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Factorization of generalized
v-generating matrices

OLENA SUKHORUKOVA

(Presented by V. O. Derkach)

Abstract. The class of y—generating matrices and its subclasses of reg-
ular and singular y—generating matrices were introduced by D. Z. Arov
in [8], where it was shown that every y-generating matrix admits an es-
sentially unique regular—singular factorization. The class of generalized
~-generating matrices was introduced in [14,20]. In the present paper
subclasses of singular and regular generalized y-generating matrices are
introduced and studied. As the main result of the paper a theorem
of existence of regular—singular factorization for rational generalized ~-
generating matrix is found.
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1. Introduction

The notion of a y—generating matrix was introduced by D. Z. Arov
in [8] in connection with the study of completely indeterminate Nehari
problem on the unit circle T (see [1,2,10]), and for a real line R (see [10]).

1, 0
Let jpg = | / | We recall that a mvf (matrix valued function)
—1q
ail a2 .
A = , where a1 and ago are p x p and ¢ x q blocks, respectively,
az1 @22

is called a 7-generating matrix of the class M (j,q), if:

(1) 2 is measurable on R and takes jp,-unitary values for a.e. p € R;
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(2) ag2(p) and aj,(p) are boundary values of holomorphic mvf’s aga(\)
and aﬁ()\), such that ay and (a;fﬁl)*1 are outer mvf’s from the
Schur classes SP*P and S7%9, respectively;

(3") s91 := —a;zlagl belongs to the Schur class S9*P of holomorphic in
C. with values in the set of contractive mvf’s, i.e. I,—s(\)*s(A) >0
for every point A € C,.

The class 9( Jpq) of left ~-generating matrices was introduced in [8] as
the set of mvf’s 2(u) which satisfies (1), (2) and

(36) S19 1= a12a2_21 € §P*4,

As was shown in [1,2], any solution of a completely indeterminate matrix
Nehari problem can be represented in the form

F(p) = Tuls] = (arn (w)s(u) + ara(p))(azi(m)s(p) + az2() ™, (1.1)

where 20 € 9" (jpg), and s is a mvf of the Schur class SP*9.

A mvf 2 € M"(jp,) is said to be right singular y-generating matrix
if Ty[SP*] C SP*4. A mvf A € M"(j,q) is said to be right regular
~v-generating matrix if the factorization 2 = 2012y with a factor 2; &
M, (Jpg) and a right singular factor Ay implies that Ay is constant. These
two subclasses of 9" (j,,) will be designated D" (j,g) and M"E(j,,),
respectively.

Similarly, the classes 9% (j,,) and M F(j,,) were introduced in [8,
10] and in fact the classes ™ (j,,) and M (j,,) coincide:

S)ﬁs(qu) = mr,S(qu) = Sﬁg’s(qu)-

As was shown in [8] a resolvent matrix 2 which describes solutions of
the Nehari problem is a right regular ~-generating matrix.

In [8] it was shown that any -y-generating matrix admits a factoriza-
tion

A=A Ay, where Ay € ME(,,), Az € M5 ().

Classes M (jp,) and M (jpq) of generalized ~y-generating matrices
were introduced in [14,20], where also connections between generalized +-
generating matrices of the class MM (jip,) (resp. M (jpy)) and generalized
jpg-inner mvf’s of the class U (jp,) (resp. UL(jpq)) were established.

Sufficient conditions for regular—singular factorization of generalized
Jpg-inner mvf were found in [15]. In the present paper the notions of
singular and regular right and left generalized ~-generating mvf’s are
introduced and studied.

Sufficient conditions for existance of regular-singular factorization for
right and left generalized v-generating mvf’s are also found.
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1.1. The generalized Schur class

Let 4 be equal to either D ={A € C: [A\| <1} or C; ={A € C:
—i(A — ) > 0}. Let us set

1— )@, if O, =D
Pw(N) = . _ .
—27TZ()\ — (.U), if Q+ = C+.

and let Q_ = {w € C: py(w) < 0}. Then Qq := 9 is either the unit
circle T, if Q4 = D, or the real line R, if QO = C;..

