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An operator approach to indefinite
Stieltjes moment problem

VLADIMIR DERKACH, IVAN KOvALYOV
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Abstract. A function f meromorphic on C\R is said to be in the
generalized Nevanlinna class N (k € Z.4), if f is symmetric with respect

to R and the kernel N, (z) := % has k negative squares on C.

The generalized Stieltjes class N¥ (k,k € Z4) is defined as the set of
functions f € N, such that zf € Nj. The full indefinite Stieltjes
moment problem M PF(s) consists in the following: Given k,k € Z,
and a sequence s = {s; };-, of real numbers, describe the set of functions
f € N* which satisfy the asymptotic expansion

S0 S2n 1
fe)==-2—... = o +o0 <z2"+1> (z=—-y € R_, yToo)

for all n big enough. We associate to this expansion a special continued
fraction, so-called generalized Stieltjes fraction, a three-term difference
equations, generalized Stieltjes polynomials and a generalized Jacobi ma-
trix J [0,N]-

In the present paper we solve the indefinite Stieltjes moment problem
M PE(s) within the M.G. Krein theory of u-resolvent matrices applied to
a Pontryagin space symmetric operator Ajo, n] generated by Jjo,n]. The
u-resolvent matrices of the operator Ay nj are calculated in terms of
generalized Stieltjes polynomials using the boundary triple’s technique.
Criterions for the problem M P[(s) to be solvable and indeterminate are
found. Explicit formulae for Pade approximants for generalized Stieltjes
fraction in terms of generalized Stieltjes polynomials are also presented.

2010 MSC. Primary 30E05; Secondary 15B57, 46C20, 47A57.

Key words and phrases. Indefinite Stieltjes moment problem, Gener-
alized Stieltjes function, Generalized Stieltjes fraction, Boundary triple,
Weyl function, Resolvent matrix.

Received 30.03.2017
This work was supported by the grant of Volkswagen Foundation and by Ministry of
Education and Science of Ukraine (project numbers 01150000556, 0115U000136)

ISSN 1810 — 3200. © Incruryr maremarnku HAH Ykpainu



V. DERKACH, I. KOVALYOV 43

Dedicated to E.R. Tsekanovskii on the occasion of his 8§0th Birthday

A function f meromorphic on C\R is said to be in the generalized
Nevanlinna class N (k € Z4), if f is symmetric with respect to R and the

kernel N, (z) := % has x negative squares on C,. The generalized
Stieltjes class N* (k,k € Zy) is defined as the set of functions f € N,
such that zf € Ng. The full indefinite Stieltjes moment problem M P¥(s)
consists in the following: Given k,k € Z,, and a sequence s = {s;};-,
of real numbers, describe the set of functions f € N¥, which satisfy the

K
asymptotic expansion

S0 Son 1
FE) ==7="~ +0<zzn+1> (z=-yeR, yToo)

for all n big enough. We associate to this expansion a special continued
fraction, so-called generalized Stieltjes fraction, a three-term difference
equations, generalized Stieltjes polynomials and a generalized Jacobi ma-
trix J [0,N]-

In the present paper we solve the indefinite Stieltjes moment problem
M PF(s) within the M.G. Krein theory of u-resolvent matrices applied to
a Pontryagin space symmetric operator Ajg nj generated by Jpo,n). The
u-resolvent matrices of the operator A n) are calculated in terms of
generalized Stieltjes polynomials using the boundary triple’s technique.
Criterions for the problem M P¥(s) to be solvable and indeterminate are
found. Explicit formulae for Pade approximants for generalized Stieltjes
fraction in terms of generalized Stieltjes polynomials are also presented.

1. Introduction

The classical Stieltjes moment problem solved in [48] consists in the
following: given a sequence of real numbers s; (i € Z := NU{0}) find a
positive measure ¢ with a support on R, such that

/ tdo(t)=s; (i € Zy). (1.1)
R4

It follows easily from (1.1) that the inequalities

Sn = (sitj)i20 2 00 Sy = (sivjr1)i 5 20 (n€Zy)  (1.2)

are necessary for solvability of the moment problem (1.1). If the matrices
Sy, are nondegenerate for all n € Z,, then the inequalities (1.2) are also
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sufficient for solvability of the moment problem (1.4), see [1, Appendix].
Let
D, :=det S,, D} :=det S}/ (neZy).

In the pioneering paper [48| by T. Stieltjes a continued fraction

L (1.3)
—zm1 + 1
1+ ...
—ZMy, +
I, +
D% (D+_ )2
My, 1= DIDT ly = #le{ (n € Zy).

was associated with the sequence of moments {s;}?°,. The moment prob-
lem (1.1) is called determinate (indeterminate), if it has a unique (in-
finitely many) solutions. As was shown in [48] the moment problem (1.1)
is indeterminate, if and only if

o oo
M::Zmi<oo, and L::Zli<oo.
i=1 =1

Although in [48] no mechanical interpretation for the fraction (1.3) was
given, it was shown in [28] that solutions of the problem (1.1) can be
interpreted as spectral functions of the so-called “Stieltjes strings”, i.e.
massless threads with countable sets of point masses. The truncated
Stieltjes moment problem, i.e. the problem (1.1) with a finite set of data
{s;}2, was studied in [35,41]. Matrix version of the Stieltjes moment
problem was studied in [24].
For every measure do on R, the associated function

o= F2 eor

L t—z
belongs to the class N of functions holomorphic on C\R with nonnegative
imaginary part in Cy := {z : Im z > 0} and such that f(z) = f(z)
for z € C.. Moreover, f belongs to the Stieltjes class S of functions

f € N, which admit holomorphic and nonnegative continuation to R_.
By M.G. Krein’s criterion [33]

feES«<— feN and zfeN.

Notice, that by the Hamburger—Nevanlinna theorem [1] a measure o is
a solution of the problem (1.1) if and only if the associated function f
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satisfies the condition

50  S1 S2n 1 —
f(Z):—Z—22_"'_22n+1+0(22n+1> as 200 (1.4)
for every n € N. The notation z—o00 means that z — co nontangentially,
that is inside the sector € < arg z < m — € for some € > 0.
Indefinite version of the class N was introduced in [36].

Definition 1.1. [36]A function f meromorphic on C\R with the set
of holomorphy b is said to be in the generalized Nevanlinna class N,
(k € N), if the kernel N (z) := % has k negative squares on Cy,

i.e. if for every set of zj € CL Nby (z # %5, 1, =1,...,n) the form

DA )fzéj, gec

1,j=1
has at most k and for some choice of z; (j =1,...,n) exactly k negative
squares and
f(Z) = f(z) forall z€ CyNhby. (1.5)

The generalized Stieltjes class N} was defined in [37] as the class of
functions f € Ny, such that zf € N. Similarly, in [11,12] the class N*
(k,k € N) was introduced as the set of functions f € N,, such that
zf € Ny, see also [22|, where the class N’S was studied. Clearly, N8 =S
and N? = N}. The classes S* := NE were introduced in [19, 22].

In the present paper we consider the following problems.
Truncated indefinite moment problem MP,(s,¢). Given {,k €
Z4, and a finite sequence s = {sz} _o of real numbers, describe the set
M..(s, ) of functions f € N, which satisfy the asymptotic expansion

50 S¢

f(z) = - - +o <,251H> as z—500. (1.6)
Truncated indefinite moment problem M P¥(s,¢). Given /,x,k €
Z, and a sequence s = {Si}fzo of real numbers, describe the set M (s, ¢)
of functions f € Nﬁ, which satisfy (1.6). A truncated moment problem is
called even or odd regarding to the oddness of the number £ + 1 of given
moments.

Full indefinite moment problem M P, (s). Given k € Z4, and an
infinite sequence s = {s;}:°, describe the set M,.(s) of functions f € Ny,
which satisfy (1.6) for all ¢ € N.

Full indefinite moment problem M P*(s). Given ,k € Z,, and an
infinite sequence s = {s;};2,, describe the set M¥(s) := M, (s) N N¥.
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Indefinite moment problems M P, (s) and M PY(s) in the classes N,
and N} := NY respectively, were studied in [39,40] by the methods
of extension theory of Pontryagin space symmetric operators developed
in [37,38]. In particular, it was shown in [39] that the moment problem
M P, (s) is solvable if the number v_(S,) of negative eigenvalues of S,
does not exceed x and S;7 > 0 for all n € N. Further applications
of the operator approach to the moment problem M P,ff (s) were given
in [13]. A reproducing kernel approach to the moment problems M P,(s)
was presented in [23]. A step-by-step algorithm of solving the moment
problems M P, (s) was elaborated in [8,9] and [2]. Applications of the
Schur algorithm to degenerate moment problem in the class N, were
given in [16].

Denote by v_(S) (v4+(S)) the number of negative (positive, resp.)
eigenvalues of the matrix S. Let H be the set of finite or infinite real
sequences s = {s;}¢_, and let H, ; be the set of sequences s = {s;}{_, €
H, such that

v_(Sp) =K (n=1[(/2]+1). (1.7)

let 7—[,’2[ be the set of s = {s;}%_, € Hys, such that {Si+1}f;é € Hi—1,
i.e.

v (S5 =k (n=1[(+1)/2). (L8)

For an infinite sequence s = {s;}22, one says s € HX (or s € H¥) if (1.7)
(or (1.7) and (1.8)) is fulfilled for all n € N.

