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ABSTRACT. In this work we prove the exisience of the global classical solution in multi-
dimensional {wo phase nonstationary problem modeling the combustion process. ‘These
problem are different from the Stefan problem:it is nonlinear not only because of the free
boundary but also because of the nonlinearity of boundary conditions

wma =0, (uh)? - (u])? = QXa).
Here v is the spacial unit vector normal to the free boundary and directed towards

increasing of u{x,f}, ut = max(u,0), v~ = max{—wu,0}. We prove that the free
boundary is given by the graph of a function from the H*1T*+% 4 ¢ (0,1) class.

0. Introduction. In this paper we study a two—phase free boundary problem arising
in description of the combustion process. The problem is to find a function satisfying
the heat equation

Au—us =0, in QprUGy, Dpr=Dx{0,T), (0.1}
where D is a bounded domain in R®, T is a given positive number,
Qr = {(z,t) € Dr : u(z,t) < 0}, Gr = {(z,t) € Dr : u(z,t) > 0}.
On the free boundary vz = 8Qy N Dy = §G7 N Dy the following .coditions hold
Wt =um=0, (@) - () = @a). (02)
Here v is the spacial unit vector normal f.o the free bouﬁda.ry ~r and directed towards
increasing of u(z,t), wt = max(u,0), u~ = max(—u,0). On the known part of the

boundary .
u(z,t) = p(z,t} on (80y N8Dy) U (8GT N 6DT),

cp(z t) < 0 on rn 3.DT, ¢(z,t) >0 on 8GrN8D7. (0.3) .
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Initial conditions are as follows.

u(z,0) =9%(z) in D, ¢(z,0)=1Y(z) oD, (0.4)
P(z) >0 on 0GoNAD, ¥(z) <0 on 80N NID,
—{z€D:9(z) <0}, Go={z€D:9%(z)>0}7 ={z € D:9(z) = 0.}
Similar problems have been extensively studied. Existence of classical solutions was
proved in for the multi-dimensional problem under the assumption of radial spatial
symmetry [1], existence of a weak solution was proved in [2], [3]. In this paper we use
the method, suggested in [4]. This paper is a natural continuation of the investigation
started of the author in [5]. We prove the existence of a global classical solution in the
problem (0.1)-(0.4) with minimal necessary restrictions on initial and boundary condi-
tions. The method consists of the following: first we construct a parabolic difference-
differential approximation of the problem, then we prove cetain uniform estimates and
pass to the limit.
For the sake of convenience we consider the 3-dimensional space R*, all our results
also hold in any finite dimensional space R, n > 1.

1. Aprroximation of the problem. Properties of the approximate solu-
tions. Let us construct the approximating problems. Assume, for simplicity, that

D={zecR*:R, <|z|<R»}, 8D;={|z|=R;, i=1,2},0D = 8D, UdD..

Cut the cylinder Dz x (0,71) by the planes 7 = kh, AN =Ty, k =1,2,..,N, N
is a given positive integer. Define for all ¢ > 0 a function x.(z) € C*(R?), k > 2 as
follows

Xe(z) =1 Vz <0, xc( )=0 Vz >¢,x:(z) < 0.

Let us assume that the functions {ui(z,t,h,e)}, {Fi(z,t,h,c)}, are solutions of the
following problem
Ourp  ugp—up—1 _ _”\Xe(“k) — Xe(uo) Qz (2) ©

By h

er ur) + Fk 1in Dr,

=1
| | (L.1)
ui(z,t, h,e) = ¢'(z,t,kh) = pi(z,t,h) on 8D; x [0,T],
ui(z,0,h,€) = ¢¥(z,kh) = Yr(z,h) in D, uo=w(z,t) in Dr, (1.2)

where ¢(z,t,7), ¥(z,7), w(z,t) are given functions

OF, F, e(ur) — xe(u 2(z ', ..
AFk_Wk_af_ AX(k)hIX(O)_Qé:)Z.Xc(u;) in Dy,  (1.3)

