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This review provides a brief overview and a discussion of dynamical integrated dif-
fractometry and its functional capabilities. It is demonstrated that the combined use 
of measurements of integrated diffraction parameters on different diffraction con-
ditions allows determining the parameters of several types of microdefects, which 
are simultaneously present in a single crystal. These parameters are the total inte-
grated intensity of dynamical diffraction, the contribution of its diffuse component, 
and their dependences on different diffraction conditions. Examples of the use of 
integrated diffraction parameters for non-destructive express diagnostics of the 
characteristics of the defects’ structure of single crystals are discussed.
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1. Introduction

The development of materials with new, necessary for practical appli
cation properties, is often achieved by forming unique structural and 
phase states. It means that the corresponding advance of functional ca
pabilities of the diagnostic equipment for controlling the structural 
perfection of the materials should be achieved. The diffractometry 
methods play the most important role in solve this problem and allow 
conducting non-destructive diagnostics of materials.

In addition, the important requirement (especially for practical appli
cations) for diagnostic methods is short-term of the measurement. The 
reduction of the measurement time did the diagnostic method is more 
convenient, allowing more samples to be investigated for a fixed time.
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Modern diffractometry methods chiefly use triple-axis and less com
monly double-axis schemes. The use of triple-axis diffractometry makes 
possible to measure distributions of the diffracted radiation intensity in 
the reciprocal lattice space and, therefore, to determine the structure of 
the objects under study. However, with the advantages of the mentioned 
techniques, they also have disadvantages, which are long-term measu
rements, expensive radiation sources and complex equipment. Duration 
of the exposure time is associated primarily with problem of measuring 
too low values of the diffracted radiation intensity at each point of the 
reciprocal space. In other words, the problem is registration a small 
number of counts per unit time. An alternative to this would be to 
measure some integral parameters, which would increase the number of 
recorded counts per unit of time and thus significantly decrease the 
time of diagnostics. The development of similar integrated diffractometry 
methods began almost immediately after the discovery of the phenomenon 
of radiation diffraction on crystal structures about 100 years ago.

The first results were obtained for the integrated intensities, i.e. 
for the sum of intensities in all diffracted waves, including the energy 
distribution near the Bragg reflection. For describing the diffraction 
processes on crystals, the kinematical (single-scattering approximation) 
theory and rigorous dynamical theory (taking into account multiple 
scattering) were developed [1–6]. As a result, formulas that relate the 
magnitudes of the integrated intensities with the structural factors of 
the crystals were obtained. This allowed determining the structure of 
crystalline objects by simple non-destructive methods.

Most natural crystals are poly- and mosaic crystals, and no single 
crystals. So, for a long time there was a paradoxical situation: the for
mulas obtained within the framework of the approximate kinematical 
theory described the experiment much more accurately than the rigorous 
dynamical theory. Thus, the formulas of the kinematical theory of dif
fraction were sufficiently for the study of crystal structures. The effects 
of multiple scattering can be observed only when the coherence length 
of the scattering and the size of the crystals exceed the extinction 
length, i.e. in crystals close to perfect single crystals.

However, since 1960s, methods for growing almost perfect single 
crystals with a low concentration of microdefects have been developed. 
These crystals have been required in industry that stimulated a rapid 
growth in the number of studies related to dynamical diffraction.

In addition, later it found out that the properties of modern materials 
are determined not so much by the structure and parameters of their 
ideal periodic lattices, as by the statistical characteristics of the micro
defects and parameters of substructure. Therefore, the theories of ra
diation diffraction on perfect crystals that existed at that time required 
generalization to the case of single crystals with microdefects.
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A similar generalization was carried out in the works of M.A. Kri
voglaz (systematic description of his results presents in the monographs 
[7, 8]), where a statistical averaging of the crystal susceptibility over 
the distribution of defects have been performed. As a result, periodical 
‘average’ functions with new periods and effective atomic factors, as 
well as the fluctuation waves of deviations from this periodicity of the 
crystal susceptibility were introduced. In addition, relations between 
these new parameters and the characteristics of the defects were deter
mined. As a result, the coherent (Bragg) and diffuse components of 
scattering radiation in the kinematical approximation were determined. 
Based on the obtained results, M.A. Krivoglaz classified microdefects 
according to their influence on the kinematical scattering pattern. Until 
today, Krivoglaz’s classification is used in almost all structural labora
tories in the world for characterizing crystals with microdefects.