A number n; € N is called a normal index of the sequence s, if
detSp;# 0. The ordered set of normal indices

ny<ng <---<ny
of s is denoted by N (s). A sequence s is called regular (see [17]), if
Dy =detSy #0  for (1<j<N).
As was shown in [9] there exists a sequence of monic polynomials
ai(z) = 25 + aéﬁllzgi_l +...4 agi)z + a(()i)

of degree ¢; = n;+1 — n; and real numbers b; € R\ {0}, i € N, such that
the convergents of the continued fraction

—b

- (1.9)

aO(Z) - by,

a1(2)—"‘—m
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for sufficiently large n have the asymptotic expansion (2.1) for every ¢ €
N. This fact was known to L. Kronecker [42] and then it was reinvented
in [8]. The pairs (a;,b;) are called atoms, see [26] and the continued
fraction (1.9) is called the P—fraction, [45].

Consider the three-term recurrence relation (see [25])

biyi—1(2) — ai(2)yi(2) + yitr1(2) =0, (1.10)

associated with the sequence of atoms (a;, b;), i € N, and define polyno-
mials P;(z) and Q;(z) of the first and second kind of the system (1.10)
subject to the initial conditions

P_1(2)=0, Po(2) =1, Q_1(2) = —1, Qo(z) =0. (1.11)

Polynomials P;(z) and Q;(z) are called Lanzcos polynomials of the first
and second kind. Moreover, the j-th convergent of the continued frac-
tion (1.9) takes the form (see |26, Section 8.3.7|)

by = Qil2) :
e =~ 1<)

As was shown in [9] the set M, (s,2nx — 2) can be described in terms of
the Lanzcos polynomials of the first and second kind.

Odd indefinite Stieltjes moment problems M P¥(s, 2ny —2) for regular
sequences s were studied in [18]|. For this problem one step of the Schur
algorithm is splited into two intermediate steps and this leads to the
expansion of f € M¥(s,2ny — 2) into a generalized Stieltjes continued
fraction

2) = , 1.12
&= — (1.12)

1

—zmy(2) + 77—

N () In+7(2)
where m; are real polynomials, [; € R\{0} and 7 is a parameter function
from some generalized Stieltjes class Ni:’;‘\’r, such that 7(z) = o(1) az
z=00. Such continued fractions were studied in [17]. Associated to
the continued fraction (1.12) there is a system of difference equations

(see [50, Section 1|)

{ Y25 — Y2j—2 = Ljy2—1, (1.13)
Y2i+1 — Y25-1 = _ij+1(z)y2j
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Define the generalized Stieltjes polynomials P;r(z) and Q;r(z) of the first
and second kind as solutions of the system (1.13) subject to the initial
conditions

PH(2)=0, Pf(2)=1, QT,(2) =1, Qd(2) =0.

The main result of [18] is the following

K2nny—27

Theorem 1.2. Let s = {s;}:"N % € HEreo N(s) = {nj}évzl be the
set of nomal indices, K,k € Z41, N € N. Then:

(1) A nondegenerate odd moment problem M P*(s,2ny —2) is solvable,
iff

KN :=v_(Spy) <k and ky:= V_(S;Nil

) < k.
(2) f € ME(s,2nn — 2) iff f admits the representation

_ Q;N—1(Z)T(Z) + Q2+N—2(Z)

flz) = , (1.14)
Pyy_1(2)7(2) + Pyy_(2)
where 7(z) € Nﬁ:i}"\’] and T(lz) = 0(2) as z=0o0.

In what follows for every 2 x 2 matrix W = (wij)?,jzl we associate
the linear-fractional transformation (LFT)

w11T + w12

T = .
wir] w21 T + W2

Denote by W[—g,N—l] (z) the coefficient matrix of the LFT (1.14)

+ P + 5
Wy = () Gea) ),

P;N—1(Z) P2+N—2(z)

Then the equality (1.14) can be rewritten in the form

f(z) = Tw+

[0,N—1]

()] (1.15)
The mvf W['g’ N71](Z) admits the factorization

W[J(;,Nﬂ](z) = Mi(2)L1 ... Ln-1Mp(2),

where the matrices M;(z) and L; are defined by

Mj(z):<_znij(z) ?) and Lj:<(1) lf) j=1,N. (1.16)
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Similarly, the set of solutions of the moment problem M P¥(s, 2ny — 1)
can be described via the LFT (1.15) with the the coefficient matrix

+ +
Wit (2) = <Q2N—1(z) QQN(Z)>

0.N-1] Piy_1(2) Ph(2)

In the present paper we apply an operator approach to truncated and
full indefinite moment problems. For this purpose we associate with the
system of atoms {a;,b;}, i € N, the so-called monic generalized Jacobi
matrix (GJM), see [9,10]. This GJM Jjo y_1) generates a symmetric
operator Ap y_1) with deficiency indices (1,1) acting in an indefinite
inner product space [ y_1]. Then we invoke to the theory of boundary
triples developed in [20,30,32] and to the M.G. Krein theory of resolvent
matrices elaborated in [21, 34| and [15], see Sections 2.2 and 4.1 in the
present paper. We show that the matrices W[O N— 1}( z) and W[JOFJJFV 1]( z)
are u-resolvent matrices of the operator Ajy y_;] corresponding to some
boundary triples which are found explicitly in Section 4.2.

In the case of an infinite sequence s € HE". it is shown that the
coefficient matrix W[aﬂ(z) admits the factorization

Wio1(2) = Wi v (2IWy 3 (2),

where W, ( ) is the resolvent matrix of some classical Stieltjes moment
problem. ThlS fact allows to derive some facts for indefinite moment prob-
lem from the classical ones. In particular, it is shown that an indefinite
Stieltjes moment problem M P¥(s) is solvable if and only if

v_(Sp;) <k and u_(S,J{j)Sk for all jeN;

and M P¥(s) is indeterminate if and only if

M = ij(O) <oo and L:= le < 0. (1.17)
: =

If (1.17) is in force, then the mvf’s W[ ]( z) are proved to converge to an

entire mvf W[o ]( z) of order 1/2, which turns out to be an wu-resolvent
matrix of minimal operator A, generated by the GJM J [0,00) in a Pon-

tryagin space 9 oo). The LFT (1.15) generated by the mvf W[O OO)( z)

provides a description of the set M¥(s) in Theorem 5.2.

In Section 6 it is shown that the convergents of the continued frac-
tion (1.12) coincides with the diagonal and sub-diagonal Pade approxi-
mants of the corresponding formal power series.
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2. Preliminaries

2.1. Generalized Nevanlinna functions

Recall that a function f meromorphic on C; = {2z : Im z > 0} is said
to be from the class N, (k € Z), if the kernel N, (z) has x negative
squares on C4 N by and (1.5) holds. In particular, the class N := Ny
consists of functions f holomorphic on C,, which map C; into itself.

Notice that every real polynomial m(z) = m,z” + ...+ miz + myp
of degree v belongs to a class N, where the index kK = k_(m) can be
calculated by (see [37, Lemma 3.5])

K_(m) = [%H] , if m, < 0 and v is odd;
- B (5], otherwise.
Let s = {s;}7", be a sequence of real numbers and let S,, := (SHJ)Z]'_:lo

be a Hankel matrix of order n and denote D,, := det S,, (n € Z).
A function f € N, is said to belong to the class N, _, if f admits
the following asymptotic expansion at oo

S0 S1 Sy

1 —~
f(Z)N__..._ZZH—|-o<Z£H> as  z—500. (2.1)

The notation z—o0o means that z — oo nontangentially, that is inside
the sector € < arg z < w — ¢ for some € > 0. Let us also set

Nn,—oo = ﬂ Nli,—é'
>0

Denote by v_(S) (v4+(S)) the number of negative (positive, resp.)
eigenvalues of the matrix S. Let H be the set of finite real sequences
s = {s;}f_, and let H, ¢ be the set of sequences s = {s;}‘_, € H, such
that

v_(Sp) =k (n=1[0/2]+1).

The index v_(.S,,) for a Hankel matrix S,, can be calculated by the Frobe-
nius rule (see [27, Theorem X.24]). In particular, if all the determinants
D,, := det S, (n € Z4+) do not vanish, then v_(S,,) coincides with the
number of sign alternations in the sequence

DO = 1, Dl, DQ,..., Dn
Proposition 2.1. [37] Let f € Ny, K € N. Then:

(J)feNR@—%eNH.
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(2) If f € N, _y, then there exists k' < k, such that {s;}i_y € Hprs-

Denote by Hﬁj the class of real sequences s = {Si}f:o € Hy e, such
that {si+1}f;(1) € Hp -1, i.e. (1.8) holds. The following proposition is an
easy corollary of Proposition 2.1, see also [11].

Proposition 2.2. The following equivalences hold:
(1) feN} <= —; e N~

(2) f € Nt <= 2f(2) € N.*, in particular, f € N} < zf(z) €
S—r.

If, in addition, f € N¥ has an asymptotic expansion (1.6) then {s;}'_, €
HE , with &' <k, K < k.

2.2. Pontryagin spaces, symmetric operators, boundary
triples

Let $ be a Hilbert space and let G be a selfadjoint operator in $) such
that 0 € p(G) and the total multiplicity of negative eigenvalues of G is
equal k. The space $) with the indefinite inner product

[f,9l =(Gf,9) f,9€9

is called the Pontryagin space with negative index x and is denoted by
(9,[,°])- A closed linear operator A in (9, [,]) is called symmetric in
(57 ['7 ]), if

[Af,g] =[f, Ag] forall f,ge dom(A).

