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10. We will consider the simplest elliptic boundary value problem

−∆u(x)− a(x)u(x) = f(x)(x ∈ Ω);u(x) = 0(x ∈ ∂Ω) (1)

and correspondent initial boundary value problem

∂v(t, x)/∂t−∆v(t, x)− a(x)v(t, x) = 0(t ≥ 0, x ∈ Ω); v(t, x) = 0

(t ≥ 0, x ∈ ∂Ω); v(0, x) = v0(x)(x ∈ Ω̄ = Ω ∪ ∂Ω). (2)

Here Ω is a bounded open set in Rn of points x = (x1, · · · , xn) with boundary ∂Ω ∈
C2; a(x), f(x) and v0(x) are given (continuous) functions, defined on Ω̄.

Let A be the acting in the space Lp(Ω)(1 < p < +∞) linear operator, defined by
formula

(Au)(x) = −∆u(x)− a(x)u(x) (3)

on domain

D(A) =
0

W 2
p(Ω) ≡

0

W 1
p(Ω) ∩W 2

p (Ω). (4)

It is well-known (see, for example, [1]), that −A is the generator of analytic semigroup
exp{−tA}(t ≥ 0) of bounded in Lp(Ω) operators, i.e. estimates

‖ exp{−tA}‖Lp→Lp , ‖tA · exp{−tA}‖Lp→Lp ≤ M(p) · eω(p)t(t > 0) (5)

hold for some 1 ≤ M(p) < +∞,−∞ < ω(p) < +∞. We will consider boundary value
problem (1) as operator problem

Au = f (6)

in some functional Banach space. We will say, that u = u(x) is the solution in Lp of
problem (1), if u ∈ D(A), and (operator) equation (6) is fulfilled. If there exists such
solution, then, evidently,

f ∈ Lp. (7)

We will consider initial boundary value problem (2) as (operator) Cauchy problem

dv(t)/dt + Av(t) = 0(t ≥ 0), v(0) = v0. (8)



We will say, that v(t) = v(t, x) is the solution in Lp of problem (2), if v(t), dv(t)/dt,
Av(t) ∈ C([0, T ], Lp) for any number T < 0, and (operator) ordinary differential equa-
tion and initial condition (8) are fulfilled. If there exists such solution v(t) = v(t, x),
then, evidently,

v0 ∈ D(A). (9)
It is well-known [1], that property (9) is not only necessary, but also sufficient condition
for the existence of unique solution v(t) in Lp of problem (2), which is defined by formula

v(t) = exp{−tA}v0. (10)
Let following condition be satisfied:

a(x) ≤ 0 (x ∈ Ω̄). (11)
Then (see [2]), from maximum principle it follows, that estimates (5) are true for some

ω(p) < 0. (12)

Therefore there exists the bounded inverse A−1, which is defined by formula

A−1 =

∞∫

0

exp{−tA}dt. (13)

From maximum principle also it follows, that

exp{−tA} · v0(x) ≥ 0, if v0(x) ≥ 0(x ∈ Ω̄). (14)
and therefore, in virtue of formula (13),

(A−1f)(x) ≥ 0, if f(x) ≥ 0 (x ∈ Ω̄). (15)
It is well known [2], that these statements are valid under less restriction

a(x) < λ1 (x ∈ Ω̄) (16)
on coefficient a(x). Here λ1 > 0 is the miminal eigenvalue of operator −∆.

It turns out, that these statements take place for some functions a(x), which can
have very large positive values near boundary ∂Ω and small (positive) values inside of
Ω. Usually the statements for equations with variable coefficients are true, in particular,
for equations with constant coefficients. In our case it is not true. In fact for a(x) =
const. = λ1 operator A = −∆− a(x)I does not have inverse.

Such statements were discovered in [3] for general elliptic operators of the second
order and for the correspondent parabolic operators. In this paper, for partial cases of
elliptic operators, some amplification of results from [3] is obtained. This amplification
is based on exact values of generalized Hardy’s constants.

20. Let us define generalized Hardy’s functional

`p,Ω(u) = [
∫

Ω

|∇u|pdx]1/p · [
∫

Ω

|u|p · ρ−p
∂Ωdx]−1/p (17)

on the set {u ∈
0

W 1
p(Ω), u(x) 6≡ 0}. Here |∇u|2 =

∑n
i=1 |∂u/∂xi|2, ρ∂Ω(x) is the Eu-

clidean distance from point x ∈ Ω to boundary ∂Ω. It turns out, that value
Hp,Ω = inf

u∈
0

W 1
p(Ω),u6≡0

`p,Ω(u) (18)

is positive. The proof of this statement is based on partition of unity and classical
one-dimensional Hardy’s inequality [4].



