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On the example of an initial-value boundary problem for the Schrödinger equation, a 
methodological problem of quantum mechanics has been discussed. It is shown that 
quantum mechanical problems can be reduced to difference equations with continuous 
time for which there exist so-called self-stochastic solutions. Hence, such solutions exist 
for quantum problems. These solutions are random function as time is large. It is shown 
that the Sharkovsky metric can be applied for computer simulation of limit distributions 
of random wave functions. 
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There is always another way to say the 
same thing that doesn’t look at all like 
the way it was said before. 

Richard Feynman 

1. Introduction 

Nowadays physical world view contains a substantial blank space. Namely, 
there is no bridge between the sub-microscopic level of quantum mechanics and 
the macro-world of classical physics. It is known that there is the smallest change 
value in nature (see [1]). From this statement, it follows that motion is «fuzzy». 
Next, classical constants (for example, the speed of light c or the gravitational 
constant G) do not allow definition of the scales of length or time. Thus, classical 
physics does not provide measurement scales, that is: «Classical physics alone 
cannot be used to build any measurement device» [1, p. 16]. Moreover, every 
failure of classical physics can be explained by the discovery made by Max 

Planck, 1899: «In nature, action value smaller then 341.06 10 J s     are not 

observed». This is so-called fundamental quantum principle, which passes ex-
perimental tests. The constant ћ is called the quantum of action or the Planck con-
stant. The quantum principle states that there is no experiment, which can meas-
ure an action. Hence, in nature, a change smaller then ћ cannot be observed. Thus, 
all consequence of this «strange» smallest change may be applied to nature. 
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Let us consider the Schrödinger equation 
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                                              (1) 

where   2: , :x t R C    , C is a complex space,  is an unknown function, ћ 

is the Planck constant. Let us divide the two parts of the equation by 2mv  where 
m is the mass of particles, v is their velocity and p mv  is an impulse. Further, 

we introduce /t t  ,  is the relaxation time of a wave function to some equilib-
rium, and we consider a dimensionless constant /h v   . As a result, we obtain 

the dimensionless equation: 
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For example, we can consider the functional two-point boundary conditions 

                                                        0, ,t l t                                                (3) 

with  being a real or complex parameter. But our aim is considering of nonlinear 
boundary conditions instead of the linear boundary conditions 

                                                   0, , , ,t h l t h                                        (4) 

where : C C   is a nonlinear structural stable map, with the initial condition 

added: 

                                              0,0, , , 0x h x h x l                                    (5) 

 

where h > 0 is a small parameter. 
We assume that conditions 
 

                     0,0, , ,0,h l h       ,      0, , , , ,l h l l h                   (6) 

 
and similar conditions for second derivatives at points (0;0)  and ( ;0)l  are satis-

fied. This ensures the existence of solutions of    2
00, 0,C l t   -class. Of 

course, real and imaginary parts of the map  are of C
2
-class. This fact ensures 

that the map : C C   is structurally stable. It means that the related map 
2 2:G R R  is structurally stable, too. Thus, the spectrum 

   : 1rT G z z      where  is an empty set. 

Further we assume that 0h   is a small parameter, and we consider the prob-

lem with accuracy of 2( )O h , where 2( ) 0O h   as t   . We find solutions in 

the form 



Физика и техника высоких давлений 2017, том 27, № 2 

 53 

                              
 

 
,

, , exp , ,
iS x t

x t h x t h
h

 
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where ( ; )S x t  is the real phase, and ( ; ; )x t h  is the real amplitude. (Below, the 

parameter h will be omitted where it will not cause imperfect understanding.) 

We assume that    0 0, 0,C l    is the space of bounded continuous func-

tions, and 2C  is the space of twice differentiable functions with the norm: 

2
2

0
sup k

C k
f f


 , where 0f  is the norm in    0 0, 0,C l   . The 

function 2C  if its real and imaginary parts belong to    0 0, 0,C l   . 

Then there is the following convergence in C
2
-norm: 

                                            2

2
1 1,

C
C

x
S x t p t

p

  
    

  
                      (8) 

where  1p   is 2N l p , that is a periodic piecewise constant distribution with a 

finite number of points of discontinuities . Here,  1 D   , 

 0
n

nD G A 
  , and A  is a set of saddle points of co-dimension one, and 

      0 0,S       is an initial curve in R
2
, which is determined by the initial 

data of the boundary problem, and N is the least common multiple of the map 

      1 2: , , , ,G S S S      . 