However, the use of the kinematical theory of scattering for cha
racterization of imperfect crystals significantly limited the applicability 
of the integrated intensities methods. As shown, the total (the Bragg + 
+ diffuse components) integrated intensity does not depend on the dis
tortion of the crystal lattice at kinematical diffraction. Thus, the me
thods for characterizing structure, based on measuring the total integ
rated scattering intensities, are inapplicable for kinematically scattering 
crystals with microdefects.

The situation changes due to the use of the dynamical scattering 
pattern instead of the kinematical one. It was shown that the dynamical 
pattern of scattering is sensitive to structure imperfections of crystals 
due to the dispersion mechanism. This mechanism also provides the 
sensitivity to structure imperfections in individual integral characteristics 
of scattering pattern (see, for example, [9, 10]). Thus, the measurement 
of the total integrated intensity of dynamical diffraction (TIIDD) allows 
quantifying the characteristics of the defect structure of single 
crystals.

In this article, we illustrate the use of dynamical diffraction methods 
to determine the parameters of structural imperfections of single crys
tals on examples of semiconductor materials. However, the appropriateness 
of using dynamical methods for characterization of metallic single 
crystals with microdefects is perhaps even higher than for semiconductors. 
The fact is that without taking into account the effects of dynamical 
scattering of radiation in metallic single crystals the description of the 
defect structure can be not only quantitatively but also qualitatively 
incorrect. For example, the kinematical description of single crystals 
with dislocations predicts a complete absence of a coherent component 
of intensity. At the same time, the use of the dynamical approach with 
taking into account the effects of multiple scattering leads to an effective 
cutoff of the contribution of distant dislocations to the scattering 
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characteristics. As a result, even at high concentration of dislocations 
in the crystal, coherent peaks can be preserved. The same scattering 
pattern is observed experimentally.

The article has following structure. In Section 2, some of the classical 
results of the integrated intensity theory for mosaic and perfect crystals 
are briefly described. In Section 3, the problems of the statistical scat
tering theories related with interpreting scattering patterns for crystals 
with several types of microdefects are presented. The main results of 
the statistical theory of TIIDD in crystals with microdefects, which 
allow solving these problems, are described in Section 4.

2. The Intensity of Integrated  
Reflection of X-Ray by Crystals

2.1. The Integrated Reflection from Mosaic Crystals

The majority of nature crystals are not single crystals. In fact, crystal 
which appeared one whole consists of a number of independent crystalline 
regions. Each such region is a small single crystal block in which the 
atomic planes are regular and parallel. The whole crystal consists in 
very large number of such blocks; their atomic planes are almost parallel, 
but the orientations are distributed in a certain range of angles, although 
small, but still larger than the angular region of reflection from a single 
block. Such composite crystals on the proposal of Ewald are called mosaic 
crystals.

For simplicity, we assume that the individual blocks are small 
enough and the absorption in them can be neglected. The intensity of 
the scattering radiation by a single crystal block is described by the 
expression [5, 11]:
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is Laue interference function; Φ0 is the amplitude of the scattered wave 
at unit distance from the scattering point (lattice-point); N1, N2, N3 are 
the numbers of lattice-points in the block in the directions of the basis 
lattice vectors; ξ, η, ζ are the integers coordinates of the diffraction 
vector in reciprocal space, R is the distance from the crystal to the 
observation point.

For calculation the intensity scattered from the whole crystal it is 
necessary to sum the intensities scattered from each of the blocks. Since 
the blocks are disoriented, it is need to sum up exactly the intensities, 
not the amplitudes of the scattered waves.
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The reflection intensity has a sufficiently large value in the small 
range of the incidence angles. The maximum value of the reflected 
intensity corresponds to the incident radiation by the Bragg angle θB. 
Usually, under measuring integrated reflections the crystal is rotated 
with a constant angular velocity ω around an axis parallel to the ref
lecting planes and perpendicular to the direction of incidence [11].

Let I is the total diffracted intensity recorded during crystal rotation 
over the entire reflection region and I0 is the intensity of the incident 
beam, then I/I0 is called the integrated reflection from the crystal 
element. As shown in [11]:

	
22 3 2

2 B
2

B

1 cos 2

sin2 2

N e
F v Q v

mc

  + θλ
ρ = ∆ = ∆ θ  

,	 (3)

where ∆v is the volume of the irradiated crystal element, N is the number 
of atoms per unit volume, F is the structural factor, λ is the radiation 
wavelength, e and m are the electron charge and mass, c is the speed of 
light. The parameter Q characterizes the scattering intensity by a unit 
volume of the crystal. Thus, the measurement of the integrated reflection 
allows determining the structural factor of the crystal, and, consequently, 
its atomic structure.

