,)I (@)m 1D (8 9) and: instead of

Consxder normahzed states

Z Wy ((P Xm((Q)m)‘P{p);,(q)m o b B (10.11)
®)1,(g)m = i

with the same conditions imposed on %;, Xm as in Theorems 8 and 10. Tt is easy to
‘see that the Theorems 8’ and 10 hold for (¢, because ., consists from 2™ -orthagonal
terms (as it follows from (10.10)) and in order to estimate (@i, (HA — Ha,a)Pim)-it is
sufficient to insert the additional factor 4’“,82"“ (8 = max {1 f,‘q‘), x}) in-series(9.11),
(9. 12) Obviously one obtams aga,m convergent series.

~ To caleulate (gim, (HA —Ha,A)®1m), We use usual calculation with the operators aj;,
aty, ak, a_, and, in the sums over (), (¢)m., (k) in the expression obtained, we insert
the factor V—t+m+n,

ISSN 0041:6053. ¥xp: mam. #ypH., 2001 -m. 53, N*8
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.,a.': [ pa + _+ ra Ziﬂ-}i 10.1
B =TI+ 7 Cated)io)y  F0 == (10.19)
is.the vacuum for the operators given-by formulae (10.14). Indeed, by direct calculation
one checks that

2=0, a8 =0

‘Wesay that-the operators oy cx%' are the operators-of annihilations and creations of

the quasiparticles with vacuum ®§. They satisfy the same canonical anticommutation

relation (10.3) i '
Consider-the excited states

1
. + + 4+ ot + 4t a
go(?)h(?)m - O gy Fegy - quma_qm@U (leéa.)f )

(10.20)
; 1 2
(@5, 98)y =T (1 + 578k ).
\®0: R0y 1;[( 7o )

They also are orthonormal as well as ©(p),,(g)m-

The excited states ©(p),,(q),, a0d $fpy, (), for (P)1 C D, (¢)m C D constitute as
different orthonormal systems a finite-dimensional Hilbert space.

The vacuum-®gis the eigenvector of the Hamiltonian H, 4 (10.10) with eigenvalue

Ey=V {%}-Z [ap_ = \/sg + c%g] = g‘"lfﬁz} : (10.21)
P

The excited states @7, -y (10.18).also are the eigenvectors of H, 5 with eigenvalues

) ] m
Eg' +Z Epé + Z 2Eqa:

i=1 =l -

- (10.22)

Ha, 60y () = [ZEm-NZE +E0} o’

i=1 i=1

“Thus we have two systems of the.operators of annihilations-and creations-(c, 0‘% ) of
quasiparticles. The first.one (10.1) is connected with the ground state ®q of Hy as.the
vacuum, the second one (10.14) is-connected-with the ground state- ®% of Hy . The both
systems.are not.unitary equivalent [5],to each other in the thermodynamic:limit-because
canonical transformations (10.1), (10.14).do not satisfy necessary conditions of.unitary
equivalence,

3. Equation for the constant. The ground state was not yet deﬁned completely be-
.cause the constant

Cp

C= -T‘g;‘lz%ff(p), )= ol 2p2/2m)+2}.£

was not yet.determined.

As it is commonly accepted in qua:ntum stanstlcal mechanics the constant ¢ should be
determined from the condition of minimum of the average energy per volume E“ of the
ground state ®F of the Hamiltonian Hy 4. i

ISSN 0041-6053. Ykp. mam. syph., 2001,,m. 53, N* 8
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Iione considersmadel with:differentiffomrzera.temperature: then the: constant.c-should:
be determined:from-the: condifion offminimaum-of:the. free.energy per volume: If-will ‘be
done in the-third past:ofgiven.work..