Let £ € Z4+. Recall [5], that a Hermitian kernel K,(A) : @ x Q —
C™*™ ig said to have xk negative squares, if for every positive integer n

and every choice of w; € Q and u; € C™ (j =1,...,n) the matrix

(upKo, (Wr)ug)i =y

has at most s, and for some choice of n € N, w; € {2 and u; € C™ exactly
K negative eigenvalues.

Denote by bhs the domain of holomorphy of the mvf s(\) and let us
set l‘)si =bhs N Q.

Let SI*P denote the generalized Schur class of ¢ x p mvf’s s that are
meromorphic in €4 and for which the kernel

I, — s(A\)s(w)*
pu(A)

has x negative squares on hT x hF (see [17]). In the case where k = 0
the class S¢™* coincides with the Schur class ST*P. A mvf s € ST*P is
said to be inner (s € STP), if I, — s(p)*s(u) = 0 for a.e. point u € .
Mvf s € ST*P is said to be outer (s € SLF), if sH) = HJ.

As was shown in [17] every mvf s € SI™ admits a factorization of

the form

A (N) = (1.2)

s(A) = be(N)7Lse(N), e, (1.3)

where by € ST is a ¢ x ¢ BP (Blaschke Potapov) product of degree &
(see. [10]), s, € S7*7 and

rank | by(A)  se(\) ] —q (AeQ). (1.4)

The representation (1.3) is called a left KL (Krein—Langer) factorization.
Similarly, every generalized Schur function s € ST*7 admits a right KL-
factorization

s(A) = s,(\)b. (N1 for A € b, (1.5)
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where b, € SP*P is a BP-product of degree k, s, € ST*P and
rank | b.(A\)* s.(A\)* | =p (AeQy). (1.6)

Recall the notations (see [10]): RP*? — the class of rational p x ¢ mvf’s,

NPT ={f=h""g: g€ HEZYQx),h € 83! () };

out

Aprq:{f:h_lg:gespthGS]-Xl .

out out out

The limit values f(p) of mvf f(A) € NP*(CL) (NP*4(D)) are defined
a.e. on R (T)

f(w) = lin flu+iv) (f(p) = limn f(rp)). (1.7)

Similarly, the limit values of f € NP*9(Q_) are defined a.e. on Q.

Definition 1.1. A pxq muf f_ in Q_ is said to be a pseudocontinuation

of a muf f € NP4, if
(1) 17 € NPX4;
(2) f-(1) = f(n) a.e. on .

The subclass of all muf’s f € NP*Y that admit pseudocontinuations f_
into Q_ will be denoted TIP*1. Sometimes the superindex p X q is dropped
and we denote this class by 11 if it does not lead to confusion.

1.2. Generalized j,,-inner mvf’s

Definition 1.2. [4,13] An m x m muf W () that is meromorphic in 4
is said to belong to the class Uy (Jpq) of generalized jpq-inner muf’s, if:

(i) the kernel
= W(A)jpgW (w)*
pu(X)

has k negative squares in f)‘fV X f)IJ/rV, where h‘fV denotes the domain

of holomorphy of W in Q4 and

KW (\) = Zos (1.8)

(1) Gpg — W () jpgW (11)* = 0 a.e. on the boundary Qo of Q4.

Let us recall some facts concerning the PG (Potapov—Ginzburg) trans-
form of generalized jpg-inner mvf’s. As is known [4, Theorem 6.8, for
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every W € Uy (jipg) the matrix wao(A) is invertible for all X € by, except
for at most x point in . The PG-transform S = PG(W) of W (see [3])

[ p ] |
(1. )
’LU21()\) ’LUQQ()\)

is well defined for those A € by, for which waa(\) is invertible, S(A)
belongs to the class "™ and S(u) is unitary for a.e. u € Qg (see [4,13]).
The formula (1.9) can be rewritten as

w11 ()\) ’wlg()\)

S(A) = [ 0 ;

-1 -1
s s W] — W1oWos W w12W
g [ 11 S12 ] _ [ 11 12Woqy W21 12_122] ' (1.10)

—w2_21w21 Woy
Since the mvf S(A) has unitary nontangential boundary limits a.e. on

Qg, the pseudocontinuation of S to 2_ can be defined by the formula
S(A) = (S7(N\))~!, where the reflection function S7 () is defined by

/X if Q =D, XA #0;

_ (1.11)
)\ . lf Q+ = (C+.