A linear subspace T C $? is called a linear relation T in $), see [4]. In
particular, the graph of the operator A in (9, [+, ]) is a linear relation in £).
Identifying the operator A with its graph we will consider the set of linear
operators as a subset of the set of linear relations in $). If the operator
A is non-densely defined in ), then its adjoint A® can be defined as a
linear relation in $ by the equality

Al — {{g9,9}y € 95 : [Af,g] = [f,¢'] for all f € dom A}.

An approach to extension theory of symmetric operators based on the
notion of “abstract boundary conditions”, was proposed by Calkin [7],
and later on it was developed independently in [30,32|. Recall the defini-
tion of the boundary triple from [32] (see also [20,21,46] for the present
notations).
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Definition 2.3. A collection 11 = {H,Lo,I'1} consisting of a Hilbert
space H and two linear mappings Lo and Tq from A® to H, is said to be
a boundary triple for A® if:

(i) the abstract Green’s identity
[f',9) = [f,d] =T1/Tog — Lo fT1g
holds for all f: (;,) g = (gg’) € All;

(ii) the mapping T := <£0> . AW — C2? is surjective.
1

Associated with a boundary triple II there are two self-adjoint exten-
sions of the operator A given by

Ag=kerI'y and A; =kerI.

Let 0N, := ker(Al — 21) and let us set

N, = {( z];fz > . [ € *ﬁz} c Ab. (2.2)

A symmetric operator A in (9, [, ]) is called simple, if
span {M, : z #z} = N. (2.3)

Definition 2.4. The abstract Weyl function of A, corresponding to the
boundary triple II = {H,To,T'1} is defined by

M(2)Tof. =Tif., f. €9, 2 € p(Ao),
where N, is defined by (2.2).

The notion of the Weyl function for a Hilbert space symmetric opera-
tor was introduced in [19-21,46| both for densely and nondensely defined
operators. The definition of the Weyl function for a nondensely defined
Pontryagin space symmetric operator was given in [15]. As was shown
in [15] the Weyl function M(z) of a symmetric operator A acting in a
Pontryagin space $) with negative index k, is well defined and belongs to
the class N, with &' < k.

A boundary triple IT = {#,T'o,T"1} allows to give a description of all
self-adjoint extensions of A, which are disjoint with Ag in the form

Ay = ker(F1 — bro), beR.
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The resolvent set p(Ap) of the linear relation Ay is defined as the set of
points z € C, such that

ran(Ap, —zI) =9 and ker(4, —zI) = {0}.

For a simple symmetric operator A the resolvent set of its extension Ay
is characterized by the following statement

Proposition 2.5. [15]Let A be a simple symmetric operator in ($,[-,]),
let II = {H,To,T'1} be a boundary triple for A¥ and z € p(Ay), b € R.
Then

z € p(Ap) <= M(z) —b#0.

2.3. Monic generalized Jacobi matrix

Let a(z) = X+ 127" + -+ 4 ap be a monic real polynomial of
degree ¢, and let E, and C, be ¢ x £ matrices

ap - oap—qp 1 0 1 0
Ea = . : , C’a — . T t.
ap—1 . 0 ce 0 1
1 0 —ap —ai —ay—1

It follows from the equalities
E.C,=CE, (2.5)

(see [29, Chapter 12]) that the matrix E,C, is symmetric in the standard
scalar product in C¢.

Let us associate with the system of atoms {a;, b;}, i € N, the so-called
monic generalized Jacobi matrix (GJM) (see [9,10])

Cow Do
By C, D
3= : (2.6)

B 2 Cag

where the diagonal entries are companion matrices associated with the
polynomials a;(z) (see [43]) and D; and B are ¢; X {;y1 and £i4q X ¢;
matrices, respectively, determined by

00 - 0 0 0 0

Di=|: " |, Baa=| o G| ez @7
00 - 0 A 0 0 0 + (2D
10 - 0 bii 0 0
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The matrix J defined by (2.6)- (2.7) is called a GJM associated with
the system of atoms {a;,b;}, i € N.The shortened GJM J; ; is defined
by

Cai Dz
B; C,. ) ] o
Jjig) = o .a’“ . , i<jandi,j€Zy. (2.8)
. Djil
B C,

Let P;(z) and Q;(z) be the Lanzcos polynomials of the first and second
kind determined by (1.10) and (1.11). The Lanzcos polynomials satisfy
the following generalized Liouville-Ostrogradskii formula

Qir1(2)Pi(2) — Qi(2)Pisa(2) = bi. (2.9)

Let $jo,n) be the indefinite inner product space of sequences from
C™V+1 endowed with the indefinite inner product

[x7y][0,N] = (G[O,N}x7y)7 G[O,N} = diag(ZOE617g1E;17 s 7F5NE;71)

where

bo=by and b; =boby...b;, i€N.

It follows from the equalities (2.5) that the matrix G, N]ﬁ[j(; ) s self-
adjoint in the standard scalar product in C"~N+1,

G[O,N]\ng,m = J0,MGo,N] (2.10)
and hence the matrix 3[7(;7 N] generates a self-adjoint operator in g n7.
Let us set
Py(z)
B 7o(2) 2Py(2) |
7r[O,N]( z) = G[O N : and m;(z) = : , (i=0,N).
WN(Z) Zli_lﬂ(z)
(2.11)
Alongside with 7o x1(2) let us define the vector-function
€o(2) Z%Z(é))
{[ON]( ) G[ON} and £Z(Z) = . , (Z:O,N)
(=) Zi1Qi(2)

Lemma 2.6. For every N € N the following equalities hold
(3[0 N] ™ I”N+1)W[O,N](Z) - _(BN)_1PN+1(Z)671N7 (2'12)

(Song = #nne)Eon (2) = €0 — (bn) "' Qn1(2)eny (2.13)
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2.4. A system of difference equations and generalized Stieltjes
polynomials

In the present paper we will consider so-called regular sequences s
from H¥ introduced in [17].

Definition 2.7. The sequence s € HE is said to belong to the class e

if one of the following equivalent conditions holds
(1) P;(0) # 0 for everyi < N;
(2) D;fi_l # 0 for every i < N;
(8) Dt #0 for everyi < N.
For a sequence s from He" the following theorem holds, see [17].

Theorem 2.8. [17] Let s € ”Hﬁ’zeg. Then there exists a sequence of
polynomials m;(z) and numbers l; such that the 2j—th convergent % of

the continued fraction

(2.14)

—zmq(z) + T
1+ ...

i
L+ ..

—zm;j(z) +

coincides with the j—th convergent of the P—fraction (1.9) correspond-
ing to the sequence s. The parameters l; and m;(z) of the generalized
S—fraction (2.14) are connected with the parameters b; and a;(z) of the
P—fraction (1.9) by the equalities

by — dll, ao(2) = dll (zml(z) - zll) , (2.15)

1 1 1 1
b':77 a;i\z2) = —— Zm 5 zZ)— 7+ >>) 216
J 12djdj i(2) djt1 < i+1(2) <lj lj+1 (2.16)
where dj is the leading coefficient of mj(z) (j=1,...,N —1).

The continued fraction (2.14) will be called a generalized S—fraction.
In the case when m;(z) = m; are constant numbers it reduces to the
classical S-fraction (1.3) and the formulas (2.15), (2.16) are well known,
[48]. The parameters [; and m;(2) in (2.14) can be calculated recursively
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by (2.15) and (2.16). Alternatively, m; and [; can be represented in terms
of the sequence s (see [17]):

0 ... 0 8,(/3511) S,(,jfl)
(_l)qul :
my(z) = S| N CAtY
D;(jJ 2 sl(,j__ll) o . sg]y__lz)
1 > ZV—Q Zl/—l

where D,(,j) = det Sl(,j), v =n; —n;j_1 and

Let us consider a system of difference equations associated with the
continued fraction (2.14)

{ Y2; — Y2i-2 = liyzj-1, (2.18)
Yoj+1 — Y21 = —zmyp1(2)ye;

If the j—th convergent of this continued fraction is denoted by Z—j, then
uj, vj can be found as solutions of the system (2.18) (see [50, Section 1])
subject to the following initial conditions

u_1=1, wu=0; v_1=0, vo=1. (2.19)
The first two convergents of the continued fraction (2.14) take the form

Uy 1 U2 I

Similarly, the (25 — 1)-th and (2j)-th convergents are given by

U251 U2;

= Tsz_1 [00]7 = TW2]' [0]

V2j-1 v2;
Definition 2.9. [18] Let s € 7—[,]:’;69. Define polynomials P (z), Q7 (2)
by
PY(z)=0, Pf()=1, QY (x)=1, Qi) =0,

Py P (2
PO = he Ao ™ PO
%07 Bl P i o=

The polynomials P (z), QF (2) are called Stieltjes polynomials.
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As was noticed in [18] Stieltjes polynomials are solutions of the sys-
tem (2.18).

