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About one extremal problem for open sets and
partially non-overlapping domains
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Abstract. Sharp estimates of product of inner radii for pairwise dis-
joint domains are obtained. In particular, we solve an extremal problem
in the case of arbitrary finite number of free poles on the system points
on the rays.
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1. Introduction

This paper belongs to the theory of extremal problems on classes of
disjoint domains, which is a separate direction in the geometric theory of
functions of a complex variable. The start of these investigations is asso-
ciated with the paper by M. A. Lavrent’ev [1]. He found the maximum
of some functional with respect to two simply connected domains with
two fixed points. We note that he applied this result to some aerodynam-
ics problems. In 1947, G. M. Goluzin solved a similar problem for three
fixed points on the complex plane [2]. Then the topic began to evolve
rapidly. In this connection, we may recall papers of many authors, includ-
ing Y.E. Alenitsin, M. A. Lebedev, J. Jenkins, P.M. Tamrazov, P. P. Ku-
farev, and others. Using the idea of P.M. Tamrazov, G. P. Bakhtina
solved, for the first time, the problem with the so-called “free poles” on a
unit circle (see, e.g., [3]).

An important step for the development of this topic was the papers
by V. N. Dubinin. He proposed a new method of piecewise separating
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transformation and first solved a number of extremal problems for any
multiconnected disjoint domains (see, e.g., [4–6]). Now, this type of ex-
tremal problems is used in investigations in the holomorphic dynamics.

In the last decade, Bakhtin’s method of “managing functional” is ac-
tively used. A. K. Bakhtin solved a number of extremal problems for
the so-called “radial systems of points” (see, e.g., [4, 7–20]). Namely this
method will be applied in what follows.

Let N and R be the sets of natural and real numbers, respectively,
let C be the plane of complex numbers, and let C = C

∪
{∞} be the

Riemannian sphere, R+ = (0;∞).
For a fixed number n ∈ N of points

An = {ak}nk=1 ,

the following relations are valid:

0 = arg a1 < arg a2 < ... < arg an < 2π. (1.1)

For such systems of points, we consider the following sizes:

σk =
1

π
(arg ak+1 − arg ak) , k = 1, 2, ..., n, an+1 := a1.

Consider the system of angular domains

Mk := {w : arg ak < argw < arg ak+1} , k = 1, n, an+1 := a1,

and the following “managing functional” for an arbitrary system of points
An:

T(An) =

n∏
k=1

χ

(∣∣∣∣ akak+1

∣∣∣∣ 1
2σk

)
|ak|,

where χ(t) = 1
2(t+

1
t ).

Let D, D ⊂ C, be any open set, and let the point w = a ∈ D. By
D(a), we denote a connected component of the set D, which contains the
point a. For an arbitrary system of points An = {ak ∈ C : k = 1, n},
satisfying condition (1.1) and for the open set D, An ⊂ D, we denote, by
Dk (as) , the connected component of the set D (as)

∩
Mk containing the

point as, k = 1, n, s = k, k + 1, an+1 := a1.

We say that the open set D, An ⊂ D, satisfies the condition of dis-
jointness relative to the system of points An, if the relation

Dk(ak)
∩
Dk(ak+1) = ∅, (1.2)
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k = 1, n, on all angles Mk, holds.
System domains {Bk}nk=1, k = 1, n, the define system partially non-

overlapping domains, if

D :=
n∪
k=1

Bk, (1.3)

is open set, if she meets a condition (1.2).
Let

gB (z, a) = hB,a(z) + log
1

|z − a|

be the generalized Green function of a domain B relative to the point
a ∈ B. If a = ∞, then

gB (z,∞) = hB,∞(z) + log
1

|z|
.

The quantity
r(B, a) := exp (hB,a(z))

stands for the internal radius of the domain B ⊂ C relative to the point
a ∈ B (see [4–6,16,17,21]).

We use the concept of a quadratic differential. We note that the main
results on the theory of quadratic differentials can be found in work [22].

In what follows, we consider the following problems.