S#(A) = S(\°)*, X\ = {

1.3. The class U}, (jpq)

Definition 1.3. [13] An m x m muf W(X) € U, (jipg) ts said to be in the

class U} (Jpq), if
S91 1= —wﬁlwgl e SP. (1.12)

Theorem 1.4. [13] Let W € U (jpq) and let the BP-factors by and b, be
defined by the KL-factorizations of so1:
s91(A) 1= be(N) Lse(N) = s, (M)b(N) Y, A e b (1.13)

8217

where by € Siqnxq, b, € anXp, 8y, 8. € ST*P, Then the muf’s bysas and
s11b, are holomorphic in Q4 , and hence they admit the following inner-

outer and outer-inner factorizations
s11b, = braq, bpsas = asbo, (1.14)

where by € anXp, by € S g1 € SPXP . ay € ST1.

mn out 7 out

The pair {b1,bs} is called the right associated pair of the mvf W €
U] (jpg) and is written as {b1, b2} € ap”(W). In the case x = 0 this notion
was introduced in [6].
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Proposition 1.5. [13,16] If s € ST*P, then there exists a set of muf’s
co € HZY dy € HYY, ¢, € HEP and d, € HZ'?, such that

» de| |b —d I, 0
¢ ‘=17 7. (1.15)
—S¢ bel s ¢ 0 I

If, in addition, s € 11, then ¢y, dy, ¢, d, can be chosen from 11.

Proof. The first statement was proved in [13, Theorem 4.9] (the rational
case was treated in [16]).
Assume now that s € II and hence also s, € II. Let d; be a rational
mvf’s such that
b, (I, — sede) € HL.

Such a mvf can be chosen via matrix Lagrange—Silvester interpolation.
Then by setting
co = by (I — sedy)

one obtains ¢, € HZ N 11979, since by, s¢, dy € 1.
The inclusions ¢, d, € II are implied by (1.15). O

By [13, Theorem 4.11] for every W € U;.(jpq) and ¢, and dy as in (1.15)
the mvf
K= (—’u}ndg + wlgcg)(—wgldg + 'U}QQC[)il, (1.16)

belongs to H5'? and admits the representations
K = (—wiide + wizace)azbs, (1.17)

where {b1,b2} € ap”(W) and ag € ST is determined by (1.14).

1.4. The class U’ (jpq)

The following definitions and statements concerning the dual class
UL (jpq) are taken from [19].

Definition 1.6. An m x m muf W € Ui (jpq) s said to be in the class
(]pq) if

S19 = w12w2_21 € ngq‘ (1.18)

If W € Uy, (jpg) and the mvf W is defined by

— { W, if Qp =D, 119)

( ) lf Q+ :(C+.
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then, as was shown in [19], the following equivalence holds:
W € Uy (jpg) = W € Uy () (1.20)
and as a corollary of Theorem 1.4 one can get the following statement.

Theorem 1.7. Let W € U.(j,q) and let the BP-factors by and b, be
defined by the KL-factorizations of s1a:

s12(A) = bp(\) tse(N) = 5,(A\)b, (N7, (A e bl)), (1.21)

where by € S*P | b, € ST

mn 7 mn

54,5, € SP*1. Then
So0b, € S9?  and bys11 € SP*P, (1.22)

Definition 1.8. Consider inner-outer and outer-inner factorizations of
bgsu and 822[]7«

besi1 = a1by, $990, = baag, (1.23)
where by € SP*P, by € ST a; € SV, ag € SI. The pair by, by of

inner factors in the factorizations (1.23) is called the left associated pair
of the muf W € U (jpq) and is written as {b1, b2} € ap®(W), for short.

Remark 1.9. As was shown in [19] (3.25) if {by,b2} € ap (W), then
811[1( = b1a1, b rSo2 = 0252, and, therefore, {[11, [12} € ap (W)

As was shown in [19], there exists a set of mvf’s ¢, € HX", 0, € HL?,
¢, € HZ? and v, € HgoXp, such that

Cy Sy bg —5y _ Ip 0 (1 24)
o bl |-0 ¢ 0 I,| '

1.5. Reproducing kernel Pontryagin spaces

In this subsection we review some facts and notation from [11-13]
on the theory of indefinite inner product spaces for the convenience of
the reader. A linear space K equipped with a sesquilinear form (-, ), on
K x K is called an indefinite inner product space. A subspace F of K is
called positive (resp. negative) if (f, f) > 0, (resp. < 0) for all f € F,
f#0.

