# GENERALIZED SOLUTIONS OF ELLIPTIC BOUNDARY VALUE PROBLEMS WITH STRONG POWER SINGULARITIES 

(C) H.P.Lopushanska

The existence of a generalized solution of elliptic boundary value problems and its character of singularities depending on power of data singularities are established.

In [1-3] and other articles the behavior of the generalized solutions to the elliptic boundary value problems with power singularities on the right-side was studied. It was established that the generalized solutions in the sense [4] exist if the power growth of the problem data has the order $\lambda>-n$ inside the domain and $\lambda>\max \{1-n,-n+$ $\left.2 m-1-m^{\prime}\right\}$ on its boundary ( $m^{\prime}$ denotes the maximum order of the normal derivatives in the boundary conditions) and that these data require a regularization if their power growth is more strong [1,2].

We trace the behavior of generalized solutions (in specific sense) for any power singularities on the right-side without any using of the data regularization. We start from a representation of the solution.

Consider the following problem

$$
\begin{equation*}
A(x, D)=F_{0}, x \in \Omega,\left.B_{j}(x, D) u\right|_{S}=F_{j}, \quad j=\overline{1, m}, \tag{1}
\end{equation*}
$$

where $\Omega$ denotes a bounded domain in $\mathbb{R}^{n}$, with a closed boundary $S$ of class $C^{\infty}$, $A(x, D)$ is an elliptic operator of order $2 m,\left\{B_{j}(x, D)\right\}_{j=1}^{m}$ are some normal system of boundary differential expressions satisfying Lopatinsky's condition. We assume that the coefficients of operators are infinitely differentiable.

Let $\hat{B}_{j}, T_{j}, \hat{T}_{j}$ be such boundary differential operators with the infinitely differentiable coefficients that Green's formula

$$
\int_{\Omega}\left(A u v-u A^{*} v\right) d x=\sum_{j=1}^{m} \int_{S}\left(B_{j} u \hat{T}_{j} v-T_{j} u \hat{B}_{j} v\right) d S
$$

holds.
We define now the following function spaces: $D(\bar{\Omega})=C^{\infty}(\bar{\Omega}), D(S)=C^{\infty}(S)$, $X(\bar{\Omega})=\left\{\varphi \in D(S):\left.\hat{B}_{j} \varphi\right|_{S}=0, j=\overline{1, m}\right\}$ and $D^{\prime}(\bar{\Omega}), D^{\prime}(S), X^{\prime}(\bar{\Omega})$ as spaces of linear continious functionals defined respectively on $D(\bar{\Omega}), D(S), X(\bar{\Omega})$. Let $(\varphi, F)$ denote the action of $F \in D^{\prime}(\bar{\Omega})\left(X^{\prime}(\bar{\Omega})\right)$ onto $\varphi \in D(\bar{\Omega})(X(\bar{\Omega}))$ and $<\varphi, F>$-the action of $F \in D^{\prime}(S)$ onto $\varphi \in D(S)$.

For the case $F_{0} \in X^{\prime}(\bar{\Omega}), F_{j} \in D^{\prime}(S), j=\overline{1, m}$, we define the solution of the problem (1) as such generalized function $u \in D^{\prime}(\bar{\Omega})$ that the equality

$$
\begin{equation*}
\left(A^{*} \psi, u\right)=\left(\psi, F_{0}\right)+\sum_{j=1}^{m}<\hat{T}_{j} \psi, F_{j}> \tag{2}
\end{equation*}
$$

is fulfilled for any $\psi \in X(\bar{\Omega})$.
In $[4,6]$ there is established the existence and is studied the properties of Green's vector-function $\left(G_{0}(x, y), G_{1}(x, y), \ldots, G_{m}(x, y)\right)$ of the problem (1) on the class of the functions $u(x)$ which are orthogonal to the kernel $N$ of the problem (1) (i.e. $P u=0$ ). If

