ABOUT BOUNDED PROPERTIES OF SMOOTH SOLUTIONS OF SOME DIFFERENTIAL-OPERATOR EQUATIONS

°c V.V.Gorodetsky, I.I.Drin

1. Fractional differentiation and integration in space $D^{'}$ +

Recall that symbol $D = D(\mathbb{R})$ denotes the set of all finite unlimited differentiable on R functions. Convergence in D is defined as below: sequence $\{\varphi_n, n \geq 1\} \subset D$ is called the converged sequence to function $\varphi \in D$ (maps as follows: $\varphi_n \to \varphi$ when $n \to \infty$ in D) if:

a) exists such $R > 0$, that $supp \varphi_n \subset (-R, R)$, $\forall n \in \mathbb{N}$;

b) $\varphi_n^{(k)} \Rightarrow \varphi^{(k)}$ when $n \to \infty$ on $\mathbb{R}, \forall k \in \mathbb{Z}_+$.

Totality of all linear continuous functionals on D with weak convergence is mapped with symbol $D' \equiv D'(\mathbb{R})$. Elements D' are named the generalized functions. Totality of generalized functions from D', which are equal zero on the half-axis $(-\infty, 0)$, is mapped by D'_{+} . It is known from [1] that D'_{+} creates associative and commutative algebra on folding operation, and $\delta * f = f * \delta = f, \forall f \in D_+^{'}.$ The δ -function of Dirac is the one in this algebra.

Let the generalized function f_{α} from D'_{+} depend from parameter $\alpha, -\infty < \alpha < +\infty$, and be denoted by formula

$$
f_{\alpha}(t) = \theta(t)t^{\alpha - 1} / \Gamma(\alpha), \quad \alpha > 0,
$$

$$
f_{\alpha}(t) = f_{\alpha + m}^{(m)}(t), \quad \alpha \le 0,
$$

where m is the smallest from natural numbers and $m+\alpha > 0$, θ is the Heaviside function. The following assertions are valid:

1) $\forall {\alpha, \beta} \subset \mathbb{R} : f_{\alpha} * f_{\beta} = f_{\alpha + \beta};$ 2) Let $I(\alpha)f = f * f_\alpha, \forall f \in D_+^{'}.$ Then a) $\forall f \in D'_+ : I(0)f = f;$ b) $\forall f \in D_+^{'\quad \forall n \in \mathbb{N}: I(-n)f = f^{(n)};$ c) $\forall f \in D'_+ \quad \forall n \in \mathbb{N} : \quad (I(n)f)^{(n)} = f;$ d) $\forall f \in D_+^{'} \quad \forall {\alpha, \beta} \subset \mathbb{R} : I(\alpha)I(\beta)f = I(\alpha + \beta)f.$ 2. Spaces of based and generalized functions Let $H = L_2(\mathbb{R}),$

$$
\Phi = \lim_{m \to \infty} ind\Phi_m, \quad \Phi_m = \{ \varphi \mid \varphi = \sum_{k=0}^m c_k h_k(x), c_k \in \mathbb{C} \},
$$

where

$$
h_k(x) = (2^k k!)^{-1/2} (-1)^k \pi^{-1/4} e^{x^2/2} (e^{-x^2/2})^{(k)}, \quad k \in \mathbb{Z}_+
$$

are Hermite functions which create the ortonormous basis in H. It is evident that Φ lies densily in H. In space Φ the differentiation operation is defined and continuous.

Let symbol Φ' map the space of all antilinear continuous functionals on Φ with weak convergence. Elements of Φ' also are named the generalized functions. Each element f from space Φ' is unlimited differentiable and

$$
\langle f^{(n)}, \varphi \rangle = (-1)^n \langle f, \varphi_n \rangle, \quad \forall \varphi \in \Phi, \quad \forall n \in \mathbb{N}
$$

(here $\langle f, \cdot \rangle$ maps the action of functional f on the based element).

Series $\sum_{n=1}^{\infty}$ $k=0$ $c_k h_k$, where $c_k = \langle f, h_k \rangle, k \in \mathbb{Z}_+, f \in \Phi'$, is named Fourier-Hermite series of generalized function f . For any generalized function f her Fourier-Hermite series converges in Φ' . Otherwise, any series of type $\sum_{n=1}^{\infty}$ $_{k=0}$ $c_k h_k$ converges in Φ' to some function $f \in \Phi'$ and this series is Fourier-Hermite series for f [2]. Then, Φ' can be interpreted as the space of formal series of type \sum^{∞} $k=0$ $c_k h_k$.