Proposition 2.10. Let s € H''% and let P (2) and Qf (2) be the gen-
eralized Stieltjes polynomials defined by (2.20). Then solutions {u;}¥,
and {v;}}¥., of the system (2.18), (2.19) take the form

u; = Qf (2), vi=Pt(z) (i=-1,0,...,N).
Remark 2.11. The Stieltjes polynomials satisfy the following properties
PE (0)=0, P ,(0)=1 and Q3 ,(0)=1.
By Definition 2.9 and (2.9)

Py, (0) = _E-l_l i%g; ]12:1%8;’ — 0 and P _y(0) = iggi 1
1 |Qi(0) Qi—1(0)] _Qi(0)Pi—1(0) — Q;_1(0)P,(0)
Q3-1(0) i |PO) Pi_ll(O)'_ 1 biy 1 -

Lemma 2.12. Let s € Hi:;ey and let P;(z) and Q;(z) be polynomials of
the first and second kind associated with the monic GJM J. Then:

(1) The distance l; can be calculated by

_ Qi(0) +Qi—1(0)
P(0)  Pa(0)

I = (2.21)

(2) For every N € N the following formula holds
N
Qn(0)
_ ~-Nu 2.22
Pn(0) ; 222)
Proof. (1) Considering (2.18) at z = 0, we obtain Q,(0) = 1;Q5; ,(0) +
Q5;_5(0) and hence

1iQ3;1(0) = Q5(0) — Q3 5(0).

By Definition 2.9 and by the generalized Liouville-Ostrogradskii formula
(2.9)

Q5;1(0) = gl(Qi(O)Pz’l(O) — Qi_1(0)P;(0) = 1.
i—1

This implies (2.21).
(2) Summing the equalities (2.21) for i = 1,..., N one obtains (2.22).
O
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Lemma 2.13. Let s € Hi:;eg, let P;(z) be the polynomials of the first
kind associated with the monic GJM, let P (z) and Qf (z) be Stieltjes
polynomials of the first and second kind defined by (2.20), x; = li+- - -+1;,
i € N. Then

Sodi =Y IPHOB and Y- diat =30 1QHO)b
P i—o =2 i=2

2.5. The class U, (J) and linear fractional transformations
Let x € N and let J be the 2 x 2 signature matrix J = (S BZ> .

Definition 2.14. A 2x2 myf W(z) = (wi7j(z))?7j:1 that is meromorphic
in Cy is said to be in the class Ui(J) of generalized J-inner muf’s if:

(i) the kernel
J=W(z)JW(w)*

W) —
Ko (2) —i(z — )

has k negative squares in 55% X ﬁ—)i/_v and
(i) J—W(pu)JW(u)* =0 for a.e. p€R,
where .6;5\, denotes the domain of holomorphy of W in C,..

The set of meromorphic mvf’s which satisfy only the first assumption
(i) is denoted by Py (J). The class P(J) := Po(J) was introduced and
studied by M.S. Livsi¢ [44] in connection with the theory of characteristic
functions of quasi-hermitian operators, see also [49], in the case of un-
bounded operators. A complete factorization theory for mvf’s from the
class P(J) was developed by V.P. Potapov [47]. The subclass of J-inner
mvf’s U(J) plays an improtant role in this theory. Notice that mon-
odromy matrices of canonical systems and resolvent matrices of many
interpolation problems belong to the class U(J), [5]. The definition and
some properties of the class U (.J) are contained in [3].

Consider the linear fractional transformation (LFT)

Tw[T] = (w117'<2) + w12)(w217'(2) + w22)_1
associated with the mvf W(z). The LFT associated with the product
WiWs of two mvf’s Wi(z) and Wa(z) coincides with the composition
Tw, o Tyy,.

As is known, if Wi € Uy, (J) and Wy € Uy, (J) then WiWs € U, (),
where k' < k1 + k2. In the following statement a partial case, when the
preceding inequality becomes equality, is considered, see [18].
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Lemma 2.15. Let m;(z) be real polynomials and l; € R\ {0} (i =
1,...,7), let the muf’s M;(z), L;, Waj—1(2) and Whj(z) be defined by
(1.16) and

Wijl(Z) = Ml(Z)Ll c. Ljfle(Z), WQJ'(Z) = Ml(Z)Ll PN Mj(Z)Lj.
Then:

(1) M; € Uy_(m;)(J) and for every meromorphic function T, such that
7(2)7t = 0(2) as z= oo the following equivalence holds

e N = Ty [r] e NF-MTF 0 g e N

K—(zm;)+K"

(2) L; € U(J) and for every meromorphic function T, such that 7(z) =
o(1) as z=o0 the following equivalence holds

7€ N¥ = Ty, [7] € N& GO,

(3) Waj—1 € Uy, (J), where

gm zm;(z

I Mu

_(zmy —l—Zm (zl;)  (2.23)

and for every meromorphic function T, such that 7(2)™! = o(2) as
z2—00 the following equivalence holds

k‘j +kK

k/
T € Ny <= Tw,,_,[7] € N,

(4) Waj € Unj(J), where

Kj = Zfi_ (my), kj = Z k—(zm;) + Z k_(zl;).  (2.24)

and for every meromorphic function T, such that 7(z) = o(1) as
2—00 the following equivalence holds

/ kT k!
T e NG < D, lr] e N .
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3. Boundary triples for the operator A

3.1. General case

Let us fix j € N and define the operator A ;) in the Pontryagin space
o, as the restriction of the operator 3[‘6 i to the domain

dOHlA[OJ‘] = {f S f)[oﬂj] : [f, enj] = 0} (31)

As was shown in [10] the adjoint linear relation A%g]j] of A4 has the
following representation

Al = {f = {%J]ficfenj : f; 2l } (3.2)
Mention some properties of the operator A ;.
Proposition 3.1. Let the operator Ay ;) be defined by (3.1). Then:
1. ey is a generating vector for the operator A[OJ] 5
2. op(Apy) = 0;
8. H =ran(Apj — 2) +span{eg} for all z € C;

4. the operator Ay ; is simple, see (2.3).

Proof. (1) It follows from (2.8), (2.4) and (3.1) that ey € dom(AfO j]) for
all i = 0,nj41 — 1 and
$o,j] = span {€:0<i<nj1—1}, €= Af()’j]eo. (3.3)

(2) To prove the second statement let us assume that z € o;,(Ajg ;)
and Ay ;1 f = 2f. Decomposing the vector f by vectors e,, from (3.3)

one obtains
njt1—1

f= > &
=0

If m is the largest k for which § # 0 then the equality A ;f = 2f
implies

m m
D GiEi =) 26
i=0 i=0

and hence one obtains &, = 0. Therefore, { = 0 for all i <nj; 1 — 1.
(3) is implied by (3.3) and (2.6), since

(A[Oyj] - Z)@Z' = €41 — Z€i, 1=0,... s Tj+1 — 2.
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For vectors

P f . g
/ _[‘%‘SJ]f + cfenj] and g _[~[ 19+ cgen, ] € A

define Wronskian W [7.49] b

Proposition 3.2. Vectors

~ 041(2) sy | Coal?) 3
Toa() = L”[eﬂ(Z)]’ 041(#) Lé[o,j](Z)JreJ S

belong to A{S}ﬂ and admit the representations

~ To,5] (%)
; = |~ =~ 3.5
W[O:J](z) [d[j(;j]ﬂ-[o,j}(z) + bj 1Pj+1(z)€nj] ( )

a §o,51(2 )
5[0,]'](3) = [3%(;73']5[0,1]( )+ b Q]+1( 2)en ] . (3.6)
Wronskians W [f, 7 0,51 (2)] and W; 2 E[OJ](,Z)] can be found by

~

Wilf, o, (2)] = i b +1(2)

i PJ(Z)

¢t b1 Qjn(2)

Wilf &0, (2)] = 5o Qi)

)

(3.7)
and the generalized Liouville-Ostrogradskii formula (2.9) takes the form

Wj[é\[o,j](z)ﬂ?[o,j] (2)]=1, zeC (3.8)
Proof. The formula (3.5) is implied by (2.8), (2.10) and the equalities

7T0(Z) 0
J0m041(2) + 07 P (2)en, = Gl [ Jpog | 1 |+
mj(2) Pj1(2)

= Z'/T[O,j] (Z)

It follows from (3.5) that ¢, = E;le+1(z) for g = 7 j1(2). Inserting this
into (3.4) yields the first formula in (3.7). The proof of (3.6) and the
seecond formula in (3.7) is similar.

The formula (3.8) is implied by (2.9), (3.7), (3.5) and (3.6). O
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Proposition 3.3. Let f: [f], qg= i

f/

5,] € AE;] . Then

[ gl = [f. 9] = W;[f.3]. (3.9)

Proof. Let vectors f,ﬁ € A{S]j] be of the form

=17 = i o) 0710 = a0 e
/ [f '] [d%,j]f tepen, ] I g T (39 + coen,

Since the matrix 3[%].] generates a self-adjoint operator in g 1, see (2.10),
one gets from (3.4)

[f's 9] = [f-d]

[3[7;),j]f+ cfenj,g} - [f, 3[7(;7]-}9 + cgenj}

crg; — IS = W;l£. 4. (3.10)

This completes the proof. O
The following Christoffel-Darboux formulas are implied by (3.9).