$$
\begin{equation*}
\left(\psi, F_{0}\right)+\sum_{j=1}^{m}<\hat{T}_{j} \psi, F_{j}>=0 \tag{3}
\end{equation*}
$$

for any $\psi \in N^{*}$ ( $N^{*}$ is the kernel of the adjoint problem), the solution of the problem (1) in the sense (2) exists in $D^{\prime}(\bar{\Omega}) / N$. It is defined by the formula

$$
\begin{gather*}
(\varphi, u)=\left(\int_{\bar{\Omega}} \varphi(x) G_{0}(x, y) d x, F_{0}\right)+\sum_{j=1}^{m}<\int_{\bar{\Omega}} \varphi(x) G_{j}(x, y), F_{j}>  \tag{4}\\
\varphi \in D(\bar{\Omega})
\end{gather*}
$$

The function with strong power singularities doesn't belong to $D^{\prime}(\bar{\Omega})$ or $X^{\prime}(\bar{\Omega})$ but (4) can be extend to this case also. We consider special function spaces for it.

Let $x_{0}$ denote a given point in $\bar{\Omega}, \varrho\left(x, x_{0}\right)=\varrho_{0}\left(x-x_{0}\right)$ be nonnegative compactly supported infinitely differentiable function in $\bar{\Omega}$, wich has order $d\left(x, x_{0}\right)=\left|x-x_{0}\right|$ in neighborhood of the point $x_{0} \in \bar{\Omega}, \varrho\left(x_{0}, x_{0}\right)=0$.

For $k \in \mathbb{R}^{1}$ we define spaces $Z_{k}\left(\bar{\Omega}, x_{0}\right)=\left\{\varphi \in C^{\infty}\left(\bar{\Omega} \backslash x_{0}\right): \varrho^{|\alpha|}\left(x, x_{0}\right) D^{\alpha} \varphi(x)=\right.$ $\varrho^{k}\left(x, x_{0}\right) \varphi_{\alpha}(x), \varphi_{\alpha}(x) \in C(\bar{\Omega})$ for arbitrary multi-index $\left.\alpha\right\}$.

We shall say that the sequence $\varphi_{\nu} \rightarrow 0$ in the space $Z_{k}\left(\bar{\Omega}, x_{0}\right)$, if for all multi-index $\alpha$ the sequence $\varphi_{\alpha \nu}(x)=\varrho^{-k+|\alpha|}\left(x, x_{0}\right) D^{\alpha} \varphi_{\nu}(x)$ uniformly tends to zero in $\bar{\Omega}$ under $\nu \rightarrow \infty$.

We now notice the following main properties of the functions of these spaces:

1) $Z_{0}\left(\bar{\Omega}, x_{0}\right) \subset C(\bar{\Omega}), C^{\infty}(\bar{\Omega}) \subset Z_{k}\left(\bar{\Omega}, x_{0}\right)$ for all $k \leq 0$;
2) if $\varphi \in Z_{k}\left(\bar{\Omega}, x_{0}\right)$, than, for all $\lambda \in \mathbb{R}^{1},\left|x-x_{0}\right|^{\lambda} \varphi \in Z_{k+\lambda}\left(\bar{\Omega}, x_{0}\right)$;
3) if $\varphi \in Z_{k}\left(\bar{\Omega}, x_{0}\right)$, than $D^{\gamma} \varphi \in Z_{k-|\gamma|}\left(\bar{\Omega}, x_{0}\right)$ for any multi-index $\gamma$;
4) if $\varphi \in Z_{k}\left(\bar{\Omega}, x_{0}\right), \psi \in Z_{p}\left(\bar{\Omega}, x_{0}\right)$, than $\varphi \psi \in Z_{k+p}\left(\bar{\Omega}, x_{0}\right)$;
5) $Z_{k_{2}}\left(\bar{\Omega}, x_{0}\right) \subset Z_{k_{1}}\left(\bar{\Omega}, x_{0}\right)$ for $k_{1}<k_{2}$;
6) $Z_{k}\left(\bar{\Omega}, x_{0}\right) \subset C^{[k]}(\bar{\Omega})$ for $k \geq 0$ ( here $[k]$ denotes the integral part of the number $k)$.