- 4; Hamilfonian:BCS:on.ground of rhaappmmmaﬁn&ﬁﬁmﬂmnmm Considér vacumm
state; (10:19) of Hg A

= E[ (LA-f(k)aat )0y =

= Eﬁzfa(kl)@a@tk1 R ij (kw)at. ai}cﬂ 0);
ne=0:" k. e

(10:23).-

Fok) = e+ g~ Sk
: L\ Elto/ & + 2

The state. &§ satisﬁe&thg:eondtb.@ns.»of:’l‘haorem:.g-‘and;.tb;'t-x-s;
i = (B8 HASS)yr = Jim: = (8, Ha,a B8)
H,n®5 = (Ho +e1. Z vratal) 4-o1. kawa"kal —gF lc%V) g, (10.24) .
.= Vzw (1025)
In the right-hand:side of{(1Q:24)we Have-again:H} aButwiflvconstant:c; instead:ofic. As

knowmn: the constant' ¢y should'bedeterminedfrom-condition:of minimum:ofithe fanction:
equdlitorenergy-of ground:state: &g withwespectito the! HamiltoniansHg, a:(10.24)"

_ I %E (gp —-4...,-"5%_-—}— c%v?;) —ef= f(c;)
=

But we already know: thiat'constantic sheuldbe determined from: condition of minimum
of f(e;) with respectto .
‘We:have the.condition ofiminimum-

. : df{er) _ df{er) dey _
) de dey de
According t0-(10:25)
dey g vRex

G T%2 s \/52 o2 (.r-:;c +~\7/52-+ 021}2)

df. (61)

Iﬁimputp:() thausk>03nd—-~>DIlns1mpHes-that = 0 if and

dé
d
f (Cl) = 0: Thus the conditien:of: minimumsof energy. of the ground state. $F

df (Cl)_
. déf

only if. ——=

with resp ect to.¢ reduce:to condition:
sufficiently small .

The function: f* (k) is beunded unifosmly: with-respect:to:V and.tha Theorem 9 is true:
for: ‘FZ(P)IW (q)m wiell as:for-

0, ie, tominimunrwith respect-to ¢ for.

LSSNODAT 60533, Xepe Mapmw #ypH., 2001 nui 53, N8-8¢
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=+ W% (P)I)Xm((Q)m)'P(P)h(Q)m

(p)h(q)m

with constant ¢; in H, . The constant ¢ should be determined as above.

XI. Thermodynamic equivalence of H s and H, 5. 1.Averages pervolume qf Hp
and H, . It follows from the Theorems 9, 10 that

1 £
Jim = (B (g (HA = Ha,n) Bio)(a)m )y = O
- L1

l I
llmm ".‘7.' (‘P[m, (HA = HG,A) Qﬂm)v = U:
and even

lim —[1(HA~ m)‘f’cp)f.(q)m”v

Voo V

As it follows from Section X.1, the Theorems 9 and 10 are true for the system (), (¢)m
and ¢y, and equalities (11.1) imply

I

e | : :
S = () tym: (Ha = Hed )o@, @m)y = 0

il .
Vlim = (@im, (Ha — Ha,p) im) =0, (11.2)

V—l-oo

lim + II(HA Haop) @)n@mlly =0

As mentioned abova SYStem @(p),,(q)ms b = 0 m = 0 are orthonormal bascs in Hilbert
space P created by operators af |, aif _, with k C D and, thus, an arbitrary f C HE
can be represented as linear combination of ¢(p), (¢),n- It follows from it and (11.2) that
the following equalities are true ’

j. , "ok . ' 1, !
Tf(f} HAf}V =J}_{Ilm'ﬁ(faffa,1\f)v:

Jm,
o e s

for arbitrary f C HR that are finite linear combinations of ‘P(p):,(q}m or (p;m We have
proved the following theorem.

Theorem 11. The averages per volume (11.3) of the Hamiltonians Hp and Hg
coincide for arbitrary. f C MR that are finite linear combinations of P(p),,(q)m OF Plm-

Consider as orthonormal base the excited states ¢,y oy = (10.20) and denote by
'H.?‘“ the Hilbert space with.this base. The Hilbert spaces HR and 'Hg‘“ are not uni-
tary equivalent in the thermodynamic limit because canonical transformations (10.1) and
(10.14) do not satisfy necessary conditions of unitary equivalence [5] (operators of multi-
plication do not belong to Hilbert — Schmidt class). H ? and H?‘“ are unitary equivalent
for fixed V, because they are finite dimensional spaces: - : :