Corollary 3.4. Forallj € Z4, z € C and zg € R the following formulas
hold

W; [E[o,j](z)’g[o,j](zo)] = (2 = 20)[€10,51(2), €[0,51(20)]550. 1 (3.11)

WilE10,41(2): Rpo g1 (20)] = 1+ (2 — 20) 10,51 (2): 70,51 (20) 0.1
WilR(0,1(2): 0,41 (20)] = —1 + (2 = 20) [0 (2). 0,51 (20)] 0. -
W;[m0,41(2), To,41(20)] = (2 = 20)[m0,51(2), T0,51(20) ]9y, - (3.12)

Theorem 3.5. Let P;(z) be the polynomials of the first kind associated
with the monic generalized Jacobi matriz J. Then:

(1) the boundary triple {C,Tg,I'1} of the linear relation AE‘)]J.] can be
found by

Tof = fj = [f.en,] and Tif=cp; (3.13)
(2) the defect subspace of the operator Ay ;) is given by
mz(A[o,j]) = Span W[o,j}(z),

where T n1(2) is given by (2.11);
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(3) the Weyl function and the v-field of the operator Ay ;) correspond-
ing to the boundary triple {C,To,I'1} are given by
Pj1(2)

M(z) = m, 7(2)

m0,51(2) (
= 3.14)
P;(2)
Proof. (1) The Green’s formula for the triple {C,T'o,T"1} is derived from
the equality (3.10):

[f'.g) = [f. 9] = ct[g, en,] —Glfsen,] = T1fT0g — TofT1g.  (3.15)

(2) Tt follows from (3.2) and (2.11) that 7 ;)(2) € AE;]J,] and hence
the inclusion 7y ;)(2) € M.(Ap5) holds.
(3) Applying I'g and I'; to the defect vector foi= TMo,j](2), one obtains
Tof: = [mjoj(2),en,] = Pj(2) and Tif=b'Pia(z).  (3.16)
This proves the formulas (3.14). O

Remark 3.6. A similar construction of the boundary triple for “symmet-
ric” GJM’s was presented in [10]. Relations between the corresponding
objects for monic and “symmetric” GJM’s will be given in Section 5.2.

Theorem 3.7. Let the operator Sig ;) in the space $)o j be defined as the
restriction of the operator 3%8 i to the domain

dOHlS[O’j] = {f S fJ[O,j] : [f, 60] = 0} . (3.17)
Then:

(1) the adjoint linear relation S[[g]j] of Sjo,j] has the following represen-
tation

K [ f Cfehg |

2) the boundary triple {C,Tg,I'1} for the linear relation S¥ - can be
(2) Yy [0,5]
found by R R
Iif =[fe] and Tof=—dy;

the defect subspace Yix(Sig.11) of the operator Siy ;1 is spanned by
3) the def b ‘)TS[,J] f th S[’J] d b

T 1 Qj+1(2) .
Qg —2) e = (5[0,1} T P2 77{0,j]> ;
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(4) the Weyl function my ;)(z) of the operator Sy ; corresponding to
the boundary triple {C,T'o,I'1} is given by

Qj+1(2)

my;)(2) = [(3[7(;,j] —2)"eg, e0] = _m- (3.19)
Moreover
S0 32n~+172 1 o
m[O,j](Z) = - zZ”;“*l + o0 Z2nj+11> as z—roo0,

S$i = {(3%’j]>ieo,eo .
(3.20)

Proof. (1) Assume that the linear operator Sjy j in the space £ ; is
defined as the restriction of the operator 3[7(;7].] to the domain (3.17).
Consequently, the adjoint linear relation S[[S}ﬂ is given by (3.18).
(2) Suppose, f = {f, 3[760-]]“ +dyeo} and g = {f, 3[7(;7]-]9 + dgep}, then
[1',9] = [f:9' = Qo0 f + dreos 9] = [ 35,9 + dgeo] =
= dylg, e0] — dglf, e0] = T1fTog — Lo fT17.
(3) Let us set

fo 1= 0 (2) = B 2.

Then it follows from (2.12) and (2.13) that (3[7‘3 i~ z)f. = eo. Hence

fo= Qb —2) e (3.21)

o fz o fz :|
f= [Zfz] B |:3[07j]fz —e€o] "’ (3-22)

Therefore, f. € M.(S)o5)-
(4) It follows from (3.13) and (3.22)

and

Tof.=1 and TIif, = —%;1((3 (3.23)
J

This proves the second formula in (3.19). The first formula is implied by
(3.21) and (3.23). Due to (3.19), we obtain

2z ZQ?‘L]'+1—1 Z2nj+1—1

2nj+172
3T €, €
[0, <o [(Wﬂ> 0°}+0( ! )

i
as z—o00. Denote s; = [(3[‘6 j}> eo, 6’0:|, we get (3.20). O
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3.2. The case s ¢ Hi’;eg

Definition 3.8. A symmetric operator A in a Pontryagin space ($,[-,-])
is said to have k negative squares, if for every choice of f; € dom A the

form
n

> Afi fils&i&

i,j=0
has at most k, and for some choice of f; € dom A ezactly k negative
squares.

Let a symmetric operator A in a Pontryagin space (), [-,-]) have k
negative squares. Recall [14], that a boundary triple I = {C,T¢,T'{} for
the linear relation A is said to be basic, if the Weyl function M (z) of
A corresponding to the boundary triple II satisfies the conditions

lim M(iy) = oo, lim M™(iy) = 0. (3.24)

iy—0 1Y—00
Proposition 3.9. Let s € ”Hi:;ey and let N(s) = {n;} 1. Then:

1. the operator Ay Ny has k negative squares;

[+]

o,N] Can be

2. a boundary triple {C,Td, T} for the linear relation A
chosen as follows

Iff= [frenn]s TgF=—Pn(0)cs + by Pys1(0)]f, enyls

(3.25)

Pn(0)
where cy is defined by the decomposition (3.2);

3. the corresponding Weyl function and the vy-field are given by

+ () = P;N(Z) +(5) = 7T[OJV](Z)_
[O,N]( ) P2+N+1<Z)7 ( ) P2+N+1(Z)7 (326)

[+]

[0,N] 18 ba-

4. the boundary triple {C,T{,T{} for the linear relation A
stc.

Proof. (1) Arbitrary vector f € dom(Ajy ) can be expanded by vectors
ei (0 <i<npyyi—2) from (3.3) as follows

TLN+1—2

f= > &e&, &eC

1=0
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By (3.20)
[Ajo,m€is €l = Sitjtt, 67 =0, nn1 =2, (3.27)
Since s € Hﬁ:;eg one obtains from (3.27)
nN41-2 nN+1—2
Z [Afo,n€i, ej]ﬁ[o,zv]gigj = Z Sitit1&i&j
1,5=0 i,j=0

and hence the operator Ay ) has k negative squares.
(2) Obviously the operators Fg , '] are connected with I'g, I'; by

—~ 1 —~
Fff:Bro and TI'§f=p8(alo—T1),

1
where 3 = Py(0) and o = %{6;(0). Then, by [21, Proposition 1.7]

{C,Fﬂf‘f} is a boundary triple of the linear relation A{S] N Hence, the
corresponding Weyl function can be calculated by

T(2) = gz = :
MT(2) B2 (a—M(z)) P2 (0) Pn41(0) - Py.1(2)
o J)V byPy(0)  byPy(z)
NI Z
_ Ey(0) - L)

byt (Prsa(2)Pn(0) = Py (2) Pni1(0)  Poyiq(2)
(3) It follows from (3.16) that for f. = Mo,n(2)
Tt = ZI(PNH(O)PN(Z) — Py (0)Pn11(2)) = Poyy (2),
v Py() (3.28)
F;rfz = M[W[O,N] (Z)’enN] = PN(O) = P2+N(Z)'

This proves the formulas (3.26).
(4) Tt follows from (3.26) that the Weyl function M™(z) satisfies the
conditions
lim M™*(iy) =00, lim M™(iy) = 0.
1y—0 1Y—>00

Therefore, by the above definition (3.24) the boundary triple {C,T'g, '} }

for the linear relation AE N

Remark 3.10. Recall that in [14] the boundary triple {C,T,T'1} for
the linear relation A was called basic, if the extensions 4y = Ak and
Ay = A were the Krein and the Friedrichs extensions of A nj, respec-
tively. We use here an equivalent definition to prevent introducing of
extra notations Ar and Ak (see [14, Proposition 3.1]).

is basic. O
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4. Resolvent matrix

4.1. Review of the M.G. Krein theory of resolvent matrix

Let A be a symmetric operator in a Pontryagin space (9),[-,]) of
negative index kg, let the defect indices of A be (1,1), let a scale vector
u € §) be given and let A be a selfadjoint extension of A acting in a
Pontryagin space $(D $) of negative index  satisfying the minimality
condition

§H =span{u, (A —z)"'u: z € p(A)}.

The function [(A — z) " u,u]s is called the u-resolvent of the operator A
of index k.

A description of u-resolutions of a symmetric operator was given in
[34, 38| in the framework of the theory of the u-resolvent matrix, which
will be briefly presented below. A point z € C is called (see [34,38]) a
u-regular point of the operator A if ran(A — z) is closed and

H =ran(A — z) 4 span .

Denote by p(A,u) the set of u-regular points of the operator A. Define
two functionals P(z), Q(z) : H — C holomorphic in p(A,u) by the
formulas

f=(P(2)flueran(A—2), Q2)f = [(A—2)"'(f — (P(2)f)u), ul.

Define also two vector-valued functions P(z)*, Q(2)l with values in £
by

[P f1=P)f.  [Q), f]:=Q(2)f.