I.M.Gelfand and G.E.Shylov described in [3] the collection of spa- ces, which are called the spaces of type S. These spaces consist of unlimitly differentiable functions, which are defined on $\mathbb R$ and satisfy some decreasing conditions on the infinity and conditions of increasing of derivatives. Denote some of them.

For arbitrary $\alpha, \beta > 0$ let

$$
S_{\alpha}^{\beta}(\mathbb{R}) \equiv S_{\alpha}^{\beta} := \{ \varphi \in C^{\infty}(\mathbb{R}) | \exists c, B, A, > 0 \quad \forall \{k, m\} \subset \mathbb{Z}_{+}
$$

$$
\forall x \in \mathbb{R} : \quad |x^{k} \varphi^{(m)}(x)| \le c A^{k} B^{m} k^{k \alpha} m^{m \beta} \}.
$$

Spaces S^{β}_{α} are nontrivial for $\alpha + \beta \geq 1$ and create dense sets in $L_2(\mathbb{R})$. If $0 < \beta < 1$ and $\alpha > 1 - \beta$ then S_α^β consists only of functions $\varphi : \mathbb{R} \to \mathbb{C}$ which let analytical continuation into whole complex plane and for which

$$
|\varphi(x+iy)| \le c \exp\{-a|x|^{1/a} + b|y|^{1/(1-\beta)}\}, \quad c, a, b > 0.
$$

Note, that spaces S^{β}_{α} create topological algebras on simple operations of multiplication and folding. In S^{β}_{α} the operations of shear of argument and differentiation are defined and continuous. This operations translate S^{β}_{α} into itself [3].

Space of all antilinear continuous functionals on S^{β}_{α} with weak convergence is mapped by symbol $(S_{\alpha}^{\beta})'$. Elements $(S_{\alpha}^{\beta})'$ are called Gevrey ultradistributions of order β .

For abovementioned spaces the following continuous and dense implications are valid:

$$
\Phi \subset S_\alpha^\beta \subset L_2(\mathbb{R}) \subset (S_\alpha^\beta)' \subset \Phi', \quad \alpha + \beta \ge 1.
$$

3. About smooth solutions of parabolic equations with increasing coefficients

Consider in space Φ' operator \hat{A} with such action:

$$
\Phi' \ni \sum_{k=0}^{\infty} c_k h_k = f \mapsto \hat{A}f = \sum_{k=0}^{\infty} (2k+1)^{\nu} c_k h_k \in \Phi',
$$

where $\nu > 0$ is the fixed parameter. It is evident, that operator \hat{A} is linear and continuous in Φ' . The following assertion is valid.

Theorem 1. Let A be the contraction of operator \hat{A} on $L_2(\mathbb{R})$. Then A is nonnegative selfadjoint operator in $L_2(\mathbb{R})$ with dense range of definition $D(A)$ and $\Phi \subset D(A)$.

Corollary 1. Spectrum of operator A is clear discrete with unique limited point on infinity. Hermite functions $\{h_k, k \in \mathbb{Z}_+\}$ are eigenfunctios for operator A. These functions have eigenvalues $\mu_k = (2k+1)^{\nu}, k \in \mathbb{Z}_+$. Each eigenvalue μ_k is prime.

Remark 1. If $\nu = 1$ then operator A converges with operator which is created in $L_2(\mathbb{R})$ by the differential expression $-d^2/dx^2 + x^2$, that is in this case A is harmonic oscilliator (see [2]).

