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On the example of an initial-value boundary problem for the Schrodinger equation, a
methodological problem of quantum mechanics has been discussed. It is shown that
quantum mechanical problems can be reduced to difference equations with continuous
time for which there exist so-called self-stochastic solutions. Hence, such solutions exist
for quantum problems. These solutions are random function as time is large. It is shown
that the Sharkovsky metric can be applied for computer simulation of limit distributions
of random wave functions.
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There is always another way to say the
same thing that doesn’t look at all like
the way it was said before.

Richard Feynman

1. Introduction

Nowadays physical world view contains a substantial blank space. Namely,
there is no bridge between the sub-microscopic level of quantum mechanics and
the macro-world of classical physics. It is known that there is the smallest change
value in nature (see [1]). From this statement, it follows that motion is «fuzzy».
Next, classical constants (for example, the speed of light ¢ or the gravitational
constant G) do not allow definition of the scales of length or time. Thus, classical
physics does not provide measurement scales, that is: «Classical physics alone
cannot be used to build any measurement device» [1, p. 16]. Moreover, every
failure of classical physics can be explained by the discovery made by Max
Planck, 1899: «In nature, action value smaller then 7=1.06-10"% J-s are not
observed». This is so-called fundamental quantum principle, which passes ex-
perimental tests. The constant 7 is called the quantum of action or the Planck con-
stant. The quantum principle states that there is no experiment, which can meas-
ure an action. Hence, in nature, a change smaller then 7 cannot be observed. Thus,
all consequence of this «strange» smallest change may be applied to nature.

© |.B. Krasnyuk, T.N. Melnik, V.M. Yurchenko, 2017



®du3HKa ¥ TeXHHKA BbICOKHX AaBJjaenuii 2017, tom 27, Ne 2

Let us consider the Schrodinger equation

2 A2
v _ 1y

= 1
ot 2m 6)(2 M

where v = q/(x,t) ‘R*>>C,Cisa complex space, y is an unknown function, 7

is the Planck constant. Let us divide the two parts of the equation by mv? where
m 1s the mass of particles, v is their velocity and p =mv is an impulse. Further,

we introduce 7 =t/1, T is the relaxation time of a wave function to some equilib-
rium, and we consider a dimensionless constant #=A/vt. As a result, we obtain
the dimensionless equation:

Loy 1o, 0%y
—th—Y=—h"—2L. 2
: ot 2 ox? @)

For example, we can consider the functional two-point boundary conditions
v(0,¢)=0y(L1) 3)

with 0 being a real or complex parameter. But our aim is considering of nonlinear
boundary conditions instead of the linear boundary conditions

v (0.0,h) =D y(Lt,h)] (4)

where @ : C — C is a nonlinear structural stable map, with the initial condition
added:

y(x,0,7)=wyq(x, k), O0<x<I (5)

where /4 > 0 is a small parameter.
We assume that conditions

v (0,0,h)=@[ 0,y (L,0,h) ], w(0..,h)=D[0,y(LLh)] (6)

and similar conditions for second derivatives at points (0;0) and (/;0) are satis-
fied. This ensures the existence of solutions of C? [(O,I)X[O,to)] -class. Of

course, real and imaginary parts of the map @ are of C*-class. This fact ensures
that the map @ : C — C is structurally stable. It means that the related map

G: R >R? 1s  structurally  stable, too. Thus, the spectrum
G(T Gr)m{z :|2|= 1} = ¢ where ¢ is an empty set.

Further we assume that 4 >0 is a small parameter, and we consider the prob-
lem with accuracy of O(hz), where O(hz) — 0 as t > +o0. We find solutions in
the form
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w(x,t,h)=exp[%}p(x,t,h), (7)

where S(x;¢) is the real phase, and ¢(x;t;/4) is the real amplitude. (Below, the
parameter /# will be omitted where it will not cause imperfect understanding.)
We assume that C° ([0, / ] x[O, +oo) is the space of bounded continuous func-

tions, and C? is the space of twice differentiable functions with the norm:
||f||Cz ZZizosupH 7, where | fo| is the norm in c? ([O, 1] [0,+oo). The

function yeC 2 if its real and imaginary parts belong to c? ([O, l] X [0,+oo).