Direct verification shows that for all z € p(A, u) we have

P(2)l = {P(2)l, 2P(2)l} € AL, (1)

={Q(2)l, 20(2)lF + u} € Al ’
A description of u-resolvents of a Hilbert space symmetric operator with
equal finite defect indices was obtained by M.G. Krein in [34], and for
densely defined operator in a Pontryagin space, by M.G. Krein and H.
Langer in [38]. An explicit formula for the resolvent matrix of a Hilbert
space symmetric operator in boundary triple’s notations was given in |20,
21]. For a nondensely defined symmetric operator in a Pontryagin space
with the defect indices (1,1) such a formula and the description of u-
resolvents take the following form (see |15, Theorem 5.2|).
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Theorem 4.1. Let A be a symmetric operator with defect indices (1,1)
in a Pontryagin space $) of negative index ko, let Il = {C,T'g,I'1} be a
boundary triple for A¥, let u € $, let p(A,u) # 0 and let

—To0(zH  TyP(2)¥ "

Then:
(1) W(z) = (wi,j(z))?’jzl is holomorphic on p(A,u), and the formula

~ -~ B w11 (2)7(2) + wi2(z) ~
[(A=2)" u,u] = W (7(2) Fumla) € p(A,u) N p(A)

establishes a one-to-one correspondence between the set of all u-
resolvents of A of index k and the set of all T € N,_,, such that

wa1(2)7(2) + waa(2) # 0. (4.3)

(2) If, in addition, $o = H[—]dom A is not trivial and Ag = A +
{0} x $¢ then A is an operator if and only if T satisfies the Nevan-
linna condition

T(iy) = o(y) asy — oo. (4.4)

(8) If, in addition, the operator A has ko negative squares and II is
a basic boundary triple, then the formula (4.2) establishes a one-
to-one correspondence between the set of all u-resolutions of the
operator A of index Kk, such that the extension A has k negative
squares and the set of T € NF7X0 " guch that (4.3) holds.

K—KQ’

4.2. Resolvent matrix of the operator A ;

Theorem 4.2. [10, Theorem 3.14] Let a boundary triple Il = {C,To,I'1 }
for the operator A{S}ﬂ be defined by (3.13) and let w = eg. Then the cor-
responding u—resolvent matriz of the operator Ay j; takes the following

representation
- [ Qi)
Wi j)(2) = ( Pj(z) gj_]lijrl(Z) ) ' (45

Proof. 1t follows from (3.5) and (3.6) that 73[0731(,2)[*] = To,5(2) and
Q0,41 (z)[*} = &o,) (Z). By (3.13) we obtain

Fl@A[U,j] (Z)M :é-_leﬂ(E) and FO?[O,J'](Z)[*] =Q;(2),
FlP[O,J’}(Z)[*] = bj_lpj-H(E) and FOIP[OJ‘](Z')[*} = P;(2).

Substituting (4.6) in (4.2), we get (4.5). This completes the proof. [

(4.6)
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Proposition 4.3. Let a boundary triple {C,T'g,I'1} for the operator A{Z]ﬂ

be defined by (3.13) and let u = eg. Then the u-resolvent matriz W j)(2)
admits the following factorization

W[O’j](z) = WU(Z)Wl(Z) ce Wj(z), (47)

where the elementary matrices are defined by

0 -1 0 —b4
Woh(z) = 1 ap(z) and W;(z) = 7, a;i(z) |,i=1,7.
b() i—1 bz

Proof. Prove (4.7) by induction
(1) W[O,O](z) = Wo(z), ie. (47) holds.
(2) Inductive step. Let (4.7) hold for some i — 1, i.e.

0 (2) - Oi(2
Wio,i—11(2) = Wo(z)W1(2) ... Wi—1(z) = ( Igté)) ;lelg(i))> '

oo — (-G e (0 Tha
[0,1—1](Z)Wz(z) = Pi—l(z) b_ ) ( ) gi_l CLZ(Z)
_ (—@-(z) b (biQii(2) + ai<z>Qi<z>>>
Pi(2) b;1<—bz-Pz- 1(2) + aIPA)
2)

AT e

This proves (4.7). O

Theorem 4.4. [10, Theorem 3.14] Let j € N and let the Wronskians
[f, 70,51 (0 )] and Wj[f,g[ovﬂ(O)] be defined by (3.7). Then:

(1) The formulas
Tof = W [f, 0,41 (0)], I f= W [f, E[O,j] (0)],
define a boundary triple I = {C, fo,fl} for the operator AE;]J].
(2) The u-resolvent matriz of Ay ;) corresponding to the boundary triple

II and the scale u = eo has the form

W () — —Wj[g[o,j](z)ﬁ[o,j](o)] [g[oj( ), g[o; (0)]
M0a ) = |y o2 Fon O] WylF0, (2 6oy (0)]
(4.8)
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(8) The Weyl function corresponding to the boundary triple II has the
form
— %% 0
M[O,j} (Z) _ j[ﬂ J](Z) 5[0,] ( )]
Wi [7(0,11(2), 0,57 (0)]°

Proof. The proof of (1) is based on the identities (3.15) and

~

W;LF, 0.5 O)IW;1G, Tio 51 (0)]* = W5LF, 70,5y (0)]W; 3, €05y ()] = Wil F, 3]

Applying the operators fo and fl to

f= @[O,j](z)[*] = g[o,j] (z) and g= 73[04'}(2)[*} = o) (%)

one obtains the equalities
Tof =W, [ﬁ[og]( Z), 70,4 (0)], I f= Wj@[o,y]@)f{og]@)k

Tog = W;[F04(2), o) (0, T1g = W;[Fp (), G0, (4.9)

In view of (4.2) this yields (4.8). The second part of the formula (4.8) is
implied by (3.11)~(3.12).

The statement (3) follows from (4.9). O

Corollary 4.5. The formula (4.8) for the u-resolvent matriz of A j

corresponding to the boundary triple II can be rewritten as

N —[€0,71(2): ™0, (O], —1810,1(2)5 10,57 (0)] 0,51
Wioa ) =142 | g 1) moOlogt (0. €0 Ol |
(4.10)
The Weyl function ]\7[07j](z) corresponding to the boundary triple Il is
equal to
Mo(2) = Pj11(2)Q;(0) — Pj(2)Q;+1(0)
O TP ()P (0) = Pi(2) P 0)

and has the properties

_ xJ
I;g)lM[Oj]( T) = o0, :rlilmoo M[O,j]( T) = F)](O) :

4.3. The case s € H""%

K,2m5—2
Theorem 4.6. [10, Theorem 3.14] Let s = {si}?g{? € Hi:gzgj_w let

{C,T§, T} be a boundary triple of the linear relation A{;]j]. Then:
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(1) The corresponding u-resolvent matriz of the operator Ay j; can be

found by
Q3541(2) Q35(2)
W= (B0 0 )
(2) W[o i € Uy, (J), where kj are calculated by (2.23).

eroof It follows from (4.1) that 73[0 ]-](z)[*] = A[OJ] () and Q[OJ](Z)[*] =
§j0,5)(%)- Calculating entries of W[ ]( %), we obtain
F(—)F@[O,]](z)[*] — i(PJ_H(O)QJ(E) — P](O)Q]_A'_l(i)) = _Q;—j+1(§)7
T Qo (2)! = 55160413 en,] = $3 = —Q3;(2).

(4.12)
Inserting (4.12) and (3.28) in (4.2), one obtains (4.11). O

In the following statement relations between the resolvent matrices

Vﬁ\j[o,ﬂ( ) and W[o ]( z) is established.

2n;

Proposition 4.7. Lets = {Si}i:0_2 € Hig%’jd The resolvent matrices

Vf\\j[oyﬂ(z) and W[’gj](z) of the operator A ;) are related by

Q,(0)
_ Lo
Wi (2) = Wi (2)Vip),  where V[o,j]=<0 <>> (4.13)

Proof. 1t follows from (4.8) and (3.7) that

_Qi+1(A)P(0)-Q;(2)Pj+1(0) _ Q;+1(2)Q4(0)=Q;(2)Q;+1(0)

= _ b, i
W) = | pa@PO-PePL0O P10 -F)Qnm0)

J bj

@.

and hence

Qj+1(2)P; (0) Qi(2)Pi+1(0)  Q4(2)(Qi+1(0)P;(0)—P;+1(0)Q;(0))
Wio.31(2)Vio.) = Vo2

Pj+1(Z)PJ(O):PJ(Z)Pj+1(O) Pi(2)(Q;+1(0) P;(0 (0)=P;11(0)Q;(0)
b; b; P;(0)

Now (4.13) follows from the Liouville-Ostrogradskii formula (2.9). O

Notice that the mvf W[o ]( z) coincides with the mvf W;; 41(2) intro-
duced in [18]|. Recall that WQJ +1(2) admits the following factorization

Wi 1(2) = Mi(2)Ly ... Lj—1 Mj(z) (4.14)
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where the matrices M;(z), L; are defined by

R N o 10\ .
L,--(O 1> i=1,j-1, MZ(Z)_<—zmi(z) 1), i=

and the polynomials m; and the numbers [; are defined by (2.17).

In the following proposition we introduce one more resolvent matrix
which will be used as a frame for the description of solutions of even
moment problem.

Proposition 4.8. Let s € Hﬁ:;eg, N(s) = {nz}f:1 and let a boundary

triple It = {C, T+, T{ T} for the linear relation A{é}ﬂ be defined by

F++f: F+J/C\+ l F+J?, F++fAZ F+ﬁ
where the boundary triple IIT = {C,T'{,T'{} is given by (3.2). Then

(1) the corresponding u-resolvent matrix W[o ]( z) is given by

T (2 (z
o= (e Bl ) e

(2) WOJ] € Uy;(J), where k; are calculated by (2.24).