We denote the spaces of linear continuous functionals defined on $Z_{k}\left(\bar{\Omega}, x_{0}\right)$ by $Z_{k}^{\prime}\left(\bar{\Omega}, x_{0}\right)$. Then

1) $Z_{k_{1}}^{\prime}\left(\bar{\Omega}, x_{0}\right) \subset Z_{k_{2}}^{\prime}\left(\bar{\Omega}, x_{0}\right)$ for $k_{1}<k_{2}$; if $k \geq 0$, than $\left(C^{[k]}(\bar{\Omega})\right)^{\prime} \subset Z_{k}^{\prime}\left(\bar{\Omega}, x_{0}\right)$; since $C^{\infty}(\bar{\Omega})=D(\bar{\Omega}) \subset Z_{-k}\left(\bar{\Omega}, x_{0}\right)$ for $k \geq 0, Z_{-k}^{\prime}\left(\bar{\Omega}, x_{0}\right) \subset D^{\prime}(\bar{\Omega})$ for $k \geq 0$.
2) If $F \in Z_{k}^{\prime}\left(\bar{\Omega}, x_{0}\right)$, than $D^{|\alpha|} F \in Z_{k+|\alpha|}^{\prime}\left(\bar{\Omega}, x_{0}\right)$ for any multi-index $\alpha$.
3) $Z_{-k}\left(\bar{\Omega}, x_{0}\right) \subset Z_{k}^{\prime}\left(\bar{\Omega}, x_{0}\right)$.

Indeed, $f_{\alpha}(x)=\varrho^{k+|\alpha|} D^{|\alpha|} f \in C(\bar{\Omega}) \subset L_{1}(\Omega)$, if $f \in Z_{-k}\left(\bar{\Omega}, x_{0}\right)$, and then the following linear continuous functionals $f_{\alpha}$ on $Z_{k}\left(\bar{\Omega}, x_{0}\right)$ are defined: $\left(\varphi, f_{\alpha}\right)=\int_{\Omega} \varphi_{\alpha} f_{\alpha} d x=$ $\int_{\Omega} \varrho^{-k+|\alpha|} D^{\alpha} \varphi f_{\alpha} d x=\int_{\Omega} \varrho^{-k+|\alpha|} D^{\alpha} \varphi \varrho^{k+|\alpha|} D^{\alpha} f d x=\int_{\Omega} D^{\alpha} \varphi \varrho^{2|\alpha|} D^{\alpha} f d x, \varphi \in Z_{k}\left(\bar{\Omega}, x_{0}\right)$,
for any multi-index $\alpha$, in particular $(\varphi, f)=\int_{\Omega} \varphi_{0} f_{0} d x=\int_{\Omega} \varrho^{-k} \varphi \varrho^{k} f d x=\int_{\Omega} \varphi f d x, \varphi \in$ $Z_{k}\left(\bar{\Omega}, x_{0}\right)$. Hence if $f \in Z_{-k}\left(\bar{\Omega}, x_{0}\right), f$ will be a regular generalized function of $Z_{k}^{\prime}\left(\bar{\Omega}, x_{0}\right)$.
4) Let $g_{\alpha} \in L_{1}(\Omega)$ for any multi-index $\alpha$, then for any $\varphi \in Z_{k}\left(\bar{\Omega}, x_{0}\right)$ the expressions $\int_{\Omega} \varrho^{-k+|\alpha|} D^{\alpha} \varphi g_{\alpha} d x$ exist and for any natural number $N$ we have that the function $g(x)=\sum_{|\alpha| \leq N} D^{\alpha}\left((-1)^{|\alpha|} g_{\alpha} \varrho^{-k+|\alpha|}\right)$ (derivatives are regarded in generalized sense) is a linear continuous functional on $Z_{k}\left(\bar{\Omega}, x_{0}\right): \quad(\varphi, g)=\sum_{|\alpha| \leq N} \int_{\Omega} \varrho^{-k+|\alpha|} g_{\alpha} D^{\alpha} \varphi d x$. In particular $g(x)=g_{0}(x)\left(x-x_{0}\right)^{-\kappa} \in Z_{|\kappa|}^{\prime}\left(\bar{\Omega}, x_{0}\right)$.
5) For any multi-index $\alpha, \varphi \in Z_{k}\left(\bar{\Omega}, x_{0}\right)$, bounded functions $g_{\alpha}(x)$ in $\Omega$ and any numbers $p_{\alpha}>-n$, the expression $\int_{\Omega} g_{\alpha} \varrho^{p_{\alpha}+|\alpha|-k} D^{\alpha} \varphi d x$ exists. Then $g(x)=$ $\sum_{|\alpha| \leq N} D^{\alpha}\left(g_{\alpha} \varrho^{p_{\alpha}+|\alpha|-k}\right) \in Z_{k}^{\prime}\left(\bar{\Omega}, x_{0}\right)$.