Consider equation

$$
D_t^{\beta}u(t,x) + (-1)^{-[\beta]+1}D_t^{\{\beta\}}A^{\alpha}u(t,x) = 0, \quad (t,x) \in (0,\infty) \times \mathbb{R} \equiv \Omega,
$$
 (1)

where $\beta \in [-3, 0), \alpha > 0$ are fixed numbers, $[\beta]$ is whole party and $\{\beta\}$ is fractional party of number β , $D_t^{\beta} \equiv I(\beta)$ is operator of fractional differentiation which acts on variable t in space D'_{+} , A^{α} is degree of operator A and

$$
D(A^{\alpha}) = \{ \varphi \in L_2(\mathbb{R}) \mid \sum_{k=0}^{\infty} (2k+1)^{2\nu\alpha} |c_k(\varphi)|^2 < \infty,
$$

$$
c_k(\varphi) = (\varphi, h_k), \quad k \in \mathbb{Z}_+ \}.
$$

The solution of equation (1) we called the function u which sastisfies the equations: 1) $u(\cdot, x) \in D'_+ \cap C^{-[\beta]}((0, \infty))$ for all $x \in \mathbb{R}$;

2) $u(t, \cdot) \in D(A^{\alpha}) \subset L_2(\mathbb{R})$ for all $t > 0$; $u(t, \cdot) = 0$ for $t < 0$;

3) u satisfies equation (1) .

If $\beta \in [-3, -1)$, we assume that u satisfies also the condition:

4) for arbitrary fixed interval $[\delta, +\infty) \subset (0, +\infty)$ constant $c = c(\delta) > 0$ exists such that \overline{R}

$$
\sup_{t\in[\delta,+\infty)}\|D_t^{\{\beta\}}u(t,\cdot)\|_{L_2(\mathbb{R})}\leq c.
$$

Theorem 2. Function u is the solution of equation (1) if and only if it can be represented in following type

$$
u(t,x) = \sum_{k=0}^{\infty} (\theta(t) \exp\{-t(2k+1)^{\nu\alpha/(-[\beta])}\} * f_{\{\beta\}}(t)) c_k h_k(x), \tag{2}
$$

$$
t \in \mathbb{R} \backslash \{0\}, \quad x \in \mathbb{R},
$$

where

$$
f = \sum_{k=0}^{\infty} c_k h_k \in (S_{\omega}^{\omega})',
$$

 $\omega = 1/2$, if $\nu_{\alpha}/(-[\beta]) \equiv \gamma \geq 1$ and $\omega = 1/(2\gamma)$, if $0 < \gamma < 1$. And $u(t, \cdot) \in S_{\omega}^{\omega}$ for all $t > 0$.

Remark 2. From theorem 2 follows that when $t > 0$ formula (2) describes all unlimited differentiable on x solutions of equation (1).

Corollary 2. Bounded value $D_t^{\{\beta\}}$ $t^{\{\beta\}}u(t,\cdot)$ when $t\rightarrow +0$ exists in space $(S_{\omega}^{\omega})'$, that is

$$
D_t^{\{\beta\}}u(t,\cdot) \to f = \sum_{k=0}^{\infty} c_k h_k, \quad t \to +0, \quad in \quad (S_{\omega}^{\omega})'.
$$

Then, $(S_{\omega}^{\omega})'$ is (in some sence) "maximal" space in which bounded values of function $D^{\{\beta\}}_t$ $t^{1/3}u(t, \cdot)$ exist for $t \to +0$. Using the representation of function as formal Fourier-Hermite series we can establish necessary and unique conditions for which the bounded values $D_t^{\{\beta\}}$ $t^{1/3}u(t, \cdot)$ when $t \to +0$ exist in narrow (intermediate) spaces. These spaces are situated between $L_2(\mathbb{R})$ and $(S^{\omega}_{\omega})'$. The following assertion are valid.

Theorem 3. In order for bounded value of function $D_t^{\{\beta\}}$ $t_t^{\{\beta\}}u(t,\cdot)$ when $t \to +0$ to belong to space (S^{β}_{β}) $\beta_{\beta}^{(\beta)}$ ' (β > 1/2, if $\gamma \geq 1$; β > 1/(2 γ), if $0 < \gamma < 1$; $\gamma = \nu \alpha / (-[\beta])$), it is necessary and enough that

$$
\forall \mu > 0 \quad \exists c = c(\mu) > 0: \quad \int_{\mathbb{R}} |D_t^{\{\beta\}} u(t, x)|^2 dx \le ce^{\mu t^{-q}},
$$

$$
q = 1/(2\gamma\beta - 1),
$$

for small values $t > 0$.