The scattering patterns from different blocks of the mosaic crystal 
displace relative to each other that lead to some blurring of the resulting 
scattering pattern. In addition, the finite size of the x-ray source also 
leads to a blurring of the measured scattering pattern. Thus, there is an 
additional appropriateness of measuring of the integrated intensity, since 
the redistribution of the scattered energy does not change its total value.

2.2. The Integrated Reflection from Perfect Crystals

Now we consider the scattering of radiation by perfect single crystals. 
In according the kinematical theory for calculating the intensity 
scattered by the whole crystal the intensities (not amplitudes) scattered 
by individual blocks are summed. Therefore, the calculation of the 
intensity is reduced to calculation of the intensity of the radiation 
scattered by one block. The amplitude of the wave scattered by one block 
is small compared with the amplitude of the incident wave, so the 
interaction between this waves can be neglected. However, when the size 
of the crystal is large and it is a single crystal, this statement becomes 
incorrect.

For x-rays, the ratio q of the amplitudes of a wave scattered by a 
single atomic plane to the amplitude of the incident wave is about 10−5; 
so for a large number of atomic planes the amplitude of the scattered 
wave becomes comparable to the amplitude of the incident wave and its 
interaction cannot be neglected.
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Dynamical theory was developed in 
two forms: Darwin theory and Ewald–
Laue theory. Darwin’s dynamical theory 
was constructed by analogy with the 
kinematical theory. Each atom in the 
crystal lattice is characterized by an 
atomic scattering function, and waves 
scattered by atoms are added, taking into 
account the phases and scattering ampli

tudes. Darwin’s theory takes into account the interaction of the crystal 
not only with the incident, but also with the scattered waves, as well as 
absorption. In the Ewald–Laue theory, the propagation of electromagnetic 
waves in a medium with taking into account the continuous distribution 
of electron density was considered.

Both of these approaches are equivalents, in whole, and in many 
cases give the same results. However, the Ewald–Laue theory was deve
loped much more intensively because it allows solving a much wider 
range of problems. Here we present only formulas describing the integ
rated reflection from a perfect single crystal.

We consider a non-absorbing perfect single crystal. Let us note T0 
and S0 the amplitudes of the incident and reflected waves. It was shown 
(see, e.g., [11]) that:

	 0
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where q determines the amplitude of the wave scattered by an atomic 
plane in the direction of the reflected beam, and ε is a small value con
nected with the deviation of the incidence angle of radiation θ from the 
exact Bragg angle.

The corresponding reflection curve is presented in Fig. 1. A charac
teristic property of this curve is the presence of a region of total 
reflection: in the interval −q < ε < q, the ratio S0/T0 = 1.

The integrated reflection will be determined by the area under the 
curve in Fig. 1:
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By the integration for nonpolarized radiation can be obtained [11]:
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This formula in essence is different from formula (3) for the 
integrated intensity of a mosaic crystal. It can be seen from formulas 

Fig. 1. Reflection curve of a perfect single crystal
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that ρkin ∼ ∝ F2 and ρdyn ∝ F. The difference between ρdyn and ρkin can 
reach 30–40 times, and the dynamical integrated intensity is less than 
kinematical despite the presence of a region of total reflection. One of 
the reasons for this is that the width of the reflection curve of perfect 
single crystal is very small (several angular seconds), and for a mosaic 
crystal the width of the reflection curve is much larger.

It should be noted that when radiation is incident on a crystal at the 
Bragg angle, only the upper layers of the crystal take part in the ref
lection. This is because the waves twice reflected from the crystal planes, 
which propagate in the direction of the primary wave, differ from the 
primary wave in phase by π and as a result, the primary wave is quickly 
extinguished. This phenomenon is called the primary extinction. The 
primary extinction can be formally interpreted as an effective increase 
of the absorption coefficient around the reflection region. In this angle 
range, the intensity of the incident beam is attenuated not only by ordi
nary absorption, but also by transfer to the reflected wave.

Formula (6) was obtained for an infinite single crystal. It is necessary 
to consider the interaction of radiation with a single crystal of finite 
size with correct boundary conditions for the practical use of integrated 
intensity.

If the blocks of the mosaic crystal are large enough, then it is 
necessary to take into account the extinction for each of them. The 
formula for a mosaic crystal with taking into account primary extinction 
can be written [1, 2]:

	
th( )pq

Q v
pq

ρ = ∆ ,	 (7)

where p is the number of atomic crystal planes. This formula allows 
determining the size of coherent blocks in a mosaic crystal.