In particular,

$$
g(x)=g_{0}(x)\left(x-x_{0}\right)^{-\kappa} \in Z_{|\kappa|-n+\varepsilon}^{\prime}\left(\bar{\Omega}, x_{0}\right)
$$

for bounded function $g_{0}(x)$ in $\bar{\Omega}$ and any $\varepsilon>0$.
Notice, that $g(x) \in D^{\prime}(\bar{\Omega})$ for $|\kappa|<n$ and $g(x) \notin D^{\prime}(\bar{\Omega})$ for $|\kappa| \geq n$.
Let $f_{0}(x)$ be a bounded function in $\Omega, F_{0}(x)=f_{0}(x)\left(x-x_{0}\right)^{\kappa},|\kappa| \geq 0, F_{1}=\cdots=$ $F_{m}=0, N^{*}=\{0\}$. We shall obtaine that the solution $u(x)$ of the problem (1), such as $P u=0$, belongs to $Z_{|\kappa|-2 m-n+\varepsilon}^{\prime}\left(\bar{\Omega}, x_{0}\right)$ for any $\varepsilon>0$. It follows from the following theorem.

Theorem 1 Let $F_{0} \in Z_{p}^{\prime}\left(\bar{\Omega}, x_{0}\right), p>2 m-n, F_{1}=\cdots=F_{m}=0, N^{*}=\{0\}, u(x)$ be such solution of the problem (1) that $P u(x)=0$. Then $u(x) \in Z_{p-2 m}^{\prime}\left(\bar{\Omega}, x_{0}\right)$.

This conclusion is exact in the sense that there exists $F_{0}(x)=A u(x) \in Z_{p}^{\prime}\left(\bar{\Omega}, x_{0}\right)$, for the solution $u(x) \in Z_{p-2 m-\varepsilon}^{\prime}\left(\bar{\Omega}, x_{0}\right) \subset Z_{p-2 m}^{\prime}\left(\bar{\Omega}, x_{0}\right), \varepsilon>0$, of the problem, and it is possibly, that doesn't exist such $F_{0}=A u(x) \in Z_{p}^{\prime}\left(\bar{\Omega}, x_{0}\right)$, for the solution $u(x) \in$ $Z_{p-2 m+\varepsilon}^{\prime}\left(\bar{\Omega}, x_{0}\right)$. Really, for $u(x) \in Z_{p-2 m+\varepsilon}^{\prime}\left(\bar{\Omega}, x_{0}\right)$, we have $A u(x) \in Z_{p+\varepsilon}^{\prime}\left(\bar{\Omega}, x_{0}\right)$, and $Z_{p}^{\prime}\left(\bar{\Omega}, x_{0}\right) \subset Z_{p+\varepsilon}^{\prime}\left(\bar{\Omega}, x_{0}\right)$, for $\varepsilon>0$.