Then there is the following convergence in C’-norm:

o[n(:3)

where p, (Q) is 2V /p , that is a periodic piecewise constant distribution with a

HS(x’t)ch =

(8)

C2

finite number of points of discontinuities I. Here, I'=p (D),
D=U,. G_”( ) and A" is a set of saddle points of co-dimension one, and

p(€)= (SO (€). 90 (Q)) is an initial curve in R*, which is determined by the initial

data of the boundary problem, and N is the least common multiple of the map
G: (5.0) > (@, (5.0). ©2(S.0)).

2. Method of reduction of the problem to a system of
integro-difference equations
Now we return to the problem, which can describe the behavior of white and

black solitons in an optical resonator with surface feedback [2—6]. Indeed, substi-
tuting (7) in equation (2), we obtain that

2
oS 1 oS o , 99 , 1 (—ih)
Vs h ~gAS Ap=0. (9
((% 5 )j(p (l)(axax or 2? j+ 2 7 ©)

We find solutions with accuracy of O(hz) so that

oS 1 oS op op 1
90 (vs h AS |=0. 10
[6t+2( )] (Z)(8x8x+6t 27 j (19)

Then we obtain the Hamilton—Jacobi equation [7-9]:

851

= 2(vs) =0. (11)
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The boundary conditions can be written in the form:

cosSP,_g =RD(S;9) _; sinSe,_o=3ID(S;0) (12)

where R and J are real and imaginary parts of a complex number.
Let us denote F| :=R® and F| :=3ID. Then it follows from (12) that

(P§:0:F‘12(S’(P)x:l+F22(S’(P)x:la (13)
tanS,_o = F(S,9),_,/F5 (5.0),_,. (14)

We define functions @, := +\/Flz +F22 and @, =arctan F22 / FIZ . Then the

boundary conditions (4) can be written as

Px=0 :q)Z(S’(P)x:l’ (15)
Se-0 =P (S9) ;- (16)

For simplicity, initially we consider the case of @, ;= ®,(¢) and O :=D(S).
The general case can be treated in a similar way.
Thus, for the Hamilton—Jacobi equation we have the boundary conditions

S(0,0)=d, [ S(L1)] (17)
and for the transport equation
op , 6(p ey
— 0 18
or Pox a2t (1%)

we have the boundary conditions
0(0.0) =D, [ o(L1)]. (19)

Here maps @, @, e C' (I —>1I) are structurally stable, and / is an open closed

interval. The structural stable maps form an open dense subset (see [10], p. 233).
In order to solve equations, we use the method of characteristics. To do this,
we consider the Hamilton system of ordinary difference equations with Hamilto-

nian H (x,p)=p°/2 as
X=——=p, p=——s (20)

with the initial conditions
x(0)=x, p(0)=—x(x0)=p. (21)

For a given constant p, the function x := x(p;t) is the solution of equation
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8S(x,t)
ox

where p can be considered as an additional coordinate in (x; p;¢)-space. Then on
the characteristics dx(p;t) = p, we have the equation

p- =0 (22)

dS(x(t,p)1) _ aS(x(r,p).1) 0S(x(r.p). 1) dx(t. p)
dr ot ox dr

= —H(p)+pdxgt’p)-

By integration along characteristics dx/d¢ = p and with the help of boundary

(23)

conditions, the problem can be reduced to the difference equations:

S(x,t):<I>1{S(x,t—l/p)+§(l—x)}+§l. (24)
We can solve this difference equation as x = 0. Then
S(l,t)=CDl[S(l,t—l/p)]+§l. 25)

If @, is a unimodal map, then solutions tend to piecewise constants 2N I/v that

are periodic functions with finite or infinite points of discontinuities on a period.
N is the least common multiple of attractive circles of the map @; [10]. If
®,;=1d , where Id is an identical map, the solutions are unstable.