Theorem 1. Let
H−1

2,Ω ·max
x∈Ω̄

{[a(x)]1/2
+ · ρ∂Ω(x)} < 1 (19)

Then, for any p ∈ (1, +∞) there exists the bounded positive inverse A−1 in Lp.

Here and in what follows

[ψ(x)]+ = max[0, ψ(x)]. (20)

Scheme of proof. Let us consider boundary value problem with parameter λ ≥ 0

−∆u(x)− a(x)u(x) + λu(x) = f(x)(x ∈ Ω); u(x) = 0(x ∈ ∂Ω) (21)

as operator problem in L2. From maximum principle it follows, that operator A + λI
has bounded inverse, when

λ ≥ max[a(x)]+. (22)

Further, in virtue of Friedrichs inequality

MF (Ω) · ‖u‖L2(Ω) ≤ ‖|∇u|‖L2(Ω), u ∈
0

W 1
2(Ω) (23)

for some 0 < MF (Ω) < +∞(Ω̄ is bounded set in Rn), functional ‖|∇u|‖L−2(Ω) defines

the equivalent norm in the space
0

W 1
2(Ω). Therefore the norm of the space W−1

2 (Ω) [of

the space of bounded linear functionals on
0

W 1
2(Ω)] can be define by formula

‖ϕ‖W−1
2 (Ω) = sup

ψ∈
0

W 1
2(Ω),ψ 6≡0

|
∫

Ω

ϕ(x) · ψ(x)dx| · ‖ψ‖−1
0

W 1
2(Ω)

. (24)

Then from (21) it follows, that (λ ≥ 0)

‖|∇u‖2L−2(Ω) −
∫

Ω

[a(x)]+u2(x)dx ≤ ‖f‖W−1
2 (Ω) · ‖|∇u|‖L2(Ω). (25)

Further, in virtue of condition (19),

H−2
2,Ω ·max

x∈Ω̄
{[a(x)]+ · ρ2

∂Ω(x)} = 1− ε (26)

for some ε ∈ (0, 1]. It leads us to inequality

ε · ‖|∇|‖L2(Ω) ≤ ‖f‖W−1
2 (Ω), (27)

in virtue of definitions (17) and (18). Finally, we apply the Friedrichs inequality (23)
and obtain the first a priory estimate

‖u‖W 1
2 (Ω) ≤ M1 · ‖f‖L2(Ω),M1 = [1 + ε−2 ·M−2

F (Ω)]
1/2, (28)



uniformly with respect to λ ≥ 0.
Further, from identity (21) (under integration by parts) it follows, that

‖ −∆u‖2L−2(Ω) + λ‖|∇u|‖2L2(Ω) ≤ max
x∈Ω̄

|a(x)| · ‖u‖L2(Ω) · ‖ −∆u‖L2(Ω)+

+ ‖f‖L2(Ω) · ‖ −∆u‖L2(Ω). (29)

We use estimate (28) and coercive inequality [2] for operator −∆ and obtain the second
a priory estimate

‖u‖W 2
2 (Ω) ≤ M2 · ‖f‖L2(Ω), (30)

uniformly with respect to λ ≥ 0. It permits us to establish, that for any λ ≥ 0 operator
A + λI has bounded positive inverse (A + λI)−1 in L2(Ω).

For p ≥ 2 we use identity [u ∈
0

W 2
2(Ω)]

−
∫

Ω

∆u(x) · u|u(x)|p−2dx = (p− 1)
∫

Ω

|∇u(x)|2 · |u(x)|p−2dx, (31)

imbedding theorems for the spaces W 2
q (Ω)(q > 1) (see [1, 2]) and come to a priory

estimate
‖u‖W 2

p (Ω) ≤ Mp · ‖f‖Lp(Ω), (32)

which permits to show, that operator A + λI has the bounded positive inverse for all
λ ≥ 0 in Lp(Ω). Finally, in the case 1 < p < 2 we consider operator λI + A∗ = λI + A,
acting in the space Lq, q = p

p−1 .
The parabolic problem (2) can be investigated in the same manner. Analogously to

inequality (27) differential inequality

1/2 · d[‖v(t)‖2L2(Ω)/dt + ε‖|∇v(t)|‖2L2(Ω) ≤ 0 (33)

for solutions of Cauchy problem (8) is established.
Since, evidently,

‖|∇|‖L2(Ω) ≥ λ
1/2
1 · ‖ψ‖L2(Ω), ψ ∈

0

W 1
2(Ω), (34)

then from (33), it follows, that

‖v(t)‖L2(Ω) ≤ e−ελ1t · ‖v0‖L2(Ω). (35)