2. Method of reduction of the problem to a system of  
integro-difference equations 

Now we return to the problem, which can describe the behavior of white and 
black solitons in an optical resonator with surface feedback [2–6]. Indeed, substi-
tuting (7) in equation (2), we obtain that 

 

               
 2

21 1
0

2 2 2

ihS S
S ih S
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We find solutions with accuracy of O(h
2
) so that 

 

                             21 1
0

2 2

S S
S ih S

t x x t

      
          

      
.            (10) 

Then we obtain the Hamilton–Jacobi equation [7–9]: 
 

                                                       21
0

2

S
S
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
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
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The boundary conditions can be written in the form: 
 

                       0cos ;x x l
S S 
    ;    0sin ;x x l

S S 
            (12) 

 

where  and  are real and imaginary parts of a complex number. 

Let us denote 1 :F    and  1 :F  0sin ;S S   . Then it follows from (12) that 

                                   2 2 2
0 1 2, ,x x l x l

F S F S  
     ,                    (13) 

                                 2 2
0 1 2tan , ,x x l x l

S F S F S  
   .                    (14) 

 

We define functions 2 2
1 1 2: F F     and 2 2

2 2 1: arctan F F  . Then the 

boundary conditions (4) can be written as 

                                                      0 2 ,x x l
S 

    ,                                (15) 

                                                      0 1 ,x x l
S S 

   .                                (16) 

For simplicity, initially we consider the case of 2 2: ( )     and 1 1: ( )S   . 

The general case can be treated in a similar way. 
Thus, for the Hamilton–Jacobi equation we have the boundary conditions 

                                               10, ,S t S l t                                     (17) 

and for the transport equation 

                                                 
2

2
0

S
p

t x x

  
   

  
                                (18) 

we have the boundary conditions 

                                                    20, ,t l t      .                                        (19) 

Here maps  1
1 2, C I I     are structurally stable, and I is an open closed 

interval. The structural stable maps form an open dense subset (see [10], p. 233). 
In order to solve equations, we use the method of characteristics. To do this, 

we consider the Hamilton system of ordinary difference equations with Hamilto-

nian   2, 2H x p p  as 

                                              
H

x p
p


 


 ,   

H
p

x


 


                                 (20) 

with the initial conditions 

                                            00x x ,      00
S

p x p
x


 


.                    (21) 

For a given constant p, the function : ( ; )x x p t  is the solution of equation 
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
                                           (22) 

where p can be considered as an additional coordinate in ( ; ; )x p t -space. Then on 

the characteristics d ( ; )x p t p , we have the equation 

              
          d , , , , , , d ,

d d

S x t p t S x t p t S x t p t x t p

t t x t

 
 

 
= 

                                              =  
 d ,

d

x t p
H p p

t
  .                               (23) 

By integration along characteristics d / dx t p  and with the help of boundary 

conditions, the problem can be reduced to the difference equations: 

                           1, ,
2 2

p p
S x t S x t l p l x l

 
       

.                   (24) 

We can solve this difference equation as x = 0. Then 

                                               1, ,
2

p
S l t S l t l p l      .                    (25) 

If Ф1 is a unimodal map, then solutions tend to piecewise constants 2N l v  that 

are periodic functions with finite or infinite points of discontinuities on a period. 

N is the least common multiple of attractive circles of the map Ф1 [10]. If 

1; Id  , where Id is an identical map, the solutions are unstable. 

Next, from relation 

                                                 , 0,
2

p
S l t S t l p l                                   (26) 

it follows that the limit function (0; )S t  is also a piecewise constant periodic 

function, and from the relation 

                                                 , 0,
2

p
S x t S t x p x                                   (27) 

we find the limit phase distribution in the bulk. 

3. Asymptotic distributions of amplitudes 

 The second equation follows from the integration of the transport equation 
(19), which can be written as [9,11]: 

                                                       
2

2

d 1

d 2

S

t x

 
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
.                                           (28) 

Integration of this equation from point ( , )x t  to point ( , / )x t l p  with the help of 

the boundary conditions for amplitude results in equation (27). On the other hand, 
this equation has a solution 
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2

2
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d 2

S

t x

 
  


  at  d dx t .                                (29) 

After multiplying by , this equation can be written as 

         
0

2

0 0 2
, , exp , , d

t

t

S
x t t x t t p s t x s p s t x s s

x

                 
 

 .   (30) 

Now we can find the phase ( , )S x t  in this equation. Indeed, 

                                               
1

, 0,
2

S x t S t x p px   .                                (31) 

 
Further, using the boundary conditions for the phase, we obtain from (31) that 
 

                                    1, , ,
2 2

p p
S l t S l t l S l t l p l        .        (32) 

 

This equation has an asymptotic solution    1, ,S l t p l t . Then we obtain from 

(32) that    1 1, , 2S l t p l t x p px      . Then 

 

   
2

22
1 12

, , , ,
S

p S l t x p S l t x p S l t x p S l t x p
x


                       


 