The above two propositions allow to formulate the following factor-
ization result for the resolvent matrix Wit

[0]()

Theorem 4.9. Lets = {s;}°, € Hk "9 and let N € N be big enough so
that the equalities

V_(Sny) =v-(Sn,;) and v_(S;,)= V_(S,i_j)

hold for all 5 > N, j € N. Let S[N,ﬂ be a Jacobi matriz

~ 1
Tiv = iy + dia (00)
(V4] [V,4] g iyt
Then the resolvent matriz W[o ]( z) of Ay admits the factorization
W[J&J]( 2) = W[EJJFV (2 )W[J]rv,ﬂ( z), (4.17)

where W[—gj'\, 1]( z) is the resolvent matriz of the operator Ay y_1) of the

form (4.16) corresponding to the boundary triple H[o N-1]’ and W[ ]( 2)
is the resolvent matrix of the operator

A = 31 ldom (Ain.p)’ dom(Apy ;) = {f € Sy : [ en,] = 0}

corresponding to the boundary triple H of the form (3.25).
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Proof. By Proposition 4.8 the resolvent matrix of the operator K[N,j}

+

[N.j] admits the factorization

corresponding to the boundary triple II

Wﬁw](z) = Mni1Lng1 ... Mjt1,
where ]\fZz and L; are matrices generated by numbers m;, l: defined
by (1.16). By [17, Theorem 4.1]

and the equalities

! an(0) = —an(0) — — !
_— = _G‘N = —aN — =
my+1lNs1 mytiln  mypilng

imply that 7N+1 = In+1. Therefore,

ng’j](z) = MN+1LN+1 e Mj+1. (4.18)

It follows from (4.14) that W[’S i (z) admits the factorization (4.17), where
W[—(’]—;'_—l] (Z) = M1L1 .o Mij, W[J(g";,_l}(z) = M1L1 e MNLN,

(4.19)

The statement is implied now by (4.18) and (4.19). O

4.4. Truncated indefinite moment problem

Consider the truncated indefinite moment problems M Py (s, ¢) and
M PF (s, ¢). The moment problem M Py (s, ) is called even or odd regard-
ing to the oddness of the number /+1 of given moments. The odd moment
problem M P¥(s,2n —2) is called nondegenerate, if D,, =det S,, # 0. The
moment problem M P, (s, ¢) was studied in [13,23,39,40]. Recall the fol-
lowing description of the set M, (s, 2nx — 2) from [10, Proposition 3.31].

Proposition 4.10. Let s = {si}?zé\’*z € Hypony—2 and let N(s) =
{n;}¥, be the set of normal indices of s and let Won-1] = (wij)%jzl.
The problem M P, (s,2ny —2) is solvable if and only if Ky = v_(Sp,) <
Kk and the formula

_ w11 (2)7(2) + wia(2)
wgl(Z)T(Z) + w22<z) ’

f(2)

(4.20)

establishes a  one-to-one  correspondence  between  the  class
M,.(s,2ny — 2) and the set of functions T € Ny_,.,, which satisfy
the Nevanlinna condition (4.4).
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The operator approach to M P, (s,2ny — 2) in [39] is based on the
formula

f(2) = (A= 2D e, e0lo vy (4.21)

which describes the set M(s,2ny — 2) when A ranges over the set of
all single-valued self-adjoint extensions of Ay y_1). In fact, in [39] a full
moment problem is considered. The description (4.20) is based on this
formula and on Theorem 4.1. Another proof of this formula was given
in [8,9] and [10] by applications of the Schur algorithm.

The problem M P¥(s,2ny) was posed and solved by the methods of
extension theory in [13, Theorem 4.14].
Theorem 4.11. Let s = {s;}.") % ¢ Hﬁ:gngN_z, n = ny and let the
matrix Sy, = (5i+j)2j_:10 be nondegenerate and ky := v_(S,) < k. Then
the problem M P, (s,2n — 2) is solvable and the formula

F(z) = [(A—2)" u,ulp,n-1

establishes a one-to-one correspondence between the set of all solutions of
the truncated indefinite moment problem M Py(s,2nx —2) and the set of
all u-resolvents of the symmetric operator Ajg n_1) of index k generated

by single-valued self-adjoint extensions A.

If, in addition, the matriz S} | = (si+j+1)2§y:_()2 is nondegenerate
and ky = I/_(S:N_l) < k, then the problem M PF(s,2ny — 2) is solv-
able and the formula (4.21) establishes a one-to-one correspondence be-
tween the set of all solutions of the truncated indefinite moment problem
MPF(s,2nx—2) and the set of all u-resolvents of the symmetric operator
Ajo,n—1) of index , such that the extension A has k negative squares.
Proof of Theorem 1.2. Since s = {81‘}?:6\772 € Hi:gfﬂv_% the matrix
St.= <$i+j+1)?,j_:20 is nondegenerate and ky := v_(S;_;) < k by Theo-
rem 4.11 the problem M P¥(s, 2ny —2) is solvable and the formula (4.21)
establishes a one-to-one correspondence between the set of all solutions
of the truncated indefinite moment problem M P*(s,2nxy — 2) and the
set of all u-resolvents of the symmetric operator Ajy y_1) of index kK —rp,

such that the extension A has k negative squares.

Consider now the boundary triple H[JB’N_” = {C,T,I'{} for the

operator Ajgy_1). By Proposition 3.9 the boundary triple HF(L) N-1] is
basic. Therefore, by Theorem 4.11 the set of all u-resolvents in (4.21) is
described by the formula

[(A=z) " uulgnoy =Ty [7(2)],

[0,N—1]
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where 7 € Nﬁ:ﬁ%. Moreover, by Theorem 4.1 an u-resolvent [(A —
2) " tu, ul (0,N—1] is generated by a single-valued self-adjoint extensions A
if and only if 7(2) = o(1) as z=oo. This completes the proof of Theo-

rem 1.2. O

In the following proposition we recall a description of solutions of the
even indefinite Stieltjes moment problem presented in [18].

Theorem 4.12. Let s € H"0% N(s) = {nj}j-vzl and let the u-

K2nn—17

resolvent matrix W['gjv_l](z) be given by (4.16). Then:

(1) A nondegenerate even moment problem MPF (s, 2ny — 1) is solv-
able, iff

KN =vV_(Spy) <Kk and ky:= u_(STJ[N) < k.
In this case the set ME(s,2ny — 1) is parametrized by the formula

_ Q;N_l(z)T(Z) + Q;N(Z)
Py 1(2)7(2) + Py (2)

f(z)

where T(z) € Nﬁ:ix and 7(2)=o0(1) as z=oo.

(2) The matrix W[Jg'yv_l} (z) admits the following factorization

WK _y(2) = Mi(2)Ly ... My—1(2) L1,

where the matrices M;(z), L; are defined by (4.15).

5. The full indefinite moment problem M P*(s)

5.1. Description of solutions

Let us associate with the infinite sequence s = {s;};°, an indefinite
inner product space o) of infinite sequences endowed with the inner
product

[.’L‘, y] [0,00) = (G[O,oo)x7 y)a G[O,oo) = diag(ZOE()_lyglEl_la .- )
If s € H,, then the space 9y ) is a Pontryagin space (see [6]), with
max{ind_$g ), ind+H[g 00) } = K-

Associated to the matrix 3[7(; 00) there is a minimal operator Amin, defined

as the closure of the operator JE‘G 00) restricted originally to the set of
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finite sequences. The operator Ap;, turns out to be symmetric in the
space $0,00)-
Alongside with the minimal operator we consider also the mazimal
operator Amax, defined as the restriction of 3[‘8 00) to the domain
dOHl(AmaX) = {iU < 5’)[0 o) * [0 oo)x € 5[0 00) }
As is known [10,39] the operator Ay is self-adjoint in g ), if and only

if Amin = Amax. One can easily see that Ay = AE;]in. It follows from the
equalities (2.12) that the defect subspace M, (Apin) := ker(Apax — 1) is
either a one dimensional space generated by 7(z) or is trivial. Combining
this observation with Lemma 2.13 one obtains the following

Proposition 5.1. Let s = {s;};°, € H,. Then the following statements
are equivalent:

(1) The moment problem M P, (s) is indeterminate.
(2) The deficiency indices of the operator Amin are equal to one.

(8) The “moment of inertia” of the string is finite

Zx?mj(0)<oo, where xj =1+ - +1;.

The results of [39] on indefinite moment problem can be reformulated
in notations connected with a monic GJM J as follows.

Theorem 5.2. Let v_(S,) = k1 < Kk for alln € N, n > ny, and let the
moment problem M Py(s) be indeterminate. Then:

(1) For all f € Hj9 ) there exist finite limits
Woelf, m(0)] = Tim W;[f,7(No)],
Woelf,€00)) = Jim Wi[f,£00))
(2) A boundary triple for Amax can be defined by the equalities
Tof = Waolf,7(0)], T1f = Waol£,£(0)]. (5.1)

(8) The corresponding resolvent matriz takes the form

) = (VT e, E0)
W”"”’““( WalFOL 7)) WaR(N), <o>]>

The muf 1//\\//[0700) (2) = ({Eij(z))ijzl is entire of minimal exponential
type.
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(4) The Weyl function of A, corresponding to the boundary triple (5.1),
takes the form

Mg o)) = =22 =2,

(5) The formula
_ wn(2)7(2) + wia(2)
{1721(2’)7'(2) + 11722(2)

establishes a one-to-one correspondence between the class M,/(s)
and the set of functions T € Ny_y, .