It means, that following estimate

‖ exp{−tA}‖L2(Ω)→L2(Ω) ≤ e−ελ1t(t ≥ 0) (36)

is true. Further the application of semigroup property and imbedding theorems leads
us to following result:



Theorem 2. Under condition of Theorem 1 for any 1 < p < +∞ estimate

‖ exp{−tA}‖Lp(Ω)→Lp(Ω) ≤ Mp · e−ελ1t(t ≥ 0) (37)

is true for some 1 ≤ Mp < +∞ and

ε = 1−H−2
2,Ω ·max

x∈Ω̄
{[a(x)]+ · ρ2

∂Ω(x)}. (38.)

It is easy to see [see formula (13)], that Theorem 1 is the consequence of Theorem 2.
30. Let us consider general elliptic boundary value problem

−
n∑

i,j=1

ai,j(x)
∂2u(x)
∂xi∂xj

+
n∑

i=1

ai(x)
∂u(x)
∂xi

− a0(x)u(x) = f(x)(x ∈ Ω),

u(x) = 0(x ∈ ∂Ω); (39)

and correspondent parabolic initial boundary value problem

∂v

∂t
−

n∑

i,j=1

ai,j(x)
∂2v(t, x)
∂xi∂xj

=
n∑

i=1

ai(x)
∂v(t, x)

∂xi
− a0(x)v(t, x) = 0 (t ≥ 0, x ∈ Ω);

v(t, x) = 0(t ≥ 0, x ∈ ∂Ω)′v(0, x) = v0(x) (x ∈ Ω̄ = Ω ∪ ∂Ω).

(40)

We will suppose, that functions

ai,j(x), ∂ai,j(x)/∂xi, ∂
2ai,j(x)/∂xi∂xj , ai(x), ∂ai(x)/∂xi, a0(x) (41)

are continuous on Ω̄, and ellipticity condition

n∑

i,j=1

ai,j(x)γiγj ≥ λ0

n∑

i=1

γ2
1 (x ∈ Ω̄) (42)

is fulfilled for all real numbers γi(i = 1, n) and some 0 < λ0 +∞. It is possible to show,
that in this general nonselfadjoint case the analogous of Theorems 1 and 2 statements
are true, if condition

max
x∈Ω̄

{[ 1
2

n∑

i,j=1

∂2ai,j(x)
∂xi∂xj

+
1
2

n∑

i=1

∂ai(x)
∂xi

+ a0(x)]+ · ρ∂Ω(x)} < λ
1/2
0 ·H2,Ω (43)

is fulfilled.
40. Condition (19) of Theorems 1 and 2 depends on value H2,Ω, but the partition

of unity is not explicit approach for the calculation of this value. However there exists
the wide class of domains Ω ⊂ Rn, for which value Hp,Ω is defined by explicit formula.
Namely [5], if Ω is (bounded or unbounded) convex domain, then

Hp,Ω =
p− 1

p
. (44)



In this case condition (19) has form

max
x∈Ω̄

{[a(x)]1/2
+ · ρ∂Ω(x)} < 1/2. (45)

The proofs of Theorems 1 and 2 are based also on the Friedrichs inequality (23).
There are convex unbounded domains in Rn, for which inequality (23) is valid. For
such domains the statements of Theorems 1 and 2 are true under condition (45). For
example, in R2 for stripe

Ω = {x = (x1, x2)/0 ≤ x2 ≤ 1,−∞ < x1 < +∞} (46)

the Friedrichs inequality is true.
For any convex unbounded domain Ω ∈ Rn, for example for Ω = Rn, operator −∆

does not have the bounded inverse, and therefore the Friedrichs inequality is not valid.
Only for any γ0 > 0 operator

−∆ + γ0I (47)

has the bounded inverse. It leads us to condition

sup
x∈Ω̄

{[a(x) + γ0]
1/2
+ · ρ∂Ω(x)} < 1/2 (48)

for any convex domain Ω ∈ Rn Condition (48) means, that function a(x) must tend to
−γ0, when ρ∂Ω(x) tends to +∞, i.e. we suppose, that maximum principle is fulfilled on
the infinity.