Problem 1. Let n ∈ N, n ≥ 2, α ≥ 0. To find a maximum of the
functional

n∏
k=1

(|ak+1 − ak|α · r (D, ak)) ,

where An = {ak}nk=1 is any ray system of points that satisfies condition
(1.1), D is an open set that satisfies condition (1.2), ak ∈ D ⊂ C, and to
describe all extremals (k = 1, n).

Problem 2. Let n ∈ N, n ≥ 2, α ≥ 0. To find a maximum of the
functional

n∏
k=1

(|ak+1 − ak|α · r (Bk, ak)) ,

where An = {ak}nk=1 is any ray system of points that satisfies condition
(1.1), {Bk}nk=1 is any collection of partially non-overlapping domains that
satisfies condition (1.3), ak ∈ Bk ⊂ C, and to describe all extremals
(k = 1, n).
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2. The case of open set

Lemma 2.1. The function

P (τ) = ln sin
πτ

2

is convex for τ ∈ (0, 2).

The proof of the lemma can be found in the papers [20].

Theorem 2.1. Let n ∈ N, n ≥ 2, α ≥ 0. Then for all system points
An = {ak}nk=1, the satisfied condition (1.1) and condition

(|ak| − |ak+1|)2 = 4 sin2
πσk
2

(1− |ak||ak+1|) , k = 1, n, (2.1)

arbitrary open set D, the satisfied condition (1.2), ak ∈ D ⊂ C, k = 1, n,
be satisfied inequality

n∏
k=1

(|ak+1 − ak|α · r (D, ak)) ≤
(
2α+2

n
· sinα π

n

)n
· T (An) .

The equality obtain in this inequality, when D =
n∪
k=1

Bk, where points ak

and domains Bk are, conformity, the poles and the circular domains of
the quadratic differential

Q(w)dw2 = − wn−2

(wn − 1)2
dw2. (2.2)

Proof. At once we will note that from the condition of unapplying fol-
lows that capC\D > 0 and set D possesses Green’s generalized function
gD(z, a), where

gD(z, a) =


gD(a)(z, a), z ∈ D(a),

0, z ∈ C\D(a),

lim
ζ→z

gD(a)(ζ, a), ζ ∈ D(a), z ∈ ∂D(a)

– Green’s generalized function open set D concerning a point a ∈ D, and
gD(a)(z, a) – Green’s function domain D(a) concerning a point a ∈ D(a).

Further, we will use methods of works [4, 6, 7]. Sets we will consider
E0 = C\D; E(ak, t) = {w ∈ C : |w − ak| 6 t}, k = 1, n, n > 2, n ∈ N,
t ∈ R+. The condenser we will enter into consideration for rather small
t > 0

C (t, D, An) = {E0, E1} ,
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where

E1 =

n∪
k=1

E(ak, t).

Capacity of the condenser C (t, D, A2n,2m−1) is called as ( [4], [6])

cap C (t, D, An) = inf

∫ ∫ [
(G′

x)
2 + (G′

y)
2
]
dxdy,

where an infimum undertakes on all continuous and to the lipschicevym

in C functions G = G(z), such that G
∣∣∣
E0

= 0, G
∣∣∣
E1

= 1.

Let is named the module of condenser C, reverse the capacity of
condenser

|C| = [capC]−1

From a theorem 1 [16] get

|C (t,D,A2n,2m−1) | =
1

2π
· 1
n
· log 1

t
+M(D,An) + o(1), t→ 0, (2.3)

where

M(D,An) =
1

2π
· 1

n2
·
[ n∑
k=1

log r(D, ak) + 2
∑
k ̸=q

gD(ak, aq)
]
. (2.4)

Function

ζk (w) = −i
(
e−i arg akw

) 1
σk , k = 1, 2, . . . , n (2.5)

realizes univalent and conformal transformations of domain Mk to the
right half-plane Reζ > 0, for all k = 1, n.

From a formula (2.5) we receive the following asymptotic expressions

|ζk (w)− ζk (am)| ∼
1

σk
|am|

1
σk

−1 |w − am| ,

w → am, k = 1, 2, ..., n, m = k, k + 1. (2.6)

It’s obvious that

ζk (ak) = −i|ak|
1
σk , ζk (ak+1) = i|ak+1|

1
σk , k = 1, 2, ..., n, an+1 := a1.