Next, from relation

S(l,t):S(O,t—l/p)+§l (26)

it follows that the limit function S(0;¢) is also a piecewise constant periodic
function, and from the relation

S(x,t)zs(o,t—x/p)+§x 27)

we find the limit phase distribution in the bulk.

3. Asymptotic distributions of amplitudes

The second equation follows from the integration of the transport equation
(19), which can be written as [9,11]:

d 10%S
Lo~ (28)
dr 2 Ox

Integration of this equation from point (x,#) to point (x,7—// p) with the help of

the boundary conditions for amplitude results in equation (27). On the other hand,
this equation has a solution
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dp 18°S
E:_EW(P at dX/dl (29)

After multiplying by ¢, this equation can be written as
L A2

(p(x(t),t):(p(x(to),to)exp —jg}c—f[p(s—t)+x,s:|(p|:p(s—t)+x,s:|ds . (30)

fo

Now we can find the phase S(x,#) in this equation. Indeed,
S(x,t):S(O,t—x/p)+%px. (31)
Further, using the boundary conditions for the phase, we obtain from (31) that
S(l,t)=S(l,t)+§l=CD1[S(l,t—l/p)]+§l. (32)

This equation has an asymptotic solution S(/,t)= p;(/,¢). Then we obtain from
(32) that S(,t)= ;[ py (L.t —x/p) |+ px/2. Then

p? ch_‘j: CI)i'[S(l,z‘—x/p)][S'(l,z‘—x/p)]2 +
+®i[S(Lt-x/p)|[S"(Lt-x/p)] (33)

where we used the relation

0% ; v
ax—z[p(s—t)+x,s]:S (O,t—x/p):d)l[S(l,t—x/p):I X
X [S'(l,t—x/p):lerCDi [S(l,t—x/p):H:S"(l,t—x/p):I. (34)

S(L,t-x/p) tends to 2M(t-x/p) periodic function p(I,t-x/p)e 4,

where 4" is a set of attractive points of the map ®,. Here index p is omitted in
the map @, ,, . Then we obtain the equation

t

(p(x(t),t):(p(x(to),to)exp —S"(O,t—x/p)j(p[p(s—t)+x, s:|ds . (35

fo
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We assume that S(/,1)= 4 +8S(i ,t) where £€>0 is a small parameter. Then

lumbarization of difference equation (32) at every point a € 4, results in equation

S(i,z):cbi(a)s(z,f—z/p) (36)
where |®@j(a)|<1. Solutions of these equations are S(/,)=exp(kt) where
k= §1n|(1)i(a)| . Hence, in the vicinity of the point a € 4;", equation (35) can be

written as

(p(x(t),t)ch(x(to),to)exp —k2exp(t—x/p)j-(p[p(s—t)er,s]ds . (37

lo

Since k<0, we can use the approximation e” ~1—z and rewrite (37) in the
form:

(p(x(t),t):(p(x(to),to) 1+ k2 exp(t—x/p)j-(p[p(s—t)er, s]ds . (3%

lo

Then, in the class of bounded functions ¢ € C?, the last term in (38) can be ne-
glected, because

k> exp(k(t—x/p))j-(p[p(s—t)er,s]ds <k? exp(k(t=x/p))(t-t))M  (39)

)

where M :sup‘(p(x,t)‘ at (x,¢)€[0,/]xR*, and k* exp(k(t—x/p))(t—to)—>0
as t — +oo. It means that the function (p(x(t),t) :(p(x(to),to) asymptotically.

Hence, we have

o(L1)=¢(0,1=1/ p) =Dy o(Lt-1/p)]. (40)

This equation has asymptotically 2M I/ p -periodic piecewise constant distribu-

tions p,(f) € A; where A5 is a set of attractive points of the map ®, e C*(1,1).