50. The condition of type

sup
x∈Ω̄

{[a(x) + γ0]1/2 · ρ∂Ω(x) < H2,Ω (49)

has the sense, if
H2,Ω > 0. (50)

It is true, when Ω is bounded domain, or Ω is unbounded convex domain. However
there exists the wide class of unbounded domains Ω ∈ Rn, for which

H2,Ω = 0. (51)

Namely, let
Ω = Rn \ ω, (52)

and ω is bounded convex domain. Then [6]

Hp,Ω = min{|p− 1
p

|, |p− 2
p

|, · · · , |p− n

p
|}(1 < p < +∞). (53)

It means, that such domains have property (51).
Now we will write problem (2) in form

A0u− [a(x) + γ0]u = f (54)



where
A0u = −∆ + γ0I, γ0 > 0. (55)

It is evident, that for any p ∈ (1,+∞) and λ ≥ 0 operator A0 + λI has the bounded
(positive) inverse in Lp(Ω), and following estimate

‖(A0 + λI)−1‖Lp(Ω)−Lp(Ω) ≤ (λ + γ0)−1 (56)

is true. It means (see [1]), that A0 is positive operator in Banach space Lp(Ω) and
therefore any powers Aα

0 (−∞ < α < +∞) are defined, A−α
0 (α > 0) are bounded

operators and Aα
0 (α > 0) are unbounded operators with dense domains D(Aα

0 ). Further
[7]

D(Aα
0 ) =

0

W 2α
p (Ω) (0 < α < 1) (57)

and following estimates

‖A−α
0 ‖

Lp(Ω)→
0

W 2α
p (Ω

≤ Ms(α, p) (58)

are true with some 1 ≤ Ms(α, p) < +∞. Equation (21) with parameter λ ≥ 0 we can
write in form

A0u− [a(x) + γ0]u + λu = f. (59)

It, evidently, leads us to inequality

‖A1/2
0 u‖2L2(Ω) − sup

x∈Ω̄

{[a(x) + γ0]+ρ2
∂Ω(x)} · ‖u · ρ−1

∂Ω‖2L2(Ω) ≤

≤ ‖A−1/2
0 f‖L2(Ω) · ‖A1/2

0 u‖L2(Ω) (60)

for its solutions. Therefore substitution

z = A
1/2
0 u (61)

gives

‖z‖L2(Ω) − sup
x∈Ω̄

{[a(x) + γ0]+ · ρ2
∂Ω(x)} · ‖ρ−1

∂Ω ·A−1/2
0 ‖L2(Ω)→L2(Ω) · ‖z‖L2(Ω) ≤

≤ ‖A−1/2
0 f‖L2(Ω). (62)

So, we must estimate value

‖ρ−1
∂Ω ·A−1/2

0 ‖L2(Ω)→L2(Ω). (63)

Of course, we can apply here the implicit approach, which is based on the partition of
unity, but we will use here other method. Let 1 < p1 < 2 < p2 < +∞. From M. Riesz
interpolation theorem [8] it follows, that

‖ρ−1
∂Ω ·A−1/2

0 ‖L2(Ω)→L2(Ω) ≤ MR(p1, 2, p2) · ‖ρ−1
∂Ω ·A−1/2

0 ‖
p1·(p2−2)
2·(p2−p1)

Lp1 (Ω)→Lp1 (Ω)×

× ‖ρ−1
∂Ω ·A−1/2

0 ‖
p2·(2−p1)
2·(p2−p1)

Lp2 (Ω)→Lp2(Ω)
. (64)



Further we will suppose, that numbers p1 and p2 do not coincide with integers
2, 3, · · · , n. Then from formula (53) it follows, that

Hpi,Ω > 0(i = 1, 2). (65)

Therefore from definition (18) it follows, that

‖ρ−1
∂Ω ·A−1/2

0 ‖Lpi
(Ω)→Lpi

(Ω) ≤ H−1
pi,Ω

· ‖|∇A
−1/2
0 |‖Lpi

(Ω)→Lpi
(Ω)(i = 1, 2). (66)

Finally, we apply estimate (58) and obtain

‖ρ−1
∂Ω ·A−1/2

0 ‖Lpi
(Ω)→Lpi

(Ω) ≤ H−1
pi
·Ms(1/2, pi) (i = 1, 2). (67)

Then from (64) and from (59)-(62) it follows, that operator A + λI for all λ ≥ 0 has
bounded positive inverse in L2(Ω), if

sup
x∈Ω̄

{[a(x) + γ0] · ρ2
∂Ω(x)} ·M2

R(p1, 2, p2)×

× [H−1
p1
·Ms(1/2, p1)]

p1·(p2−2)
p2−p1 · [H−1

p2
·Ms(1/2, p2)]

p2(2−p1)
p2−p1 < 1. (68)

It turns out, that condition (68) permit also to establish the exponential decreasing of
norm ‖ exp{−ta}‖L2(Ω)→L2(Ω). Finally, the embedding theorems permit to prove the
analogous statements in the space Lp(Ω) for any p ∈ (1, +∞).
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