Note that Theorem 11 is also true for arbitrary f C ‘Hg’“ that are finite linear combi-
nations of @) o\ = or ¢f, because Theorems 9, 10 are also true for ¢, ) and Plms
respectively,
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‘}Enw v (‘P?P%(q)m (Hx = Ho ) $p @) ) = O

(‘le! (HA E.A)(P?m) = 0) i (114)

JEPJ | Bk~ o)t | = 0
If one chooses the excited states (P?p}l (@)m? [ > 0, m > 0 then the averages

!
o ((P(F)h(‘i")m 1 Ha’A(pr)h(?Jm_ ) v

can be calculated exactly because states cp?p) (@ 2TE eigenvectors of H, . Taking into
account (11.4), one can conclude from this that the averages

!
Jim o (W(pal,tq)m : HW(p)x.(qu)
can also be calculated exactly. :
Thus, equalities (11.3) hold for above described sets from H% and ‘Hg '*, We say that
the Hamiltonians Hy and Hj , are thermodynamic equivalent in this sense.
- 2. Two systems-of eigenvectors. We have two systems of eigcnvector& with correspon-
dent eigenvalues. The first one @( e with eigenvalues nFg + thl (;o1 /2m — ,u) +

+ 2,=1 (242 /2m — 2p). The second one @f,, ) With eigenvalues Ef + Y i B+
2™  B,,. The first one are asymptotic when V' — oo, eigenvectors of H, the second
one are eigenvectors of Hp,qo. Note that B (- tends to infinity as V' — oo and all the
spectra corresponding to the system ®§, ) . is shifted to infinity. At first sight, this
contradicts equalities (11.2) and (11.4). Now we show that there are no contradictions.

In proving (11.2) as well as (11.4), we used tepresentation of H, 4 (10.10) through
the 0perators At A~ and g71PVI

Hop = ZG’;G? (g—m - ,u) +¢) upafat, +e) vpa_pa,— g EVI=
7 P P

2
=S atap (gp—m = ,u,) + AT+ A- =g 1V]

and the fact that, according to (9.2) —(9.4), the operators A~ and g~V I asymptotically
coincide

v (‘I)(PJI:(Q)m’ (A —g%c IV) @(p)u,{q)m)v

V—aoo
!

1 :
= (Q(”“m’“’ [QB%”"(“)’“ Bentam + CZ Vas q’(p).,(";“)mD -
i=1 Vv
In order to prove (11.4), we first consider the.operator H,  without the operator
—g~1c?*V1 diagonalized it and-add the operator —g~*c?V I after the diagonalization. We
obtain (10.16 )

Ha,:‘\, e ZEPQ;’I:&!_J_l' Vv [% Z I:EP —_ "8127 + 02‘1}%] _ g--].CZI:|
7

and then proved that ®§ is the ground state of H,, 4 and Plo)s(a)m Ax€ the exited states.
Performing these calculations we did not use the asymptotic coincidence of A~ and
g~ 1c?VI. In fact, if one uses asymptotic coincidence of A~ and g~1c?VI on ¢(z), () m
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then one obtains (11.2) and (8.20), (8.21), and if one uses the operator H, 4 + g~ *c*VI
on ¢, (o), then one obtains (11.4) and (10.22).

It seems to us that in papers [2 — 4, 6 — 8] have been used implicit only system ®§,
Plo)is(@)m? 1T 2 0. Namely in papers [2, 3, 6, 7] it has been considered the Hamiltonian

Hyp =HA+VZ.?23(G%'"£T,.+&_5G$) . . (11.5)
2

with sources proportional to the small parameter ».
- Itis obviously that the Hamiltonian H,, 4 can not have eigenvectors in n-particle sub»
spaces. '
If eigenvectors of Hy, A continuously depend on v then in limit v — 0, V — oo the
Hamiltonian Hy has only eigenvectors $§, o) (@m? I+ m> 0.
There exists an open problem concerning physical consequences of existence of the
second, asymptotics as V' — oo, system of eigenveqtors Do, P(p)1,(a) m',"l +m > 0.
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