Fi(z,t,h,e) = 00n 8D; x (0,T), Fi(z,0,h,e) =0in D, Fy =0 in Dr. (1.4)
The problem (1.1)-(1.4) can be studied step by step, starting from k = 1. First we find
the function Fj_;(z,t,h,c) (note that F = 0), then we substitute this function in the
right-hand side of (1.1) and study the correpsonding initial boundary value problem for
ur(z,t,h,e). The function uk(z,t, h,e) thus obtained we substitute in the right—hans
side of the equation (1.3) and find the function Fi(z,t,h,e) and so on. Solvability for
any of the problems mentioned above in Holder spaces is well known ([6], ch. 5).
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THEOREM 1.1. Assume that the following ;on(fitions hold
¥x(a, k) € C*T(D), pil=,t) € H***1+5(8D; x 0,T}),
w(z,t) € H****e?(Dq), Q(z) € C*(D), a € (0,1),

and for the functions Yi(z,h,€), pi(z,t) the corresponding compatibility conditions
on 8D; at t = 0 hold. Than for any h > 0, ¢ > 0 the problem {1.1)-(1.4) has a
unique solution and _

up(z, b, h,e), Fi(z, t, hye) € H 148 (Dr).

Denote by
wilz, ¢, h,e) = up(z,t, h,e) — Fe(z,t, h,e). (1.5)
Subtract (1.1} from (1.3) taking into account (1.5}, We get
Ow;. . — Wi
Awp— 2 PR g Y(a,t) € Dy, (1.6)
ot h
wg(z,t,k,e) = pi(z,t, k) on 8D; x [0,T), wi(x,0,hk,¢) = de(a,k) in D,
we = wl{z,t) in Dy (1.7}
THEOREM 1.2. Let the assumptions of Theorem 1.1 hold and let there exist positive
constants ¢;, t = 1,...,5 such that Aw — %‘;«‘1 —e1,

0 < eah < pi_y(z,8,h) — pi(z,t,R) <csh on 8D; x[0,T],
0 < csh < Praa (2, k) — ta(z, k) < esh in D,

Then there exist positive constants cg,cr not depending on h,e,k such that everywhere
in Dy The following estimate holds

ceh < wr1(z,b,h,e) — wilz, ¢k, e) < crh, {1.8)
where the constants ¢; do not depend on a,h,e,k.

On 0D; x [0,T] the estimate (1.8) is evident. To prove it inside Dy, it suffices to
write down the equation

b7l a

Dlwp—y —wi) — gt“(wk—z —wg) — };{‘wkml —wy} = M%(iﬁkmz -~ Wt

and employ the fact that at the points of local maxima or minima the function
A(wg—y — wg) — £ (wk—3 — wi) is nonpositve and nonnegative, respectively.

COROLLARY 1. Let the assumptions of Theorem 1.2 hold and
| 05~A@+%‘;—-5c1@_
Then the following estimate holds
0 < coh € wi-a{z, ¢, b, &) — wi(2, 4, k) < csh,

where the constanis c; do not depend on a,h, e,k .

This estimate follows from the previous theorem. .
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COROLLARY 2. Let the assumptions of Theorem 1.2 hold., Then if
”(Pi(ﬁ,t, k)]lgzé«»ﬁ-%(ag‘_ x {0,771} < ¢, @€ (83 1),
then '
lwe(m, b, b )l ga-an-g 5, < €2, ' (1.9)
where the constanis ¢; do not depend on h,e, k. '

This follows from the fact that

Sw W — Wh—
Awy — &kma k hk Ieﬁw(DT),

smoothness of initial and boundary conditions, and the corresponding embedding the-
OTrenn.

THEOREM 1.3. Let the following conditions hold

buy W — We— 8w -
pilz,t,h) — pi_;(z,t,h) i
ol - At L -§~“fpk(z,t,h)“Hz_i_a‘H%(ﬁT} < e,
H® 2 {Dr)
Yr — Pz
TR kllonsep) S e
Gl

and for the functions vy, o} compattbzhty conditions of the first order on OD; at
t =0 hold. Then

Wy — Wit
h

+llwell garansg 5,y S <5 (1.10)

HY%(Dr)
where the constants ¢; do not depend on k, h,¢.

Denote
vi(z,t,h, &) = wi(z,t, h,e) — we(z,0,h,¢) = wi{z, b, h,e) — Pr(z, k).