An indefinite inner product space (K, (-,-)x) is called a Pontryagin
space, if it can be decomposed as the orthogonal sum

K=Kiok_ (1.25)
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of a positive subspace K4 which is a Hilbert space with respect to the
inner product (-, -)x and a negative subspace K_ of finite dimension. The
number ind_/ := dim K_ is referred to as the negative index of K.

The isotropic part of £ C K is defined by Ly := {z € L : (x,y)r =
0,y € L£}. The subspace L is called nondegenerate iff £y = {0}.

A Pontryagin space (I, (-, )x) of C"-valued functions defined on a
subset €2 of C is called a RKPS (reproducing kernel Pontryagin space),
if there exists a Hermitian kernel K, () : Q x @ — C™*™ such that:

m .
w Y
(1) for every w € 2 and every u € C™ the vvf K, (A)u belongs to K

(2) for every f € K, w € Q and u € C™ the following identity holds
(f, Ko = u" f(w). (1.26)

It is known (see [18]) that for every Hermitian kernel K,,(A) : 2 xQ —
C™*™ with a finite number x of negative squares on € x € there is
a unique Pontryagin space K with reproducing kernel K, (\), and that
ind_K =sq_K = k. In the case x = 0 this fact is due to Aronszajn [5].

For W € U,.(jpq) we denote by (W) the RKPS associated with the
kernel KV ()) defined by (1.8).

2. A-regular—A-singular factorization of generalized
J-inner mvf’s

A mvt W € Uy, (jpg) is called A-singular, if it is an outer mvf (see |6,
19]). The set of A-singular mvf’s in Uy (jpq) is denoted by U (jipq)-
We will be also using the following subclasses of the class U2 (jpq):

uf:’s(qu) = Uy (Jpg) N ol uﬁ’s(qu) = Uﬁ(qu) NN ™.

out out

In the case k = 0 the class U (jpq) 1= US (jpy) Was introduced and
characterized in terms of associated pairs by D. Arov in [9]. For k # 0 a
definition of A-singular generalized j,q-inner mvf and its characterization
in terms of associated pairs was given in [19].

Theorem 2.1. [19] Let W € U, (jpq) and let {b1,b2} € ap”(W). Then:
W € UP5 (jpg) <= b1 = const, by = const.
Theorem 2.2. [19] Let W € U’ (jp,) and let {b1,b2} € ap®(W). Then:

We uﬁ’s(qu) <= b; = const, by = const.
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Lemma 2.3. Let W € U};(jpq) and let {b1,b2} € ap”(W). Then:
W € Ui (jpg) <= W € UL (jng)-
Proof. Let W € U® (jpg). Then by Theorem 2.1,
b1 = const, by = const.

Due to Remark 1.9 one obtains 51 = const, Eg = const and hence W €
Uﬁ’s( Jpg) by Theorem 2.2. The proof of the converse is similar. O

Lemma 2.4. [15] Let a muf W € U};(jpq) admits a factorization
W=wOWE W €U (o), W EUGp)s  (21)
where kK1 + ko = k. Then:
(i) WO € UL (jpg);
(ii) For {b1,bs} € ap” (W) and {bgl), bgl)} € ap”(WW) one has

0y = (B)) "1y € SPXP g o= by(BS)) 1 € ST (2.2)
Definition 2.5. [15] A muf W € U] (jpq) is called right A-regular, if for
any factorization

W=wOwe W et (o), W €U, (), (2.3)

with k1 + ke = K the assumption W) € L[ﬁ;s(qu) implies W@ (\) =
const.

Similarly, a mvf W € U.(jpq) is called left A-regular, if for any
factorization (2.3) with k1 + k2 = kK the assumption W € US (jpq)

implies W (X) = const.

In the case k = 0 Definition 2.5 is simplified since Ug (jipq) = U (jpg) =
U(Jpq) (see [7]).