Assume now that s = {s;}}%, € HE and let N be big enough, so
that

v_(S) = k1 =v_(Sny), v-(S)) = ki =v_(SY) forall j>ny.

Then in view of Theorem 4.9 the indefinite Stieltjes moment problem
ME(s) can be reduced to a classical Stieltjes moment problem /\/lg(s(N)),
where the induced sequence sV) can be calculated recursively as in [18,

Theorems 3.3, 3.5]. Alternatively, the sequence s™) can be found as the

oo (N)
sequence of coefficients of the series expansion — Zﬁ corresponding

i=0
to the continued fraction

1
1
—ZMN+1 + 1
lN+1 + —1

—ZMN+y2 + —

Notice that the sequence s(¥) belongs to the class Hg.

Theorem 5.3. Let s = {s;}3°, € HF for some ko, ko € N. Then the
moment problem M P¥(s) with r,k € N is solvable if and only if

ko < K, and ky<k;
and the moment problem M P¥(s) is indeterminate if and only if
o0 o0
ij(()) < oo and le < 0. (5.2)
j=1 j=1

If (5.2) holds then:
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1) The sequence of resolvent matrices Wit converges to an entire
[0,n] \*

muf W[O OO)( z) = (w ;( ))%j:l of minimal exponential type.

(2) The muf VVJr )( z) is the resolvent matriz of the operator Amax
correspondmg to the boundary triple

~

T f = -Walf,7(0)], TTF=-Walf,E(0)] — LW [f,7(0)];

(3) The formula
f(o) W) i)
wy; (2)7(2) + wy(2)
establishes a one-to-one correspondence between the class ME(s)

and the set of functions T € Nk=F

K—K1*

Proof. 1. Verification of criterion (5.2): It follows from Proposition 4.7
that there is a one-to-one correspondence between solutlons f of the
problem M (s) and solutions ¢ of the problem MY(s™N)) given by LET

£2) = Ty lo(2) (54
Therefore, the indefinite moment problem Mﬁg (s) is indeterminate if and
only if the classical Stieltjes problem MY(s(M)) is indeterminate. As is

known, see [31, Appendix II.13] the problem MS(S(N )} is indeterminate
if and only if

o0 [e.e]
ij<oo and le<oo,

j=N-+1 j=N+1

i.e. if (5.2) holds. Notice that for the classical Stieltjes moment problem
M8( o )) the corresponding masses m( ) and lengthes l](-N)
which coincide with m;n and ;4 n, respectively.

Now it remains to notice that the set of solutions f of the prob-
lem M¥(s) and the set of solutions ¢ of the problem Mﬁ:]z% (stN)) are
also connected by the LFT (5.4) and since s(N) € HY the problem
ME= ﬁ%( (M) is indeterminate if and only if the problem MJ(s(™) is
indeterminate (see [14]), which leads again to the condition (5.2).

2. Verification of (1): The convergence of the sequence of the re-
solvent matrices W[o ]( z) is implied by Theorem 5.2 and the formula

(4.13)

are constants,

+ = _1 @O
W[o,n](Z):W[Q,n](z) 0 Pi(f)
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n
where ?3:((8; = —L:=— )l in view of (2.22). In view of the limit mvf
7=0

W[Jgﬁoo] (z) is connected with )7\//[07001(,2) by the equality

Wi 001 (2) = Wi (2) (01 _f) : (5.5)

3. Verification of (2): The formulas (5.3) for the triple {C,T'{, T}
can be rewritten as

I f=-Tof, Tff=-T1f—LTof. (5.6)

By Theorem 5.2 this implies that {([3,1“8L ,Ff} is a boundary triple for
Amax. Moreover, it follows from (5.6) that the resolvent matrix of Ay
corresponding to the boundary triple {C, Far, Ff} is connected with the
resolvent matrix )//\V/[07oo](z) by the equality (5.5) and hence it coincides
with W[o ]( z).

4. Verification of (3): The last statement is implied by the formula
(5.4) and the description of solutions of the problem Mﬁ:ﬁ%(sw )) given
n [14]. O

5.2. Padé approximants

Definition 5.4. The [L/M] Pade approzimant for a formal power series

- Z S (5.7)

is a ratio fI"/F(z) = 71/;{7(17 of polynomials APk BIE of formal

degree n, k, respectively, such that BI"/*(0) # 0 and

1
n/k: _ -
)+ Z g+ <zn+k+1> as z2—00.

Explicit formula for diagonal Pade approximants was found in [9].
Here we give another proof of this formula.

Proposition 5.5. Let s = {s;};°, € HETI  Then the [n/n] Pade ap-
proximant for a formal power series (5.7) exists if n € N(s) and

Qi(2)

flnilmsl(z) = — . jEN.
R &
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Proof. 1t follows from (2.20) and Proposition 4.8 that the function

- Q; _ . _ W++(Z)[(]}€_/\/l(s,2nj—l)

Pi(z)  Pfi(z) [0.7]
belongs to M(s,2n; —1). Therefore, the function — % ((j)) has the asymp-
J
totic
Qji(z)  so S2n,—1 0 1 —
—Pj(z)—_;—"'_ Zan + W as z—0Q.

Next, A(z) := 2"Q;(L), B(z) := 2" Pj(1) are polynomials of formal

degree nj and B(0) = 1. By Definition 5.4 the function —%((j)) is the
J

[nj/n;] Pade approximant for the formal power series (5.7). O

The following formula for sub-diagonal Pade approximants in terms
of generalized Stieltjes polynomials can be proved similarly.

Proposition 5.6. Let s = {5;}°°, € HE"®. Then the [n;/n; — 1] Pade
approzimants for the formal power series (5.7) exists and has the form

Q3;-1(2)
flra/mi=ll(z) = 2221070 0 G e N
PzJ;—1(Z)

Appendix.
Relations between monic and symmetric GJM’s

The exposition of all results in [10] is based on so-called symmetric
GJM’s. To make a connection between [10] and the present paper we
present in this appendix some formulas which relate symmetric and monic
GJM’s and the corresponding polynomials of the first and second type.

Recall that the symmetric GJIM H associated with the sequence of
atoms (a;, b;) (i € Zy) was defined in [10] by the formulas

C/'QTO 61B1 R 00 --- ;]
By Cgl 028> ~ Do :
H = ~ ) , where B;= | - - 7 : )
B, cCcI . 00 --- 0
: 0 0 0

(A1)
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0; = sign(b;) and the entries C,, are defined by (2.4), ¢ € N. The short-
ened symmetric GJM Hj j is defined by

cT 0.5

ao
B cr
Hyp ) = “ .
0;B;
B; CL
Lemma A.1. Let J be a monic GJM, corresponding to a sequence of
atoms (a;,b;), 1 € Z4, and let the matriz ¥ be defined by

U = diag(Iy,, v/|01]12,, V10102l Ie,, - . ). (A.2)
Then the monic and symmetric GJM’s J and H are connected by
H' .= 97 '30.
Similarly, the matrices Jyg ;) and Hyy j are connected by the formula

R —1
Hig o= 5000, % (0,40

‘II[O,j] = diag(IgO, AVA |b1|[g1, V4 ‘bl ce bj|I€j)-

Proof. The equality (A.1l) is obtained from (2.6) and (A.2) by direct
computations. ]

Remark A.2. Let 5%[0,]-] be the indefinite inner product space of se-
quences from C"+! endowed with the indefinite inner product

[z, Y0, = (G[O,j}x,y)v é[o,j] = diag(foEo, 1 1, . .., 0;E)).

where . )
£, 1

E, = - - i=0,7.
i () -
Ay, -1
1 0

It follows from the equalities (see [29, Chapter 12|)
E.C,=CE,

that the matrix @[O,j] Hjy ;) is self-adjoint in the standard scalar product
in C"+1, and hence the matrix H|y ;; generates a self-adjoint operator in

No,4-
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The polynomials ]3j(z) and @j(z) of the first and second kind of H
were defined in [10] as solutions of the following recurrent relations
07/ 1bjlyj-1(2) = aj(2)y;(2) + \/|bj+1lyj+1(2) =0 (bo =e0) (A.3)
subject to the initial conditions

ﬁ—l('z) =0, ﬁO(Z) =1, @—l(z) = -1, Q\O(z) =0,

Lemma A.3. Let J be the monic GJM and let Pj(z) and Q;(z) be the
Lanzcos polynomials of the first and second kind of J. Let H be the
symmetric GJM. Then the polynomials of the first and second kind of H
can be found by

Po(z) = Poz) and Pj(2) = e Pi(2), A
Qo(z) = Qo(2) and Q;(z) = Q%) (A.4)

Proof. Substituting (A.4) into (A.3) one obtains in view of (1.10) for
J=0 ~ .
—CLQ(Z)P()(Z) + v ‘b1|P1 (Z) = —ao(Z)P() + P (Z) =0,
and for arbitrary j € N the left part of (A.3) takes the form
bjPj—1 — a;(2)Pj(z) + Pj41(2)
b1 ... bj

=0.

The equalities (A.4) for the polynomials @j(z) are proved similarly. [

Remark A.4. The Liouville-Ostrogradskii formula (2.9) for polynomi-
als P; and (); takes the form

0o...01\/1bj11] (@j-i-l(z)ﬁj(z) - @j(z)ﬁj—&-l(z)) =1
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