(2.7)
For any domain ∆ ∈ C the define (∆)∗ :=

{
w ∈ C : w ∈ ∆

}
.

LetΩ
(1)
k define connected component ζk

(
D
∩
Mk

)∪ (
ζk
(
D
∩
Mk

))∗
,

containing a point ζk (ak), a Ω
(2)
k−1 – connected component



A. L. Targonskii, I. I. Targonskaya, K. Vashenko 233

ζk−1

(
D
∩
Mk−1

)∪ (
ζk−1

(
D
∩
Mk−1

))∗
, containing a point ζk−1 (ak),

k = 1, n, Ω
(2)
0 := Ω

(2)
n . It is clear, that Ω

(s)
k generally speaking, domains

are multiconnected domains, k = 1, n, s = 1, 2. Pair of domains Ω
(2)
k−1

and Ω
(1)
k grows out of piece-dividing transformation open set D concern-

ing families {Mk−1,Mk}, {ζk−1, ζk} in point ak, k = 1, n, M0 := Mn,
ζ0 := ζn.

Let’s consider condensers

Ck (t, D, An) =
(
E

(k)
0 , E

(k)
1

)
,

where

E(k)
s = ζk

(
Es
∩
P k

)∪[
ζk

(
Es
∩
P k

)]∗
,

k = 1, n, s = 0, 1, {Mk}nk=1 – the system of corners corresponding to
system of points An; operation [A]∗ compares to any the set A ⊂ C a
set, symmetric a set A is relative unit circle |w| = 1. From this it follows
that to the condenser C (t, D, An), at dividing transformation is relative
{Pk}nk=1 and {ζk}nk=1, there corresponds a set of condensers the system of
corners corresponding to system of points An; operation [A]∗ compares
to any the set A ⊂ C a set, symmetric a set A is relative unit circle |w| =
1. From this it follows that to the condenser C (t, D, An), at dividing
transformation is relative {Mk}nk=1 and {ζk}nk=1, there corresponds a set
of condensers {Ck (t, D, An)}nk=1, symmetric relatively {z : |z| = 1}.
According to works [4, 16], we will receive

capC (t,D,An) >
1

2

n∑
k=1

capCk (t,D,An) . (2.8)

From here follows

|C (t,D,An) | 6 2

(
n∑
k=1

|Ck (t,D,An) |−1

)−1

. (2.9)

The formula (2.3) gives a module asymptotics C (t, D, An) at t→ 0,
and M (D,An) is the given module of a set D relatively An. Using
formulas (2.6) and that fact that a setD meets the condition of unapplied
in relation to the system of points An, for condensers we will receive
similar asymptotic representations Ck (t,D,An), k = 1, n

|Ck (t,D,An) | =
1

4π
log

1

t
+Mk (D,An) + o(1), t→ 0, (2.10)
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where

Mk (D,An) =
1

8π
·

log r
(
Ω

(1)
k , ζk (ak)

)
1
σk

|ak|
1
σk

−1
+ log

r
(
Ω

(2)
k−1, ζk−1 (ak)

)
1

σk−1
|ak|

1
σk−1

−1

 .
By means of (2.10), we receive

|Ck (t,D,An)|−1 =
4π

log 1
t

·

(
1 +

4π

log 1
t

Mk (D,An) + o

(
1

log 1
t

))−1

=
4π

log 1
t

−

(
4π

log 1
t

)2

Mk (D,An) + o

( 1

log 1
t

)2
 , t→ 0. (2.11)

Further, from (2.11), follows that

n∑
k=1

|Ck (t,D,An)|−1

=
4πn

log 1
t

−

(
4π

log 1
t

)2

·
n∑
k=1

Mk (D,An)+o

( 1

log 1
t

)2
 , t→ 0. (2.12)

In turn, allows (2.12) to receive the following asymptotic representa-
tion (

n∑
k=1

|Ck (t,D,An)|−1

)−1

=
log 1

t

4πn
·

(
1− 4π

n log 1
t

·
n∑
k=1

Mk (D,An) + o

(
1

log 1
t

))−1

=
log 1

t

4πn
+

1

n2
·
n∑
k=1

Mk (D,An) + o(1), t→ 0. (2.13)

Inequalities, (2.8) and (2.9) taking into (2.3) and (2.13) allow to no-
tice that

1

2π
· 1
n
· log 1

t
+M(D,An) + o(1) 6

log 1
t

2πn
+

2

n2
·
n∑
k=1

Mk (D,An) + o(1).