In the next lemma we present one necessary and one sufficient condi-
tion for a mvf W(A) € U} (jpq) to be regular. Let us set

Ly = K(W)N LY. (2.4)

Lemma 2.6. [15] Let W € U} (jpq), let IC(W) be the RKPS with the
kernel KV (X), defined by (1.8), let ind_Ly = x and let k1 = ind_ (L),
ko = kK — k1. Assume that:
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(A1) bw N Qo # 0;
(A2) The closure Ly of Ly is nondegenerate in K(W).
Then the following implications hold:

(1) W € Us" (pg) = Lw = K(W);

(2) K(W) C L3 = W € U (jpg)-

Denote by R™*™ the set of rational m x m-mvf’s. The following
criterion for a rational mvf W € U} (jpq) to be right A-regular is given
in [15]. We will present here a simpler proof of this result.

Theorem 2.7. Let W € U, (jpq) be a rational muf. Then
(1) W € UL (jpg) == Lw = K(W).
(2) W e URB (jpg) <= W € L™,

Proof. Let W € Up™(jpg) N R™*™. Then by Lemma 2.6 Ly = K(W),
and since W is rational, Lyy = Ly = K(W). Therefore, K(W) C LY.
Hence W € LJ™™. The converse is immediate from Lemma 3.19(3)
in [15]. 0

Lemma 2.8. Let W € U;;(jpq). Then:
W e U (jpg) = W € U (jpg).

Proof. Let W € U] (jpq) and assume that W = W(UW@)’ where W) ¢
UL (ng), WP € UL, (jpg). Then

W=wAWWD where WO cUsS(p), WO €U, (Gipg)-

By the regularity of W, WO = const. Hence W) = const and thus
W e Uﬁ’R( Jpq)- The converse implication is obtained similarly. O

The following theorem was proved in [15].

Theorem 2.9. Let W € UL (jpq) NUL(jpg) N R™X™. Then the following
statements are equivalent:

(1) W admits the factorization
w=whw® — w e U () w® e U () (2:5)

with kK = K1 + Ka;
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(2) Lw is a nondegenerate subspace of IC(W), ind_Lyw = k.

Moreover, if (2) is the case then the factors W) and W in (2.5) are
uniquely determined up to jpq-unitary factors.

In the classical case (k = 0) this result coincides with the factorization
Theorem in [10].

Let us present now an analog of Theorem 2.9 for A-singular-A-regular
factorizations.

Corollary 2.10. Let W € UL (jipg) NUE(jipg) "R™X ™. Then the following
statements are equivalent:

(1) W admits the factorization
W=wOwO, WO U G,), W et (26)
with kK = K1 + Ka;
(2) L is a nondegenerate subspace of IC(W), ind_ Ly = K1.

Moreover, if (2) is the case then the factors W) and W@ in (2.5) are
uniquely determined up to jpq-unitary factors.

Proof. Assume that (2) holds and consider the mvf W € U} (Jipg) N
UL (Gpq) N R™X™ see (1.20). By Theorem 2.9

W=wOW®  where WO cUE(p), WP eUs(py),  (27)

with k1 4+ k2 = k. Hence by Lemma 2.3 and 2.8 W admits the factoriza-
tion (2.6). Conversely, let (1) holds. Then by (1.20), Lemma 2.3 and 2.8
the mvf W admits the factorization (2.7) and hence by Theorem 2.9 the
statement (2) holds. O

The following example illustrates importance of the condition (2) of
Theorem 2.9.

Example 2.11. Let

1 A —-3\+1 AN—-)2+1

Wi(\) = —— .
=55 e oast 2om
As was shown in [15], this mvf W belongs to U (j11) N UL (j11) and it
does not admit the A-regular —A-singular factorization.
The RKPS IC(W7) and the subspace Ly, take the form
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m-snf {5} n-on((]

and Ly, is a degenerate subspace of K(W7) see [15]. Therefore, condition
(2) of Theorem 2.9 does not holds. By Corollary 2.10 W; does not admit
an A-singular—A-regular factorization.