                                      
2

1 1, , , ,p S l t x p S l t x p S l t x p S l t x p                                                        (33) 

where we used the relation 

                         
2

12
, 0, ,

S
p s t x s S t x p S l t x p

x


            


  

                             
2

1, , ,S l t x p S l t x p S l t x p                .        (34) 

 

 ,S l t x p   tends  to   12N t x p   periodic  function   1 1,p l t x p A  , 

where 1A  is a set of attractive points of the map 1 . Here index  is omitted in 

the map 1, . Then we obtain the equation 

               
0

0 0, , exp 0, , d
t

t

x t t x t t S t x p p s t x s s
 
           
 

 .       (35) 
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We assume that    1, ,S l t A S l t     where 0   is a small parameter. Then 

lumbarization of difference equation (32) at every point 1a A  results in equation 

                                                  1, ,S l t a S l t l p                                    (36) 

where 1( ) 1a  . Solutions of these equations are    , expS l t kt  where 

1ln ( )
p

k a
l

  . Hence, in the vicinity of the point 1a A , equation (35) can be 

written as 

              
0

2
0 0, , exp exp , d

t

t

x t t x t t k t x p p s t x s s
 
           
 

 .      (37) 

 

Since 0k  , we can use the approximation 1ze z   and rewrite (37) in the 

form: 

                
0

2
0 0, , 1 exp , d

t

t

x t t x t t k t x p p s t x s s
 
           
 

 .       (38) 

Then, in the class of bounded functions 2C , the last term in (38) can be ne-

glected, because 

        
0

2 2
0exp , d exp

t

t

k k t x p p s t x s s k k t x p t t M               (39) 

where  sup ,M x t   at    , 0,x t l R  , and    2
0exp 0k k t x p t t    

as t   . It means that the function      0 0, ,x t t x t t    asymptotically. 

Hence, we have 

                                        2, 0, ,l t t l p l t l p          .                    (40) 

This equation has asymptotically 12N l p -periodic piecewise constant distribu-

tions 2 2( )p t A  where 2A  is a set of attractive points of the map  2
2 ,C I I  . 

4. Reduction of initial boundary value problems to difference equations 
with continuous time 

It is known that many problems of mathematical physics may be reduced to the 
study of asymptotic behavior of ID map :f I I  where I is an open bounded 

interval. In this case, the main role is played by the separator D of the map 
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                    : trajectories of , 0, 1 are unstablenD f y I f y n    .        (41) 

 
The term separator can be explained by the fact that the points of D(f) set separate 

the basins of attractive circles of map f. Then for any point  y D f  , there is a 

number 0d   such that for any 0   there is a point  ,y y y i        and a 

number m such that 

                                                      m mf y f y d  .                                (42) 

 
Next, if there is a set Dsen(f) such that 
 

                                                   
 

 
sen

inf 0
y D f

L d y


                                  (43) 

then 

                          sup m mf y f y L   ,   : 0 ,y y y n N              (44) 

 
for any 0   and 0N  . In this case, map f is sensitive to the initial data or sen-

sitive map, and L is a constant of sensitivity. 
It means that in dynamic systems, action values larger of L are not 'observed'. 

Thus we have the smallest action value L. We call this situation sensitive princi-
ple in classical mechanics. 

Now we return to the discussion of the quantum principle. Similarly, it follows 
from the quantum principle that smaller change values can never be observed (see 
[1]). But it follows from classical mechanics that a small error of computer simu-
lation leads to the fact that, for large times, there is the horizon of unpredictabil-
ity. The corresponding trajectories are deterministic, but some of them are unpre-
dictable. The sensitive trajectories cannot be ignored because a set of the initial 

data, which produce such trajectories, contains an open set (in C
0
-metric). The 

separator 

                                       sen, , 1 :nD f t n n t n D f                           (45) 

 
has an additional measure sen ( )D f  if an initial function ( )t  is nonsingular with 

the property that measure 1meg ( ) 0B  for any set B of the Lebeque measure 

zero. 

Next, all jumps of points of trajectories on interval ∆t must be observed, as ћ is 
small. But some of them can be observed only macroscopically, and only for a 
long period or for many particles average (see [1]). Thus, the difference between 
the action values S at an interval Δt can not vanish, so that 

                                         
2

S t S t   


 and 
2

E t  


                    (46) 
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where E is the energy of a dynamic system. Next, there is the relation 

                                                       
2

x p  


                                           (47) 

were x is a position, and p is a momentum. The indeterminacy relation implies 
that measurement precision is limited. Since p   , where  is de Broglie 

wave, then relation (47) can be written as 

                                                      
2

x l


   .                                           (48) 