Then {vy — vp-1} satisfy the equations

Alvr — ve-1) - %(”" - Vgoy) — a-(}-’."f«::ﬁ;ww-{
Mw = —(fi — fi-1),

where fi = Ay — a%‘b";, and have zero initial conditions. Let Cu(z, 8}y oy ({2, t)
be nonnegative infinitely smooth compactly supported functions which provide a parti-
tion of umty in Dp, i e,

ch (=8 =1 V1€ DT

kot
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Let us represent the functions vi(z,t,h,€) as

l
(2.t h,e) = Y vi(z,t hye), k=12,..,N,

8=1

where vj(z,t,h,e) = (s(z,t)ve(z,t,h,e). If the support of (,(z,t) lies inside Dr,
then the functions v}(z,t,h,e) can be viewed as compactly supported functions from
H?**to1+3(R*%), satisfying the equations

6 v’___,vs-_' b vs-- __.v-s-.‘,
Ao — o) = of —of_g) o TETTEt) | Tl T0Es)

9¢

ks fL Cafk-

To prove the theorem we shall need integral representations of the solutions of these
equations. If the support of (;(z,t) is partially contained in D, i.e., it contains a
part of the parabolic boundary of this domain, then by a regular transformation we
can straighten out this part of the boundary. After that we can repeat, with minor
modifications, previous considerations for the half-space obtained.
Let us find out under which restrictions on initial and boundary conditions of
{=:=2=2} the estimate of the type (1.10) holds. Suppose that

—(fi = fica) — (B — ®5y), @ = —0kA( — 2V V( +ve—-

w(@,t) € H**(Dr), Af ~F —al = _21(1w) in Dy,
L=A—%,hf=a‘*"—1;—"°°—r,w=0 on 8D; x (0,T),

hf|t=0 = —Lw|=0 + (‘¢1 — w)|¢=0,

max PL = Pio1  Pho1 ~ Phoa i
1<k<N,(z,t)€Dr h h
w o Ve~ V-1 Yro1 — V2| sk
ISkSNyzeﬁ h h g ’
i
L ] h"ok—l <e, (1.11)
H?+*3+% (8D; x[0,T])

where the constants ¢; do not depend on h.

THEOREM 1.4. Let the assumptions of Theorem 1.3 and the conditions (1. 11) hold.
Then
W — Wk—1 . Wg—1 — Wk—2

h h

max < c3h,

1<k<N,(z,t)€Dr

W — Wk-1

- <ecsy, a€(0,1).

H*=*'~% (D)
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If the norms
'd’k '"' ¢k~z Aw — %‘;

cr+a (D) “ HA 4G (B

are uniformly bounded, and the correponding compatibility conditions are satisfied, then

We — Wr-

h <-C§,

H?«{«a 1-{-3(9 }

where the constants ¢; do not depend on h,k, e Under appropriate assumptions a

similar statement can be proved for the functions 3“2 —rh=t . MRoiZBen2) in the space
H*% (D).

The first claim is proved by the maximum principle with subsequent use of an em-
bedding theorem. The other estimates can be proved in a way similar to the one used
in Theorem 2.3.

2. Uniform estimates for {ui(z,{,h,¢)}. Let us estimate the difference quotients
{ukml{z.t,h,e)—u;.-(z,t,k,s)}
s .

THEOREM 2.1. Let the assumptions of Theorem 1.3 hold. Then if ¢* > vh, Q(z) # 0,
there exist positive constants cy,cq not depending on h k,e, such that

0 < c1h < up—y(2,t, he) —uplz,t he) <ezh iz, t) € Dy (2.1)
Represent the equation (1.1) as follows

a
Alug-1 —up) — “52(“&-—1 — k) — 'E(ukw —ug) = ’“’%(‘wk—z — Wg—1)+

o) [y @20) — (uaes = )] + e 2L

where £ is an intermediate point arising in the La.gf&uga s form for the remainder of
the ’I‘a,ylor series. To conclude the proof it suffices to assume that ¢ > vk, and use
the maximum principle.

LEMMA. Let f(z,t) € HY'(Dr), u(z,0), u(z,t) € H**(Dyr) and £n Dy it satisfies
the equation -
a o

L — o = — 2.

h 3

Then for any pomt (%0,t0) € Dr : dzst{:co,ﬁD) > k%, o € (0,3) the following esti--
mates hold ) .
u(zo, to)] < ch® max |u{z,t)]+ - max z,t}, 2.2
wleust)] Soh” max et + 3 mex 1fis,) 22)

hia (o, to)| + ue(zo, to)] < eh® max fula, &)+

{z,t)EDyp
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1 * |
= (zm%r(tm,t)l,m(z,t)s_), (2.3)

where the positive constants ¢,o; do not depend on h.