3. Generalized ~-generating matrices

Definition 3.1. Let M, (jpq) denote the class of m x m muf’s

() — a11(p) am(u)],
() [am(u) az (i)

with blocks a11 of size p X p and a9y of size ¢ X q such that:
(1) A(p) is a measurable on Qo muf that is jpq-unitary a.e. on Qo;
(2) sy = —azan € SFY;

(3) (a¥) 1, = ay € SPXP, bpazy = ay € ST, where by, b, are BP-
products of degree k which are determined by KL-factorizations of

S91.

The muf’s in the class M, (jpq) are called generalized right v-generating
matrices.

Definition 3.2. Let 9 (j,,) denote the class of m x m muf’s A(u) of
the form (3.1), such that:

(1) A(p) is a measurable on Qo muf that is jpg-unitary a.e. on Qo;
(2) S12 = a12a§21 € ngq’.

(3) bg(aﬁ)_l =a; € SV, ayy b, = ag € S where by, b, are BP-
product of degree k which are determined by KL-factorizations of

512.

The muf’s in the class sz;(qu) are called generalized left v-generating
matrices.

Definition 3.3. An ordered pair {bi,b2} of inner muf’s by € NP*P,
by € N9%% is called a denominator of the muf f € NP9, if by fby € NT*1.
The set of denominators of f will be denoted by den(f).
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Theorem 3.4. Let A € M (Jpq), let by, s¢, by, s, be defined by KL-facto-
rization of so1 € SE*P. Let c¢,dy, ¢y, d, be defined by (1.15) and let

fg = (—alldg + algcg)(—azlde + CLQQC[)il = (—alldg + algcg)ag. (3.2)
Then:

(1) if den(f§) # 0 and {b1,b2} € den(f§) then

W(Z):[b1 : A(2) € Up(pg)s  {b1, b2} € ap” (W)  (3.3)

0 by!

and hence A € TI"™*™ . Conversely, if

W el (jpg) and {bi,b2} € ap”(W). (3.4)
then
bl_l 0 mXxXm Tz T
A(z) = 0 b W(z) ell N (Jpqg) and {b1,b2} € den(f}).
2

(11) if A € II"™*™ then den(f§) # 0 and, moreover, for some choice of
muf’s co, dy, ¢r,dy in (1.15) one gets f§ € IL.

(i3) if {cgi),déi),c,(j),d@} (1 = 1,2) are two sets of muf’s satisfying
(1.15) and

g’i = (—andéi) + a120$))a2a ie{1,2} (3:5)

then den(fg’l) = den(fg’2).

Proof. (i) The first implication holds by Theorem 4.3 from [14]. The
converse implication follows from Theorem 4.3 and from the fact that

bytoo
0 be

c Hme’

W e II"™*™ since W is jpg-unitary. By virtue of [

this implies 1 € TI™*™,

(ii) Since 2 € II"™*™ one has a11,a12,a2 € II. By Proposition 1.5 the
mvf’s ¢, and dy can be chosen from II. Therefore, fj € IL

(iii) Let {b1,b2} € den( 5’1) and let W (z) be given by (3.3). Then by
item (i) W € UL (jpq) and {b1, b2} € ap”(W). Let us set

K% = (—wndg) + leCéi))a2b2v i={12}
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Then by [13, Theorem 4.11]
(bra) "M (KW — K@) (aghy)™Y € HEX9. (3.6)
Since K@ = by f"'by (i = 1,2) one gets from (3.6)
1 pr2 o prxa,

Therefore, {b1,b2} € den( f5’2). Clearly, the converse implication is also
true. O

Remark 3.5. A similar assertion also holds for the class of generalized
left y-generating matrices. Let 2 € M (4,,), be, 50, by, 5, be defined by
KL-factorization of s12 € S*P. Let ¢4, 0y, ¢, 0, defined by (1.24) and let

f§ = ag(—vpa11 + crag) = (—0,a12 4 ¢ra) L (=0ra11 + cran1). (3.7)
Then:

(i) if den(f§) # 0 and {b1, b2} € den(f§) then

by O .
W(z) =2(z) | € UnGing) (3.8)
0 by
and {by, by} € ap’(W). Conversely, if
W € Ul(jpg) and {b1,b2} € ap’(W), (3.9)
then
bfl 0 mxm 0/ 14
A(z) = W(z) 0 b ell NI, (Jpg) and {b1, b2} € den(fy).
2

(i) if A € TI™*™ then denfé # () and, moreover, the mvf’s ¢z, 0y, ¢, 0,
in (1.24) can be chosen from II and then f§ € II.