4. Reduction of initial boundary value problems to difference equations
with continuous time

It is known that many problems of mathematical physics may be reduced to the
study of asymptotic behavior of ID map f:/ — I where / is an open bounded
interval. In this case, the main role is played by the separator D of the map
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D(f)z{ye]: trajectories of " (y), n=0,1 are unstable}. (41)

The term separator can be explained by the fact that the points of D(f) set separate

the basins of attractive circles of map f. Then for any point y* € D( f ) there is a

number d >0 such that for any € >0 there is a point y € (y* -8y + 8) Ni and a

number m such that

()= 1" (5) >4 (42)

Next, if there is a set Dgen(f) such that

L= inf d >0 43
yeDsen(f) (y) ( )

then
sup=|/" (y)= /" (P> L. 7:0<ly-Fl<e n>N @

for any € >0 and N > 0. In this case, map f'is sensitive to the initial data or sen-
sitive map, and L is a constant of sensitivity.

It means that in dynamic systems, action values larger of L are not 'observed'.
Thus we have the smallest action value L. We call this situation sensitive princi-
ple in classical mechanics.

Now we return to the discussion of the quantum principle. Similarly, it follows
from the quantum principle that smaller change values can never be observed (see
[1]). But it follows from classical mechanics that a small error of computer simu-
lation leads to the fact that, for large times, there is the horizon of unpredictabil-
ity. The corresponding trajectories are deterministic, but some of them are unpre-
dictable. The sensitive trajectories cannot be ignored because a set of the initial
data, which produce such trajectories, contains an open set (in ° -metric). The
separator

Dn(f,(p)z{te(n,n+1):(p(t—n)eDsen(f)} (45)

has an additional measure D, (f) if an initial function ¢(¢) is nonsingular with

the property that measure meg_l(B) =0for any set B of the Lebeque measure
Zero.

Next, all jumps of points of trajectories on interval Az must be observed, as 7 is
small. But some of them can be observed only macroscopically, and only for a
long period or for many particles average (see [1]). Thus, the difference between
the action values S at an interval Az can not vanish, so that

h

|S(t+A)-S(f)) 2= and AEAL= 2 (46)

o | =+
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where E is the energy of a dynamic system. Next, there is the relation
AxAp=> g (47)

were x is a position, and p is a momentum. The indeterminacy relation implies
that measurement precision is limited. Since p=7#/A, where A is de Broglie

wave, then relation (47) can be written as

AX'Al> Ar . (48)
2
5. Application example
Let us consider the map
fiz—>4z(1-z2), ze[0,1] (49)

to which the origin quantum problem can be reduced with accuracy O(h%). This
map has the property: for any open interval / <[0,1], there is N* such that

/" (1)=[0,1] for n> N*. This means that for any x €[0,1] and &> 0 there is ¢"
such that
S e](V: (x))=[0,1] as r>¢" (50)

where S’ is a corresponding dynamical system, which is determined with accu-
racy O(h?) for the given quantum problem, and V.(x) is a neighborhood of point

x. If e<e”, where € is a computer precision, then the computer recognizes
V.(x) as a «single point». As a result, the value V,(x) is equal to anyone of the

numbers on [0;1] according to which implementation of fin the code is used (see

[12]). In this case, we say that trajectories S’[¢] are out of predictability horizon

for deterministic boundary value problems, and these trajectories are out of pre-
dictability horizon for quantum boundary value problems with accuracy O(h).

6. The Sharkovsky metric

Define a space SR(R*;I ) and let a function C € ‘R . Define a family of metrics
on R

F % (z,1)-F/* (z,r)‘ (51)