Note that the estimate (2.3) holds, under a.ppropriate assumptions, for derivatives of
an arbitrary order.

Let us-apply the estimates obtained above to the functions {Fi(z,t,k,e}}. The
relation (2.3) implies that in the domain Dy these functions satisfy the equation

a8
A(Fy — Fgp) ~ ‘ét—(Fk - Py} — %(Fk ~ Fy1) =

= w%{){s(uk)\” Xe{tr—1)] = %Qz(z)xuukwl)’

and if {2,t) € wip—1 = {ug—1 > 1, ur < 1+ ¢}, then the right-hand side of this
equation vanishes. Thus, one can prove the following statement:

THEOREM 2.2. Let the assumptions of Theorem 1.3 hold. Then
V(z,t) € Dy : dist[{z,1), {ur(z,t,he) > 1+ €} > h°
the following estimate holds
lur(z,t, hzﬁ)“HMa»H% § C,

where the constant ¢ does not depend on h,&,k. If the assumptions of Theorem 1.4
hold then
V(z,t) € Dr : dist|(2,t),0(Dr \ @i x-1)] 2 k°

Jor the functions up(z,t h,e) all statements of Theorem 1.4 hold. Moreover, the fol-

lowing estimate holds

min _ {Wgey ~ W) — A" <ty —up <
1<E<N,(z,)€Dr _

< max (Wi “wk)a
I<kSN(z,0)eDr
where the constants ¢1, o1 do not depend on h,e.
The proof of these statements follows fmm the estzma.i;es {2.2), (2.3).

3. Limit transition. Let Dzq, = Dy x (0,T1), afunction (z,t,7) € C** Y (Dr,1),
vanishes on 8D x (0,7], n,, vanishes on 8Dy. Let us multiply the equation (1.1) by
hn(z,t, kh) = hn, integrate the result over D7 and sum over k ranging from 1 to V.
After sm:ple transformations we get

hZ/ {wu;,.Am wuki?t auk —h‘uk-— }d dt — hE%/qbk z, hing{z, 0)de+
. Rl ¥ J :

k“.‘tbr
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k=15
Of FL 1 — Fy
—h
Z/ ~Q%(2)x. (ur—1) nkdzdt+h2/ Afe+ )= dedt+
k—lDT
+Asz ug)mdzdt =0, fi = —th (3.1)
I=k

Denote by wu(z,t,7,h,e) the cubic interpolation of the functions uj;. Suppose that
the assumptions of Theorem 2.1 hold. Then the families of functions {u(z,t,7,h,¢e)},
{ur(z,t,7,h,e)} are uniformly bounded, and Theorem 2.2 implies the boundedness
from zero of u.(z,t,7,h,e). Thus, the level surfaces u(z,t,7,h,e) = € + h? can be
given by equations T = s(z,t,h,e), where the functions s(z,t,h,e) belong to the class
H'*te1+3  and their first order derivatives are uniformly bounded by constants not
depending on h,e.
Let * > VR,

ulzt,r] = hm szl hc) slet)= lm siz, Lk c).

e h—=0 e h—=0

We pass to the limit in the integral identity (3.1) as h,e — 0. The limit integral identity
implies that the finction u(z,t,7) on the surface given by the equation 7 = s(z,t),
satisfies the condition

IVt = [Va | =A@ +u5) + @ (a).
Hence, |Vu*| # 0 for A small enough. After that, taking into account the results if
Corollary 1 of Theorem 1.2 and independence of the uniform estimates for u(z,t,7)

from a and ), we can make one more limit transition a,A — 0. As the result we
obtain

THEOREM 3.1. Let the following assumptions hold:
¢'(z,t) € H*+*1*%(8D%), $(z) € C***(D), Q(z) € (D),

Q(z) #0, ¢(z,t) {0 on 8D;, ¢(z,t) >0 ‘(ﬁ,

and the cor';"esponding compatibility conditions hold.
Then for all T >0 the problem (0.1)~(0.4) is solvable, and

u(z,t) € C(Dr) N {H2+*+$(Qr Uyr U OD;)x

x H2*®143(Gr U~y U 8D,)},

4T is a surface of the class H?>T1t%,
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