(iii) {Ce ,Dg RO )} (1 =1,2) two sets of mvf’s defined by (1.24)
0
0

= ag(—0ra11 + craz1), {b1,b2}aa(—0 )an + C( Jag),

{b1,b2} € denfy’, i={1,2},
then denfé’1 = denfg’Z.
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Definition 3.6. We define the denominator of generalized right v-gene-
rating muf A € ™™ NI (Jpg) as

den” (1) := denfj,

and the demominator of left generalized ~y-generating muf A € II™*™ N
mﬁ(qu) as
den®(2) := denf.

Definition 3.7. Let a muf A € M. (jpq) is said to be

(1) right singular and is written as 2 € oS if fo = (—ande +
a12¢e)az € HE,

(2) right reqular and is written as 2A € i if the factorization A =
A1 Ao, with Ay € MY, (Jpg) and Az € Sﬁf;’f(qu), K1+ ke = Kk tmplies
that o = const.

Definition 3.8. Let a muf A € M. (jp,) is said to be

(1) left singular and is written as A € meS fog = ag(—0ra11+cra;) €
HEX,

(2) left regular and is written as A € mer if the factorization 2 =
AUy, with Ay € i)ﬁﬁl (Jpq) and Ay € zm:;f(qu), K1+ Ko = Kk implies
that Ay = const.

In the case k = 0, the left singularity coincides with the right singu-
larity, therefore our definition coincides with the definition in [8].

4. Fatorization of v-generating matrices
Lemma 4.1. Let A € M. (jpq) NII™*™. Then:
A € M (jpg) == A € UL (fipg)-

Proof. Let 2 € Sﬁﬁs(qu), then fo = (—ai1de + a12ce)az € HEP, there-
fore {I,,1,} € denf. In view of Theorem 3.4 this implies 2A € U}, (jpq)
and {I,, I} € ap”(A). Hence by Theorem 2.1 A € Z/l,:’s(qu).
Conversely, if 2 € Z/{,Q’S(qu) and {b1,b2} € ap”(2A), then b; = const,
i = {1,2}. Hence by Theorem 3.4 A € M} (jpq), {b1,b2} € denf], ie.
fr € HEX and thus 2 € 97° (jipg) O

Corollary 4.2. Let 2 € ML (jpg) NTI™X™. Then:

A € M5 (Gpg) == A €U (py)-
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Proof. Let 2 € ME°(jpg), then A € M2 (j,q), hence by Lemma 4.1
A € U,:’S(qu), and thus 2 € uﬁ’s(qu). Analogously, the assumption
2A € U5 implies A € M. 0

07"

Lemma 4.3. Let A", 2A € M (jp,) and A’ = A, 0, € SPP,

2

02 € SI*9. Then 01 = const, 0y = const.

ayr (i) aya(p)

ag (1) agy(1)]
representation (3.1). Then

Proof. Let ' (p) = and let the mvf 2(u) has block

o7t 0
0 6

A =

M)—1 —1
. 91 ajl 91 ai12
A = ;
| 6aaz1  Baz

and hence by Definition 3.1

/o /I N\N—1_1 __ —1p—1 _ —1 _ X
sg1 i= —(ag9) gy = —a9y 05 Oran = —ayy as = s21 € SI7P.

This means that the Krein-Langer factorizations of so; and 8/21 coincide

r o

! —1
S91 = 821 = b, sy = 5;:b

where by € S, b, € SI* 54,5, € ST*P. Hence

ay = (a}y) b, = 07 (a11) #b, € PP, and ay = a;; b, € STP.

out out

This is possible only when 61 = const. Analogously,

/ I \—1 —1p-1 X -1 X
dy = bylagy) ™" = bragy b € S5 and  az = bragy € Sg

consequently 0 = const. O
Lemma 4.4. Let a muf A € M, (jpq) NII™*™ admits the factorization

A=ADA®  where AV € M. (Gpg), AP € MET (), (4.1)
with k1 + kg = k. Then den” (AM) C den” ().