Thus, the use of integrated intensity methods allows determining 
the structural characteristics of ideal mosaic crystals, as well as perfect 
single crystals.

3. Integrated Intensity of Reflection  
for Crystals with Microdefects

Any real single crystal contains microdefects, the statistical characte
ristics of which determine its properties. For describing the radiation 
diffraction on single crystals with microdefects M. A. Krivoglaz created 
the statistical kinematical theory of scattering in the 1950s. This theory 
gives the following formulas for the total integrated intensity (TII) Ri 
[8, 17, 18]:
	 Ri = RiB + RiD,	 (8)

	 RiB = Ripe
−2L,	 (9)
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	 RiD = Rip(1 − e−2L),	 (10)

	 Rip = C2Qt/γ0,	 (11)

	 Q = (π|χHr|)
2/[λsin(2θB)].	 (12)

Here Rip is the integrated scattering intensity in the perfect crystals 
(without microdefects), χHr is the real part of the Fourier component of 
the polarizability of the crystal, t is the crystal thickness, C is the 
polarization factor.

It should be noted that in expressions (9) and (10) for Bragg (RiB) 
and diffuse (RiD) components of TII, only the factor Rip is dependent on 
diffraction conditions. In addition, factor Rip does not depend on the 
defects structure of the crystal. Only the factors that include the 
Krivoglaz factor (static Debye–Waller factor E = e−L) depend on the 
characteristics of the defects structure of crystal lattice. The Krivoglaz 
factor is independent on the diffraction conditions for each reflex.

From formulas (8)–(12), it follows that the integrated intensity in 
crystals with microdefects can be characterized by two integral para
meters. The first parameter is the total brightness of the scattering 
pattern, i.e. the total integrated reflection intensity Ri, equal to the sum 
of the Bragg and diffuse components (see Eq. (9)). For convenience this 
parameter should be normalized to the total brightness of the scattering 
pattern of an perfect crystal (Rip). The second parameter is the specific 
contribution of the diffuse component or the ratio of the diffuse and 
Bragg components (RiD/RiB). From formulas (8)–(12) it follows that in 
the kinematical theory of non-ideal crystals:

	 Ri = Rip or Ri/Rip = 1,	 (13)

	 RiD/RiB = (1 − e−2L)/e−2L ≈ 2L,	 (14)

Thus, for fixed reflex the total integrated intensity does not depend on 
the distortions of the crystal lattice, and the only structurally sensitive 
factor is the second parameter (RiD/RiB), which is not depend on diffrac
tion conditions.

From the expressions (13) and (14) two conservation laws of the 
kinematical theory is followed. The first conservation law is the inde
pendence of the total integrated intensity Ri from the characteristics of 
crystal defects. Therefore, in kinematical theory Ri for a crystal with 
defects remains the same as in a perfect crystal (Rip) and depends only 
on diffraction conditions. However, the normalization of this parameter 
to Rip leads to a loss of dependence on diffraction conditions and makes 
it a universal constant equal to unity in the kinematical theory, i.e. 
completely uninformative. The second law of conservation of the kine
matical theory is the independence of the contribution of the diffuse 
component from the diffraction conditions for each reflex. Thus, in the 
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kinematical case, there is only this structurally sensitive parameter for 
any diffraction conditions. As a result, the use of integrated methods 
for kinematical scattering is practically meaningless.

The Kato’s statistical dynamical theory of diffraction [19, 20] and 
its improved modifications [21–26] were also widely known. However, 
measurements for imperfect crystals showed a discrepancy between 
experimental data and Kato’s theory. For example, in [27] the integrated 
intensity in the Bragg diffraction geometry for silicon crystals with 
defects was measured. It was found that in most cases Kato’s theory 
does not correctly describe obtained experimental data. This is due to 
the fact that Kato’s theory is based on solving the Takagi equations 
[28], which are valid only for smooth displacement fields. For this reason 
Kato’s theory is generally not applicable or not sufficiently correct 
quantitatively for single crystals with microdefects.

In addition, this approximation is closely related with the concept 
of a single optical path in the scattering plane and does not allow to 
correctly describing the processes of multiple diffuse scattering near 
Bragg reflection, which also include waves with diffraction vectors 
beyond the coherent scattering plane. This disadvantage was noted in 
[24], in which calculations based on the Green function method in real 
space are given with taking into account the second derivative with 
respect to the spatial coordinate corresponding to the vertical divergence. 
Kato also noted this problem in Ref. [29], where his previous appro
ximation [19, 20] was reformulated without using the Takagi appro
ximation.