Denote, that abovementioned spaces link one to another by following chain:

$$
L_2(\mathbb{R}) \subset (S_\beta^\beta)' \subset (S_\omega^\omega)' \subset \Phi'.
$$

Remark 3. If parameter β has one of values of set $\{-1, -2, -3\}$ then $\{\beta\} = 0$ and $D_t^{\{\beta\}} = D_t^0 = E$ (*E* is identity operator), D_t^{β} $t^{\beta}_t u(t,\cdot) \equiv I(\beta) u(t,\cdot) = \partial^p u(t,\cdot)/\partial t^p, p = -\beta$ (see item 1). Then we obtain the equation

$$
\partial^p u / \partial t^p + (-1)^{p+1} A^\alpha u = 0, \quad (t, x) \in \Omega, \quad p \in \{1, 2, 3\}.
$$

$$
f_{-\{\beta\}} = f_0 = f_1^{'} = \theta' = \delta
$$
 (3)

(see item 1), then

$$
\theta(t) \exp\{-t(2k+1)^{\gamma}\} * f_{-\{\beta\}}(t) = \theta(t) \exp\{-t(2k+1)^{\gamma}\} * \delta(t) =
$$

= $\theta(t) \exp\{-t(2k+1)^{\gamma}\}, \quad \gamma = \nu \alpha/p, \quad p = -[\beta], \quad p \in \{1, 2, 3\}.$

That is why the solutions of these equations are represented in following form (when $t > 0$

$$
u(t,x) = \sum_{k=0}^{\infty} \exp\{-t(2k+1)^{\gamma}\}c_k h_k(x) =
$$

=< $f, K_{t,x,\gamma}(\cdot) >, \quad t > 0, x \in \mathbb{R},$

where

$$
K_{t,x,\gamma}(y) = \sum_{k=0}^{\infty} \exp\{-t(2k+1)^{\gamma}\} h_k(x) h_k(y), \quad t > 0, \{x, y\} \subset \mathbb{R}.
$$

Denote that in case $\gamma = 1$ the cernel $K_{t,x,1}$ can be written explicitly [4]:

$$
K_{t,x,1}(y) = (2\pi sh(2t))^{-1/2} \exp\{sh^{-1}(2t)xy - 0.5cth(2t)(x^2 + y^2)\}.
$$

Remark 4. If $\nu = 1, \alpha = m, m \in \mathbb{N}$ then (as known from [2]),

$$
Amu(t, x) = (-\partial^2/\partial x^2 + x^2)mu(t, x) =
$$

$$
= \sum_{0 \le p+q \le 2m} c_{p,q}^m x^p (\partial^q u(t, x)/\partial x^q),
$$

where $c_{p,q}^m$ are constant coefficients for which following estimations are valid:

$$
|c_{p,q}^m| \le 10^m m^{m-(p+q)/2}.
$$

Thus we define equation (3) as the equation of parabolic type with increasing coefficients.

Corollary 2 from theorem 3 lets us establish Cauchy problem for equation (1) as described below. For (1) we define initial condition

$$
D_t^{\{\beta\}}u(t,\cdot)|_{t=0} = f,\tag{4}
$$

where $f \in (S_{\omega}^{\omega})'$. The solution of Cauchy problem (1), (4) is the solution of equation (1) which satisfies the initial condition (4) in sence $D_t^{\{\beta\}}$ $t_t^{\{\beta\}}u(t,\cdot) \to f$, $t \to +0$, in space $(S_{\omega}^{\omega})'$. The following asssertion is valid.

Theorem 4. Cauchy problem (1) , (4) is correctly solved problem in space of initial data $(S_{\omega}^{\omega})'$. It's solution described by formula (2); $u(t, \cdot) \in S_{\omega}^{\omega}$ for all $t > 0$.

REFERENCES

- 1. Vladimirov V.S., Equations of mathematics physics, Moscow: Nauka (1976), 528.
- 2. Gorbachuk V.I., Gorbachuk M.P., Bounded problems for differential-operator equations, Kiev: Naukova dumka (1984), 284.
- 3. Gelfand I.M., Shylov G.E., Spaces of based an generalized functions, Moscow: Fizmatgiz (1958), 307.
- 4. Gorodetsky V.V., Yarmolyk I.I., About the summation of the formal Fourier-Hermite series by the Abel-Poisson method, Dop. NAN Ukraine (1994), no. 6, 20-26.