Proof. Let a mvf 2 € M, (jpe) N II™*™ admits the factorization (4.1).
Since AP ¢ zm,‘;f, then fy € Hoo and then A® e II™*™. Therefore
AL = AA®)~! and thus AV e . Let {pV, 6V} € den”(2AD) and
K1+ k2 = k. By Theorem 3.4

p(D

W(l) = [ ! Ql(l) € ule (qu)a {bgl)vbg)} € CLer(l),

0 ()
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W@ =A@ € U3 (j,).

Let us set

o 0

Then W' € Uy, ' < k1 + ko = Kk (see [4] or [13]).

On the other hand, sy; = —(why) " ‘wh; = —asyasr € SE*?, hence
k' > k and therefore k' = k. Then W' € U (jpq)-

Let {V/1,0'2} € ap”(W'), hence, in view of Lemma 2.4 b| = bgl)ﬂl,
b, = 6,08". By Theorem 3.4

—1 —1
wo [P 0] [ 0] oy
0 0
yitoo] [V 0 071 0
=1 e | RPE = e M),
o w0 @) 0 6,

Hence, by Lemma 4.3 6, = const, 03 = const. Consequently {bgl), bgl)} €
ap”(W'). Thus by Theorem 3.4 {bgl), bgl)} € den” ().
O]

Lemma 4.5. Let a muf A € M. (jpq) N ngq N R™*™. Then A €
" (i)

Proof. Let % = AWAR | where AL € ML (j,g), AP € mtfif(qu),
K1+ ko = k. Let {bgl), bgl)} € den”(AM), then by Lemma 4.4 the pair
{bgl), b;2)} € den”(2(). By Theorem 3.4

1
- [bp 0

g | B €U Grg) W =A® € ULE (py),
0 (b))

and

O I S PV I
0 (b)) 0 @)1

= WOWR e U, (Gpy)-

Since W € Uy (jpg) N LT*™, then by Theorem 2.7(2) W € Uy (jpq).
By this condition A = W) = const. This implies A € DJYZ’R(qu).
O
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An analogous statement for the left class 9 (j,q) can be easily ob-
tained with the help of the transformation (1.19).

Lemma 4.6. Let a muf 2 € ML (jpg) N LE N R™™. Then 9 €

M2 (pg).

Theorem 4.7. Let a muf A € M}, (jpg) NR™*™, {b1,b2} € den” (), let
W be given by (3.3) and let:

(1) W(2) € Ug(jpg),
(2) Lw be a nondegenerate subspace of KK(W).

Then the muf A admits reqular—singular factorization
A=AWA® AW e mrRG), AP € MES (), (4.2)
where k1 = ind_Lyw and kg = kK — K1.

Proof. Let condition (1) holds and let {b1,b2} € ap(W). Then by The-
orem 2.9, W admits the factorization W = WOW®) | where W) e
UL (jpg) and W € L{,f’f(qu), Kk = K1 + k2. By Theorem 34 W €
U (jpg) and {b1,b2} € ap”(W). By Theorem 2.7 (2) and hence by Lemma
3.12 [15] ap” (W) = ap” (W D).
—1
0
Hence, upon applying [ B ) ] to the mvf W and by Theorem 3.4
2
and Lemma 4.1 we obtain

A=ADA® | where AN € M. (jpg), AP € MEZ (Gg), K1 + K2 = K.

Since W ¢ Eanm’ then AD) Eg”xm, and thus by Lemma 4.5 A1) e
M (g )- 0

Theorem 4.8. Let a muf A € M., (jpg) N R, {b1,b2} € den(A), let W
be given by (3.8) and let:

(1) W(2) € Ui (ipq),

(2) Ly be a nondegenerate of K(W), with negative index ind—_ Ly =
K1.

Then A admits reqular-singular factirization
A=A AW e MEE(G,,), AP € MS (), (4.3)

where kK1 = ind_ﬁw and Kg = K — K1.
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Proof. Let A € ML (jpq), then A e M. (Jpg) and the mvf’s W (z) and

2(z) satisfy the assumptions of Theorem 4.7. By Theorem 4.7 2 admits
a factorization

A=AWA? AL e mnE (G, ), A € MES (), (4.4)

where k1 + k9 = K.
Using the transformation (1.19) again, we obtain (4.3). O
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