5. Application example 

Let us consider the map 

                                              : 4 1f z z z  ,    0,1z                                 (49) 

to which the origin quantum problem can be reduced with accuracy O(h2). This 

map has the property: for any open interval  0,1I  , there is N  such that 

   0,1nf I   for n N . This means that for any  0,1x  and 0   there is t  

such that 

                                                 0,1tS V x    as  t t                     (50) 

where tS  is a corresponding dynamical system, which is determined with accu-
racy O(h2) for the given quantum problem, and ( )V x  is a neighborhood of point 

x. If    , where   is a computer precision, then the computer recognizes 
( )V x  as a «single point». As a result, the value ( )V x  is equal to anyone of the 

numbers on  0;1  according to which implementation of f in the code is used (see 

[12]). In this case, we say that trajectories [ ]tS   are out of predictability horizon 

for deterministic boundary value problems, and these trajectories are out of pre-
dictability horizon for quantum boundary value problems with accuracy O(h). 

6. The Sharkovsky metric 

Define a space  ;R I  and let a function  . Define a family of metrics 

on  

  
   

   
1 2

, ,
1 2

0 1 , 0,

1
, , sup min , sup , ,

rr

r r
r

r z i I l

a l F z F z
a


  

 
   

 
        
 
 

         (51) 

 

where 1a   and 0l   are parameters,  
2

, ,rF z
   are averaging of r-dimensional 

function of distributions of functions ( )t  on -space of points [0; ]rl , so that 
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              
 

 
  1

,
1 1

1
, ... ,..., , ,..., d d

meg r

r
r rV t V t

F z F z z z
V  






    
            (52) 

where 

                               1 rV V t V t      ,      ,i i i i iV t t t              (53) 

 

and 1, ..., r   are coordinates of point [0; ]rl , and 1, ..., rz z  are coordinates of point 
rz I . This metric is called Sharkovsky metric [13,14]. As shown above, for dif-

ference equations with continuous time (and, hence, for the quantum boundary 
problem), unpredictable solutions are typical as the time is large. These solutions 
can be described (with accuracy O(h)) by the Sharkovsky metric. Then for the 
quantum problem there is a limit statistical process ( )P t  such that P  is a peri-

odic random process with period p (see [12]). For example, ( )P t  is a stationary 

random process if p = 1, if the initial function φ is monotone. 
Thus, for large time, deterministic solutions are similar to random process. In 

this case, -averaging distribution u  of the quantum problem are characterized 

by -averaging distributions P . Moreover, if  is not small, then -averaging dis-

tributions can be described by usual (not averaging) distributions. In this case, we 
enter in sphere of usual (classic) mechanics. Hence, we have «continuous» transi-

tion from quantum to classic mechanics. Besides,     is required, where   can 

be written as a composition of the minimal time ∆t and the minimal size ∆L for 
quantum system. Moreover, the Sharkovsky metric allows to measure some quan-
tities as precisely as possible in mathematical problems of quantum mechanics 
(see [1], p. 28). Next, it follows from this metric that measurement accuracy is 
limited, that is an «observer» cannot be microscopic that is the main condition of 
quantum mechanics, which follows from the constant ћ (see [1]). As noted in [1]: 
«How can a system filter out the small and the large, and let the middle pass 
through?». The dynamic system implies some kind of measuring the frequency. 
But dynamic systems of classical physics do not allow measuring time or length. 
Now classical physics cannot explain any characteristic length or time scale ob-
served in nature. The classical constants of nature do not allow defining length or 
time scales. In nature, there is always some action. It means that from mathemati-
cal point of view, the nature must be described by discrete dynamic systems. It 
can be called «the quantum principle» in mathematics. 

Thus, self-stochasticity [3,7,8,10,12,15–18] in quantum dynamical systems 
means that there is a completion of phase space with random functions, which are 

determined with accuracy 2( )O h , so that the system has a set of trajectories and, 

correspondingly, «attractor» of the problem contains wave functions. 
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И.Б. Краснюк, Т.Н. Мельник, В.М. Юрченко 

САМОСТОХАСТИЧНОСТЬ В КРАЕВЫХ ЗАДАЧАХ КВАНТОВОЙ      
МЕХАНИКИ 

Обсуждается методологическая проблема квантовой механики на примере краевой 
задачи с начальными условиями для уравнения Шредингера. Показано, что кванто-
вомеханические задачи могут быть сведены к разностным уравнениям с непрерыв-
ным временем, для которых существуют так называемые самостохастические ре-
шения. Следовательно, такие решения существуют и для квантовых задач. На 
больших временах эти решения являются случайными функциями. Показано, что 
метрика Шарковского может быть применена для компьютерного моделирования 
предельных распределений случайных волновых функций. 

Ключевые слова: квантовая механика, начально-краевая задача, разностные урав-
нения 
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