) = 1
p® (a,0)[1,C,] = sup min| e, Z—r sup : i

e>0 r=14 (z,i)e[rx[O,l]r

where @ >1 and />0 are parameters, ng’g (z,r) are averaging of r-dimensional

function of distributions of functions {(¢) on e-space of points [0;/]", so that
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re _ 1
F} (z,r)—mjVs(tl)...jVs(tr)Fg(zl,...,zr,61,...,6r)d6dz (52)
where
VE(T):VE(tl)X"'XVs(Zr)’ Va(ti)_(ti_giati”'gi) (53)

and 1y, ..., T, are coordinates of point [0;/]", and z, ..., z, are coordinates of point

zeI". This metric is called Sharkovsky metric [13,14]. As shown above, for dif-
ference equations with continuous time (and, hence, for the quantum boundary
problem), unpredictable solutions are typical as the time is large. These solutions
can be described (with accuracy O(#)) by the Sharkovsky metric. Then for the
quantum problem there is a limit statistical process F,(¢) such that £, is a peri-

odic random process with period p (see [12]). For example, F,(¢) is a stationary

random process if p = 1, if the initial function ¢ is monotone.
Thus, for large time, deterministic solutions are similar to random process. In
this case, e-averaging distribution u, of the quantum problem are characterized

by e-averaging distributions F,. Moreover, if & is not small, then e-averaging dis-

tributions can be described by usual (not averaging) distributions. In this case, we
enter in sphere of usual (classic) mechanics. Hence, we have «continuous» transi-

tion from quantum to classic mechanics. Besides, € >¢” is required, where ¢ can
be written as a composition of the minimal time Az and the minimal size AL for
quantum system. Moreover, the Sharkovsky metric allows to measure some quan-
tities as precisely as possible in mathematical problems of quantum mechanics
(see [1], p. 28). Next, it follows from this metric that measurement accuracy is
limited, that is an «observer» cannot be microscopic that is the main condition of
quantum mechanics, which follows from the constant 7 (see [1]). As noted in [1]:
«How can a system filter out the small and the large, and let the middle pass
through?». The dynamic system implies some kind of measuring the frequency.
But dynamic systems of classical physics do not allow measuring time or length.
Now classical physics cannot explain any characteristic length or time scale ob-
served in nature. The classical constants of nature do not allow defining length or
time scales. In nature, there is always some action. It means that from mathemati-
cal point of view, the nature must be described by discrete dynamic systems. It
can be called «the quantum principle» in mathematics.

Thus, self-stochasticity [3,7,8,10,12,15-18] in quantum dynamical systems
means that there is a completion of phase space with random functions, which are

determined with accuracy O(hz) , so that the system has a set of trajectories and,
correspondingly, «attractor» of the problem contains wave functions.
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U.b. Kpacuwk, T.H. Meavnuk, B.M. IOpuenko

CAMOCTOXACTWYHOCTb B KPAEBbIX 3A0AYAX KBAHTOBOW
MEXAHWKHA

Ob6cy>knaercst MeTomooruueckas mpodieMa KBaHTOBOM MEXaHMKH Ha MPUMEpE KPaeBou
3a[a4u C HavaJIbHBIMH yCJIOBHAMU AJs1 ypaBHeHus [lpeaunrepa. [lokasano, yTo kBaHTO-
BOMEXaHUYECKHE 3a1a4l MOTYT OBITh CBEIEHBI K PA3HOCTHBIM YPaBHEHHSIM C HETPEPHIB-
HBIM BPEMEHEM, JUII KOTOPHIX CYIIECTBYIOT TaK Ha3bIBa€MbIE CAMOCTOXACTUYECKHE pe-
meHud. CrenoBaTeNbHO, TaKME PEIIEHUs CYLIECTBYIOT M JUId KBaHTOBBIX 3ajgad. Ha
OONBLIMX BpeMEHaX 3TH PELICHHs SBISIOTCS ciay4aiHbIMU (yHKumsmu. [lokazaHo, 4To
MmeTpuka [llapkoBckoro MoxkeT OBITh MPUMEHEHA ISl KOMIIBIOTEPHOTO MOJETHPOBAHUS
NpeAeNbHBIX PACpEeeNeHUN CITydyailHbIX BOJTHOBBIX (DYHKINH.

KiroueBrnle cjioBa: KBaHTOBas MCXaHHKa, HAYaJIbHO-KpaceBaA 3a7a4a, pa3HOCTHLIC ypaB-
HCHUA
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