Another problem in mentioned statistical dynamical theories is that 
they are aimed at solving the problem of secondary extinction and are 
based on the imperfect crystal model, which consists of mosaic blocks. 
As a result, the formulas for the integrated diffraction intensity include 
as parameters of imperfection the Krivoglaz factor and correlation 
lengths, which are related, in particular, to the block sizes. However, 
correlation lengths cannot be directly associated with the characteristics 
of microdefects (concentration, radius, etc.) when considering the imper
fect single crystals. Therefore, in this case a completely different prob
lem should be solved and completely different methods.

4. Methods of Total Integrated Intensity of Dynamical  
Diffraction in Single Crystals with Microdefects

In the case of dynamical scattering both integral parameters, defined in 
the previous section, are depended on the characteristics of the defect 
crystal structure. This allows us to determine the parameters of the 
defect crystal structure by measuring the dependences of TIIDD on 
different diffraction conditions and their combined processing using the 
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formulas of Molodkin dynamical theory [12–18]. Methods based on this 
approach are express and have the highest sensitivity compared to other 
diffraction methods. Measurements can be made under all possible 
diffraction conditions (Laue and Bragg geometries, cases of ‘thin’ and 
‘thick’ crystals, spectral, azimuthal, deformation dependencies, etc.). 
Let us consider these cases in more detail.

4.1. The Method of Thickness Dependences of TIIDD

One of the primary methods of TIIDD is the method of the measuring of 
thickness dependences [18, 30–36]. As shown, the diffracted integrated 
intensities are significantly depended on the crystal thickness and the 
radiation energy. Two limiting cases of dynamical diffraction exist. 
They correspond to the so-called approximations of ‘thin’ (µ0t < 1) and 
‘thick’ (µ0t >> 1) crystals [17], where µ0 is the coefficient of linear pho
toelectric absorption and t is the thickness of the crystal. The important 
advantage of this method, as well as others methods, based on the 
measurement of TIIDD, is the possibility of a significant increase of the 
diffuse component compared to the coherent component.

Figure 2 presents the results of an experimental measurement of 
the thickness dependence of the contribution of diffuse scattering and 
violation of the first conservation law. Markers show the experimentally 

Impurities composition and conditions  
of heat treatment of samples of dislocation-free silicon

No.
Orientation of the large  

sample surface
Impurities  
composition

Conditions of heat  
treatment

1 Plane (110) parallel  
to the direction  
of growing ingot 001

O2 — 8.2  ⋅ 1017 cm−3 
Ge — 1020 см−3

Annealing for 2 hours at 
1523 K in Ar atmosphere

2 — O2 — 8.2  ⋅ 1017 cm−3 
Ge — 1019 cm−3

Annealing for 2 hours at 
1523 K in Ar atmosphere

3 — O2 — 8.2  ⋅ 1017 cm−3 
Ge — 1020 cm−3

Annealing for 2 hours at 
1523 K in Ar atmosphere, 
Cu diffusion for 1 hour at 
1173 K in N2 atmosphere

4 — O2 — 8.2  ⋅ 1017 cm−3 
Ge — 1019 cm−3

—

5 — O2 — 8.2  ⋅ 1017 cm−3 
Ge — 1020 cm−3

Cu diffusion for 1 hour at 
1173 K in N2 atmosphere

6 — O2 — 8.2  ⋅ 1017 cm−3 
Ge — 1019 cm−3

—

7 Plane (111) perpendicular 
to the direction of growth 
of the ingot 111

O2 — 8.2  ⋅ 1017 cm−3 Cu diffusion for 3 hours at 
1173 K in N2 atmosphere
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measured thickness dependences of TIIDD, and the solid lines show the 
results of theoretical calculations.

Samples were cut from Si ingot without dislocations, grown by the 
Czochralski method (see Table). TIIDD were determined using a uniaxial 
diffractometer for symmetric (220) Laue reflexes using FeKα-, CuKα- 
and MoKα-radiation. The thickness of the samples was varied by bleeding 
from 1000 to 300 µm. For FeKα- and CuKα-radiations the approximation 
of ‘thick’ crystal was realized and for MoKα-radiation the approximation 
of ‘thin’ crystal was realized.

According to the kinematical theory, the ratio ρ = Ri/Rip should be 
a constant equal to unity in all range of µ0t, regardless of the degree of 
distortion of the crystal lattice.