Proof. It is shown in [5] that $\psi(y)=\left(G_{0}^{*} \varphi\right)(y)=\int_{\Omega} \varphi(x) G(x, y) d x \in X(\bar{\Omega}) \subset D(\bar{\Omega})$ for any $\varphi \in D(\bar{\Omega})$. Let us study its properties for $\varphi \in Z_{k}\left(\bar{\Omega}, x_{0}\right), x_{0} \in \bar{\Omega}$.

Let $h(x) \in D(\Omega), 0 \leq h(x) \leq 1, h(x)=\left\{\begin{array}{ll}1, & \left|x-x_{0}\right|<\eta \\ 0, & \left|x-x_{0}\right|>2 \eta\end{array}, \psi(y)=\left(G_{0}^{*} \varphi\right)(y)=\right.$ $\int_{\Omega} h(x) \varphi(x) G(x, y) d x+\int_{\Omega}(1-h(x)) \varphi(x) G(x, y) d x=\psi_{1}(y)+\psi_{2}(y)$.

The function $(1-h(y)) \psi(y)=0$, if $\left|y-x_{0}\right|<\eta$, therefore $(1-h(y)) \psi(y) \in$ $Z_{k+2 m}\left(\bar{\Omega}, x_{0}\right)$ for any $k \in \mathbb{R}^{1}, \varphi \in Z_{k}\left(\bar{\Omega}, x_{0}\right)$.

The function $(1-h(x)) \varphi(x)=0$, if $\left|x-x_{0}\right|<\eta$, therefore also $h(y) \psi_{2}(y) \in$ $Z_{k+2 m}\left(\bar{\Omega}, x_{0}\right)$ for any $\varphi \in Z_{k}\left(\bar{\Omega}, x_{0}\right), k \in \mathbb{R}^{1}$.

The function $h(y) \psi_{1}(y)=O\left(\varrho^{2 m+k}\left(y, x_{0}\right)\right)$, if $\varphi \in Z_{k}\left(\bar{\Omega}, x_{0}\right), k>-n$. We shall obtaine that, for any multi-index $\alpha$, the function $v_{\alpha}(y)=\varrho^{|\alpha|}\left(y, x_{0}\right) D^{\alpha} \int_{\Omega} h(x) \varphi(x) G_{0}(x, y)$
$h(y) d x=w_{\alpha}(y) \varrho^{2 m+k}\left(y, x_{0}\right)$, where $w_{\alpha} \in C(\bar{\Omega})$.
Indeed, we assume the function $v_{\alpha}(y)$ in the form of the sum $v_{1 \alpha}(y)+v_{2 \alpha}(y)+v_{3 \alpha}(y)$ of three items respectively to the partition of the domaine $\Omega$ into $\Omega_{1}=\{x \in \Omega$ : $\left.\left|x-x_{0}\right|<\frac{\left|y-x_{0}\right|}{2}\right\}, \Omega_{2}=\left\{x \in \Omega:|x-y|<\frac{\left|y-x_{0}\right|}{2}\right\}, \Omega_{3}=\Omega \backslash\left(\bar{\Omega}_{1} \cup \bar{\Omega}_{2}\right)$. Later the estimates of the derivatives of $G_{0}(x, y)$ are using.

As a result, $\left(G_{0}^{*} \varphi\right)(y) \in Z_{k+2 m}\left(\bar{\Omega}, x_{0}\right)$, if $\varphi \in Z_{k}\left(\bar{\Omega}, x_{0}\right)$ and $k>-n$, or $\left(G_{0}^{*} \varphi\right)(y) \in$ $Z_{p}\left(\bar{\Omega}, x_{0}\right)$, for $\varphi \in Z_{p-2 m}\left(\bar{\Omega}, x_{0}\right)$ and $p>2 m-n$.