(2.14)
From (2.14) at t→ 0 we receive that

M(D,An) 6
2

n2
·
n∑
k=1

Mk (D,An) . (2.15)
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Formulas (2.4), (2.10) and (2.15) lead to the following expression

1

2π
· 1

n2
·
[ n∑
k=1

log r(D, ak) + 2
∑
k ̸=q

gD(ak, aq)
]

≤ 1

4πn2
·

 n∑
k=1

log
r
(
Ω

(1)
k , ζk (ak)

)
1
σk

|ak|
1
σk

−1
+

n∑
k=1

log
r
(
Ω

(2)
k−1, ζk−1 (ak)

)
1

σk−1
|ak|

1
σk−1

−1

 .
Thus, taking into (2.1), we receive

n∏
k=1

(|ak+1 − ak|α · r (D, ak)) ≤ 2nα ·
n∏
k=1

σk |ak|

|ak|
1

2σk · |ak|
1

2σk−1

×
n∏
k=1

sinα
πσk
2

·
n∏
k=1

(
r
(
Ω

(1)
k , ζk (ak)

)
· r
(
Ω

(2)
k , ζk (ak+1)

)) 1
2
. (2.16)

The equality obtain in this inequality, when points ak and domains
Bk are, conformity, the poles and the circular domains of the quadratic
differential

Q(ζ)dζ2 =
dζ2

(ζ2 + 1)2
. (2.17)

Using the Lemma 2.1 that the function α ln sin πσk
2 , is convex for

σk ∈ (0; 2) , α ≥ 0. Hence, when σk ∈ (0; 2), then

α

n
·
n∑
k=1

ln sin
πσk
2

≤ α ln sin

(
π

2
· 1
n

n∑
k=1

σk

)
.

Given that
n∑
k=1

σk = 2,

we obtain
n∏
k=1

sinα
πσk
2

≤ sinnα
π

n
. (2.18)

The equality obtain in this inequality, if and only if

σ1 = σ2 = ... = σn =
2

n
.

Then from (2.16) using formulas (2.18) it is received the following
ratio

n∏
k=1

(|ak+1 − ak|α · r (Bk, ak)) ≤
(
2α+2

n

)n
· T (An) · sinnα

π

n
.
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The equality obtain in this inequality, when points ak and domains
Bk are, conformity, the poles and the circular domains of the quadratic
differential (2.2). It is derived from the square of the quadratic differen-
tial (2.17) conversion using

ζ = −iw
n
2 .

3. The case of partially non-overlapping domains

Theorem 3.1. Let n ∈ N, n ≥ 2, α ≥ 0. Then for all system points
An = {ak}nk=1, the satisfied condition (1.1) and condition (2.1), arbi-
trary system partially non-overlapping domains Bk, the satisfied condi-
tion (1.3), ak ∈ Bk ⊂ C, k = 1, n, be satisfied inequality

n∏
k=1

(|ak+1 − ak|α · r (Bk, ak)) ≤
(
2α+2

n
· sinα π

n

)n
· T (An) .

The equality obtain in this inequality, where points ak and domains Bk
are, conformity, the poles and the circular domains of the quadratic dif-
ferential (2.2).

Proof. In case of partially non-overlapping domains, the open set is en-
tered by a representation (1.3), which satisfies (1.2). From here, we have

Bk ⊂ D, k = 1, n. (3.1)

From (3.1), we receive, using results works [5, 6, 21]

r (Bk, ak) ≤ r (D, ak) , k = 1, n. (3.2)

Multiplying inequalities (3.2), we draw a conclusion

n∏
k=1

(|ak+1 − ak|α · r (Bk, ak)) ≤
n∏
k=1

(|ak+1 − ak|α · r (D, ak)) .

We receive an end result using the theorem 2.1.
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