As can see, the deviations of the real experimental dependencies 
from the kinematical line (ρ = 1) are an order of magnitude greater  
than the experimental error (∼10%) even for weakly disturbed single 
crystals. The deviations sharply increase with increasing degree of dis
tortion of the crystals, demonstrating a high sensitivity of the propo-
sed method.

It should be noted that, in accordance with the developed physical 
concepts [17, 30], the obtained curves deviate from the kinematical line 
in opposite directions in approximations of ‘thin’ and ‘thick’ crystals. A 
change in the heat treatment conditions leads to a change in the defect 
structure of the crystals under study and, accordingly, to a significant 
difference in the thickness dependences of TIIDD among themselves. 
Thus, the use of the thickness dependence method allows us to determine 
the parameters of the defect structure of a single crystals.

Fig. 2. TIIDD normalized to Rip vs. value of µ0t for samples 1–4 (a) and 5–7 (b), 
the heat treatment conditions are listed in Table
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4.2. The Method of Energy-Dispersion Dependences of TIIDD

The method of the energy-dispersion dependences of TIIDD is closely 
related with the method of the thickness dependences of TIIDD. The 
difference of the method of the energy-dispersion dependences is changing 
the effective thickness of the crystal by changing the wavelength.

In the work [37], TIIDD were measured for different wavelengths 
and reflexes from dislocation-free Si single crystals of varying degrees 
of structural perfection. Samples of dislocation-free silicon single  
crystals were cut from Czochralski-grown ingot (p-type conductivity,  
ρ ∼ 10 Ohm/cm, the growth axis was directed along the 〈111〉, oxygen 
and carbon concentrations were 1  ⋅ 1018 cm−3 and 1016 cm−3, respectively). 
The samples were prepared in the form of plates parallel to the (111) 
plane, which made an angle ψ = (2.0 ± 0.1)° with the surface. Disruptions 
of the surface structure because of mechanical processing were removed 
by chemical-mechanical polishing and next chemical etching to a depth 
of ∼10 µm. Samples no. 1 and no. 2 were annealed in air and sample no. 
3 was annealed in a nitrogen atmosphere for 4, 6, and 7 hours at 1000 
°C, 1080 °C, and 1250 °C, respectively. Sample thicknesses were 
controlled with an accuracy of 1 µm and were equal to 490 µm, 488 µm, 
and 487 µm for samples nos. 1, 2 and 3, respectively.

Figure 3 shows the spectral dependences of TIIDD for mentioned 
non-ideal crystals, which are experimental confirmation of the difference 
between dependences of TIIDD in the approximations of ‘thin’ and 
‘thick’ crystals in the case of Bragg diffraction.

As follows from the presented results, in the considered case the 
high sensitivity of the dynamical scattering pattern to the defect struc
ture of single crystals is observed.

4.3. The Method of Azimuthal Dependences of TIIDD

It was considered that the azimuthal dependences (AD) of the normalized 
TIIDD for different types of lattice distortions are symmetric about an 
angle of 90°. For study the mentioned symmetry of AD were measured 
for a crystal with defects (see Refs. [31, 32, 38]). The objects of study 
were the same as described in the previous section. The sample was 
made in the form of a plate parallel to the (111) plane, with a thickness 
of t = 4000 µm. Disruptions of the surface structure because of mecha
nical processing were removed by chemical-mechanical polishing and 
next chemical etching to a depth of ∼10 µm.

It was experimentally established that as a result of the presence of 
large-size defects in this crystal (dislocation loops with a radius of 
15 µm) AD of the normalized TIIDD is asymmetric (see Fig. 4, a, mar
kers). The calculation also gives the asymmetry of AD of the normalized 
TIIDD and practically coincides with the experiment (Fig. 4, a, solid line).
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Fig. 3. TIIDD normalized to Rip vs. radiation 
wavelength for single crystals Si with micro-
defects in the case of Bragg diffraction ge-
ometry. The results of the calculation show 
solid lines, the experiment show markers

Integrated Diffractometry: Achieved Progress and New Performance Capabilities

Analysis of the causes of the asymmetry of AD showed that this 
effect is explained by the behaviour of the diffuse component of TIIDD. 
It has been established that the presence of large-sized defects in a 
single crystal causes the symmetry of non-normalized diffuse component 
of AD (which asymmetric in the case of small defects), while AD of 
coherent component remains asymmetric (as in the case of a perfect 
crystal). It is shown in Figs. 4, b, c.