Then the map $F_{0} \rightarrow u$, defined by $(\varphi, u)=\left(G_{0}^{*} \varphi, F_{0}\right)$, determines $u \in Z_{p-2 m}^{\prime}\left(\bar{\Omega}, x_{0}\right)$ for any $F_{0} \in Z_{p}^{\prime}\left(\bar{\Omega}, x_{0}\right)$, if $p>2 m-n$. Since $G_{0}^{*}\left(A^{*} \psi\right)=\psi$, defined by that map function $u$ satisfies the condition (2) for any $\psi \in Z_{p-2 m}\left(\bar{\Omega}, x_{0}\right)$, and, therefor, any $\psi \in Z_{p-2 m}\left(\bar{\Omega}, x_{0}\right) \cap X(\bar{\Omega})$.

The spaces $Z_{k}\left(S, x_{0}\right), x_{0} \in S$, are defined similarly and we obtaine that $\psi_{j}(y)=$ $\left(G_{j}^{*} \varphi\right)(y) \in Z_{k+m_{j}+1}\left(S, x_{0}\right), j=\overline{1, m}$, if $\varphi \in Z_{k}\left(\bar{\Omega}, x_{0}\right), k>-n$.

Therefore, the map $F_{j} \rightarrow u_{j}$, defined by $\left(\varphi, u_{j}\right)=<\int_{\Omega} \varphi(x) G_{j}(x, y) d x, F_{j}>$, determines $u_{j} \in Z_{p-m_{j}-1}^{\prime}\left(\bar{\Omega}, x_{0}\right)$ for any $F_{j} \in Z_{p}^{\prime}\left(S, x_{0}\right)$, if $p>m_{j}+1-n$.

Let $F_{0} \in Z_{p}^{\prime}\left(\bar{\Omega}, x_{0}\right), F_{j} \in Z_{p_{j}}^{\prime}\left(S, x_{j}\right), x_{0} \in \bar{\Omega}, x_{j} \in S, j=\overline{1, m}, \bar{p}=\left(p, p_{1}, \ldots, p_{m}\right), X_{\bar{p}}=$ $X_{\bar{p}}\left(\bar{\Omega}, x_{0}, x_{1}, \ldots, x_{m}\right)=\left\{\varphi(x) \in Z_{p}\left(\bar{\Omega}, x_{0}\right) \cap\left(\cap_{j=1}^{m} Z_{p_{j}}\left(S, x_{j}\right)\right):\left.\hat{B}_{j} \varphi\right|_{S}=0\right\}$ (if $x_{i}=x_{j}$, the space $Z_{p_{i}} \cap Z_{p_{j}}$ remaines by $\left.Z_{k}\left(S, x_{i}\right), k=\max \left\{p_{i}, p_{j}\right\}\right)$.

It can be shown that, in the case $N^{*}=\{0\}$, the function (4) satisfies the equality (2) for any $\psi \in X_{\bar{p}}\left(\bar{\Omega}, x_{0}, x_{1}, \ldots, x_{m}\right)$, if $p>2 m-n\left(x_{0} \in \Omega\right), p>\max \left\{2 m-n, m^{\prime \prime}\right\}\left(x_{0} \in\right.$ S), $p_{j}>\max \left\{1-n+m_{j}, m_{j}+1-2 m+m^{\prime \prime}\right\}, j=\overline{1, m}, m^{\prime \prime}$ denotes the maximum of the degrees of $\hat{B}_{l}, l=\overline{1, m}$.