Thus, by normalizing AD of TIIDD of single crystal with defects on 
similar AD of perfect crystal, we obtain a symmetric dependence in the 
case of small defects and asymmetric in the case of large defects. Thus, 
due to the different character of AD in cases of small and large defects, 

Fig.  4. Experimental (markers) and 
calculated AD of TIIDD at the values 
of the average radius of the disloca-
tion loops R = 15 µm (solid line) and 
R = 0.02 µm (dash line) (a); the calcu-
lated AD of TIIDD for an ideal crystal 
(solid line) as well as the calculated AD 
of diffuse component of TIIDD RiD (b) 
and coherent components of TIIDD RiC 
(dashed and dotted lines) (c)
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and selective sensitivity of AD to large defects, it becomes possible to 
determine their parameters. The parameters of small defects can be 
determined using other diffraction conditions for the same sample.

4.4. The Method of Deformation Dependences (DD) of TIIDD

The methods of TIIDD described in the previous sections have disad
vantages: when using the method of thickness dependences, it is not 
always possible to conserve the integrity of the original sample, and for 
all three methods it is impossible to exclude stochastic crystal defor
mations that influence to the measurement results. Research of the 
effect of macroscopic elastic deformation on the TIIDD not only made it 
possible to control its influence, but also formed the method for diag
nostics of microdefects [18, 31–35, 39–42].

Figure 5 illustrates a significant change of the character of the 
defects effect on the integrated scattering intensity (first parameter) 

Fig. 5. Theoretical and experimental values of DD of TIIDD (a is a ‘thin’ crystal, b 
is a ‘thick’ crystal) and normalized DD of TIIDD (c is a ‘thin’ crystal, d is a ‘thick’ 
crystal) are shown with solid lines and markers, respectively. The dashed lines are 
the calculated DD of the coherent component of TIIDD, the dashed lines are the dif-
fuse component, and the solid thin lines are DD of TIIDD crystal without defects
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depending on the radius r of curvature of the macroscopic elastic bending 
of a silicon crystal, as well as the change of the character of the defects 
effect on these DD depending on other diffraction conditions. Figure 5 
shows mentioned change at the transition from the case of a ‘thin’ crys
tal (a) to the case of a ‘thick’ crystal (b). The total brightness of the 
dynamical scattering pattern, normalized to the brightness of the pattern 
for the perfect crystal, and its DD become sensitive to the characteristics 
of the defects.

In the next papers [43, 44], the use of DD of TIIDD to determine the 
parameters of the defect structure of silicon crystals with thicknesses 
significantly smaller than the absorption length and containing a rela
tively small number of defects was considered. In this case, the diffuse 
component has a small value and, accordingly, small value has the effect 
of its anomalous growth. In the work [45], the diagnostic capabilities of 
the method of DD of TIIDD for single crystals containing a larger num
ber of defects were experimentally considered. In this case, the diffuse 
component of TIIDD is commensurate with its coherent component or 
significantly exceeds it. It was shown that in such cases DD of TIIDD 
are sensitive to the characteristics of microdefects in single crystals.

4.5. The Method of DD of TIIDD at Violation  
of the Friedel Law

This method is based on the influence of the defect structure of the 
crystal on the ratio of TIIDD for reflections (hkl) and : .hkl hklhkl Y I I=  
For example, the change of Y at the K-absorption edge is sensitive to 
large defects [46]. As can be seen from Fig. 6, for a crystal with defects, 
due to the contribution of the diffuse component, the thickness 
dependence of Y is different from the similar dependence for a perfect 
crystal. The characteristics of defects can be determined by the degree 
of this difference. Similarly, it is possible to determine via deviations of 

Fig. 6. The ratio of the change 
of parameter Y of a real Ge 
single crystal (the parameters 
of defects are shown in the fig-
ure) to the change of the para
meter of an ideal perfect crys
tal vs. the thickness of crystal. 
The calculations were perfor
med with the radius of curva-
ture of the elastic bend r = 
= ±2.4 m
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Fig. 7. The methods of separation of coherent (a) and diffuse (b) components of the 
total integrated intensity. Here M is a slit monochromator with three consecutive 
reflections, S is a sample crystal, A is an analyzer crystal, D is a detector

Fig. 8. Thickness dependences of TIIDD (•) and its coherent component (▲), meas-
ured by the slope method. Here solid lines are the result of theoretical calculations 
for the determined defects parameters, dashed line is the calculations for an ideal 
crystal, dash-dotted line is the separated true values of the diffuse component of 
TIIDD, and dotted line is the contribution of the diffuse component in the measured 
coherent component

Fig. 9. Thickness dependences of TIIDD (•) and its duffuse component (▲), meas-
ured by the slope method. Here solid lines are the result of theoretical calculations 
for the determined defects parameters, dashed line is the lost part of the diffuse 
component, dotted line is the calculations for an ideal crystal, and dash-dotted line 
is the separated true values of the diffuse component of TIIDD



ISSN 1608-1021. Usp. Fiz. Met., 2019, Vol. 20, No. 1	 91

Integrated Diffractometry: Achieved Progress and New Performance Capabilities

the parameter Y for a single crystal with defects from the parameter 
Yperf for a perfect crystal and their variations with thickness, both below 
and above the K-absorption edge.

4.6. The Method of Integrated  
Triple-Axis Diffractometry

In addition to measuring the dependences of the TIIDD (the first para
meter) on diffraction conditions, similar dependences of the relative con
tribution of the diffuse component of the TIIDD (the second parameter) 
can be measured [47–49]. The scheme that is used is shown in Fig. 7.

Experimental measurements were carried out on a sample of Si cut 
along (111) surface perpendicular to the growth axis from an ingot 
grown according to Czochralski. A p-type conductivity sample (alloying 
element B, ρ = 10 Ω  ⋅  cm) with an oxygen atom concentration of about 
1.1  ⋅ 1018 cm−3 and carbon atoms 1016 cm−3 was heat treated in air at 
1080 °C for 6 hours.

The experimental results of diagnostics using the method of integral 
triple-axis diffractometry [47–49] are presented in Figs. 8 and 9. The 
method of separation of the true contribution of the diffuse component 
developed in [48] was used.

Thus, the proposed measuring method makes it possible to increase 
the accuracy of determining the second structurally sensitive integrated 
parameter in comparison with the conventional methods. In addition, it 
should be noted that the redistributing of the contributions of the 
coherent and diffuse components to the measured intensity is feasible. 
This effect can be obtained by a choice of the width of the total reflection 
region of the analyzer crystal due to the asymmetry parameter or the 
reflection order. The redistribution can provide an optimization of 
measurements with respect to sensitivity to parameters of structural 
perfection, which affect the coherent and diffuse components of diffrac
tion intensity in different ways.

5. Conclusions

The integrated diffractometric methods have a long and difficult history. 
For a long time the integrated reflectivity was the main measured 
parameter in most experiments for determination of the structural para
meters of crystalline materials. However, since the 1980s the integrated 
methods were practically refused by the scientific community as uninfor
mative and, therefore, useless in practice. However, the measurement 
of the total integrated intensity of dynamical diffraction can be extremely 
useful for determining the parameters of microdefects of several types 
that can simultaneously be in a single crystal. At the same time, the loss 
of informativity is compensated by the combined use of different dif
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fraction conditions and different methods, if they provide experimental 
measurements of both main integrated parameters of the dynamical 
scattering pattern (i.e., measurements of the corresponding parameters 
for both the full scattering pattern and its diffuse component) for the 
same sample. This approach may allow us to solve the problem of multi
parameterical diagnostics of single-crystal systems with microdefects.
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ІнтеГральна дифрактометрія:  
досягнуті успіхи та нові можливості

Статтю присвячено обговоренню динамічної інтегральної дифрактометрії та її 
функціональних можливостей. Показано, що комбіноване використання вимі
рювань інтегральних дифракційних параметрів за різних умов дифракції умож
ливлює визначення параметрыв мікродефектів декількох типів, одночасно при
сутніх у монокристалі. Обговорюються приклади використання вимірювання 
повної інтегральної інтенсивности динамічної дифракції, внеску її дифузійної 
складової та їхніх залежностей від різних умов динамічної дифракції для не
руйнівної експресної діагностики характеристик дефектної структури монокрис
талічних систем.

Ключові слова: динамічна дифракція, дифузне розсіяння, інтегральна дифракто
метрія, мікродефекти.
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Интегральная дифрактометрия:  
достигнутые успехи и новые возможности

Статья посвящена обсуждению динамической интегральной дифрактометрии и 
её функциональных возможностей. Показано, что комбинированное использование 
измерений интегральных дифракционных параметров при различных условиях 
дифракции позволяет определять параметры микродефектов нескольких типов, 
одновременно присутствующих в монокристалле. Обсуждаются примеры исполь
зования измерения полной интегральной интенсивности динамической дифрак
ции, вклада её диффузной составляющей и их зависимостей от различных ус
ловий динамической дифракции для неразрушающей экспрессной диагностики 
характеристик дефектной структуры монокристалличе-ских систем.
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дифрактометрия, микродефекты.