So, we obtaine that, in the case $N^{*}=\{0\}$,

$$
\begin{gather*}
F_{0}=f_{0}(x)\left(x-x_{0}\right)^{-\kappa}, F_{j}=f_{j}(x)\left(x-x_{j}\right)^{-\kappa_{j}}, \\
f_{0}(x) \in L_{\infty}(\Omega), f_{j}(x) \in L_{\infty}(S) \tag{5}
\end{gather*}
$$

(then $\left.F_{0} \in Z_{|\kappa|-n+\varepsilon \mid}^{\prime}\left(\bar{\Omega}, x_{0}\right), F_{j} \in Z_{\left|\kappa_{j}\right|-n+1+\varepsilon_{j}}^{\prime}\left(S, x_{j}\right), \varepsilon, \varepsilon_{j}>0\right), j=\overline{1, m},|\kappa|>$ $2 m-\varepsilon\left(x_{0} \in \Omega\right),|\kappa|>\max \left\{2 m, n+m^{\prime \prime}\right\}-\varepsilon\left(x_{0} \in S\right),\left|\kappa_{j}\right|>\max \left\{m_{j}, n-2 m+m_{j}+\right.$ $\left.m^{\prime \prime}\right\}-\varepsilon_{j}, j=\overline{1, m}$, the formula (4) determines the solution of the problem (1)

$$
\begin{gathered}
u(x)=u_{0}(x)+\sum_{j=1}^{m} u_{j}(x), \\
u_{0}(x) \in Z_{|\kappa|-n+\varepsilon-2 m}^{\prime}\left(\bar{\Omega}, x_{0}\right), u_{j}(x) \in Z_{\left|\kappa_{j}\right|-n-m_{j}+\varepsilon_{j}}^{\prime}\left(\bar{\Omega}, x_{j}\right),
\end{gathered}
$$

in the sense of fulfilment (2) for any $\psi \in X_{\bar{p}}$, where $p=|\kappa|-n+\varepsilon, p_{j}=\left|\kappa_{j}\right|-n+1+\varepsilon_{j}, j=$ $\overline{1, m}$. The existence of such function $\psi$ may be proved.

This solution can have the power singularities of the order $|\kappa|-2 m+\varepsilon$ inside $\Omega$, $\left|\kappa_{j}\right|-m_{j}+1+\varepsilon$ on its boundary $S, j=\overline{1, m}$.

We obtaine the similar results in the case of the power singularities of the right-hand side data on any smooth closed manifold $S_{1}$ inside $\Omega$.

There are similar properties of the solutions of some boundary value problems for the elliptic operators in fractional derivatives

$$
A u(x)=\frac{1}{(2 \pi)^{-n}} \int_{\mathbb{R}^{n}} a(x, \xi) \mathcal{F} u(\xi) e^{i(x, \xi)} d \xi
$$

where $\mathcal{F} u$ denotes Fourier transform of the function $u(x)$,

$$
a(x, \xi)=\sum_{j=1}^{N} \sum_{|\alpha|=s_{j} \leq s} a_{\alpha}(x)(-i \xi)^{\alpha},
$$

$\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \alpha_{i}, s_{j}, s$ are nonnegative numbers, fractional in general, $a_{\alpha}(x) \in$ $C^{\infty}\left(\mathbb{R}^{n}\right)$.

We assume the existence of the normal fundamental solution $\omega(x, y) \in C^{\infty}(x \neq y)$ satisfying the following estimate

$$
|\omega(x, y)| \leq \begin{cases}C|x-y|^{s-n}, & n \text { is odd } \\ C|x-y|^{s-n}(\ln |x|+1), & \text { nis even }\end{cases}
$$

In the case of constant coefficients such fundamental solution exists.

## References

1. .., , . . 20 (1968), no. 3, 412-417.
2. Roitberg Y., Elliptic Boundary Value Problems in the Spaces of Distributions. Kluver Academic Publishers. (1996).
3. .., , ... 36 (1971), no. 1, 202-209.
4. .., $\quad$.... 33 (1969), no. 1, 109-137.
5. .., .., , . 22 (1987), no. 3, 518-521.
6. .., .., ., . . 19 (1967), no. 5, 3-32.

Ivan Franko Lviv State University
Universitetskaya str., 1
290001 Lviv, Ukraine
E-mail: diffeq@ franko.lviv.ua
Tel: 794-593

