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RELATIVELY THIN AND SPARSE SUBSETS OF GROUPS
BIITHOCHO TOHKI TA PO3PI/KEHI IIIIMHOXXHWHU I'PYII

Let G be a group with the identity e, Z be a left-invariant ideal in the Boolean algebra P of all subsets of G.
A subset A of G is called Z-thin if gA N A € T for every g € G \ {e}. A subset A of G is called Z-sparse
if, for every infinite subset S of G, there exists a finite subset F' C S such that () geF gA € F. Anideal 7
is said to be thin-complete (sparse-complete) if every Z-thin (Z-sparse) subset of GG belongs to Z. We define
and describe the thin-completion and the sparse-completion of an ideal in Pg.

Ipunycrumo, mo G — rpyna 3 oguHuneo e, Z — iHBapiaHTHHUI 3iBa imean B Oynesiit anre6pi Pg Beix
migmuoxuH rpymn G. Iligmuoxuaa A rpynu G HasuBaeTbCsi Z-TOHKOIO, SIKIO gA N A € T st KOXKHOro
g € G\ {e}. HinmHoxuna A rpynu G Ha3HBA€TbHCS L-PO3PIKCHO, SKINO JUIS KOXKHOI HECKIHYCHHOT
MHOXHHU S Tpynu G icHye ckiHueHHa migMHoxuHa F' C S Taka, mo () gcF gA € F. I'oBopsTh, 110 ineain
7 TOHKO-TIOBHHIT (PO3PiIXKEHO-MOBHHMI), AKIO KoXKHA Z-ToHKaA (Z-po3pimkeHa) MHOKHUHA rpynH G HAJIEKUTH
7. Bu3Ha4eHO Ta OIMCAHO TOHKE Ta PO3pPi/KCHE AOMOBHEHHS ifeany B Pg.

Let G be a group with the identity e, P be the Boolean algebra of all subsets of G. A
family F of subsets of G is called

lefi-invariant if gF" € F for all g € G and F € F;

downward closed if E C F and F € F implies FE € F;

additive if E U F for all subsets E, F' € F;

an ideal if F is downward closed and additive.

The family F¢ of all finite subsets of G is a left-invariant ideal of Pg.

Given a left-invariant ideal Z in P¢, we classify the subsets of G by their size with
respect to Z.

A subset A C @ is said to be

Z-large if there exist F' € Fg and I € Z such that G = FAU I;

Z-small if L\ A is Z-large for every Z-large subset L;

I-thick if LN A # & for every Z-large subset L;

Z-thin if AN gA € T for every g € G\ {e}.

ZI-sparse if each infinite set S C G contains a finite subset I C S with () p gA € T.

For the smallest ideal Zp, = {9}, Zy-large, Zg-small and Zy-thick sets turn into
large, small and thick subsets which have been intensively studied last time (see the
survey [1]). On the other hand, F-thin and Fg-sparse subsets are known as thin and
sparse sets, see [2]. The Z-large and Z-small subsets appeared in [3]. For every left-
invariant ideal Z, the family S(Z) of all Z-small subsets of G is a left-invariant ideal
containing 7.

The paper consists of two sections. In the first section we study the thin-extension
7(Z) and the thin-completion 7*(Z) of the ideal Z in P¢. In the second section we study
the sparse-extension o (Z) and the sparse-completion o*(Z) of Z.

1. Relatively thin subsets of groups.

Proposition 1. For a subset A of a group G and T be a left-invariant ideal in
Pa, the following statements hold:

(1) A is Z-small if and only if G\ F A is Z-large for every F' € Fg;

(2) A is I-thick if and only if for any F € Fg and I € T there exists x € G such
that Fx C A\ I;

(3) A is not Z-small if and only if there exists F' € Fq such that F A is I-thick;
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RELATIVELY THIN AND SPARSE SUBSETS OF GROUPS 217

(4) if A is I-thick, then for every F € F¢ the set {g € A: Fg C A} is T-thick.

Proof. 1. Theorem 2.1 from [3].

2. We suppose that A is Z-thick and take F' € F and I € Z. If Fz ¢ A\ I for
every # € G, then G = F~1(G \ (A\ I)) and thus the set L = G \ (A \ I) is Z-large
and so is the set L\ I. Since AN (L\I) = LN (A\I) = @, the set A is not Z-thick,
which is a contradiction.

If A is not Z-thick, then L N A = & for some Z-large subset L. Find I € 7 and
F € Fg such that G = F(L U ). Then for each z € G the set F~'z meets L U I and
hence cannot liein A\ I C G\ (LUI).

3. By (1), A is not Z-small if and only if there exists F' € F¢ such that G \ F'A is
not Z-large. On the other hand, G\ F'A is not Z-large if and only if for each Z-large set
LC GwegetL ¢ G\ FA, which is equivalent to LN FA # &.

4 Wefix F € Fg,e € Fandput B= {g € A: Fg C A}. Then we take an arbitrary
H € Fg, e € H. Given any I € Z, there exists a € A\ I such that FHa C A\ I. By
the definition of B, Ha C B so Ha C B\ I and B is Z-thick.

Proposition 1 is proved.

Let F be a left-invariant downward closed family of subsets of a group G. A subset
A C G is called F-thin if gAN A € F for every g € G \ {e}. The family of all F-thin
subsets of G is denoted by 7(F). The definition implies that 7(F) is left-invariant,
downward closed and F C 7(F). If F = 7(F), then the family F is called thin-
complete. The intersection 7*(F) of all thin-complete families that contain F is called
the thin-completion of F. The thin-completion 7*(F) contains the subfamilies 7% (F)
defined by transfinite induction:

(F)=F and 7(F)=r7(r<%(F)), where 7<%(F)= ] *(F)

for each ordinal «.

The families 7" (F) for n € w admit a simple characterization:

Proposition 2. Let F C Pg be a left-invariant downward closed family of subsets
of a group G and n € w. A subset A C G belongs to the family " (F) if and only if

ﬂ gé“...gi{‘AE}'
10,...,9n €{0,1}

for any elements go, . ..,gn € G\ {e}.

Proof. For n = 0, the statement follows from the left-invariance of F. Assume that
the proposition is true for some n € w. Then A € 7"+ (F) if and only if AN g, 1A €
€ 7(F) for each g,11 € G, gnt1 # e. By the inductive hypothesis

ANgnAem(F) & (N 9. g (ANgaA) € F
40,..,4n €{0,1}

for all go, ..., g, € G\ {e}, which is equivalent to

i in41
ﬂ 90 - Gni1 A€ F.
i07~~~gin+16{071}

Proposition 2 is proved.
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218 IE. LUTSENKO, I. V. PROTASOV

Remark 1. 1In [4] T. Banakh and N. Lyaskovska (answering a problem posed in a
preliminary version of this paper) proved that a subset A of a group G belongs to the
family 7*(F) if and only if for each sequence (gn)necw € (G \ {€})* there is n € w
such that

ﬂ gé“...gfl"AE.F
i0,0in €{0,1}

Next, we describe the structure of the thin-completion 7*(F).

Proposition 3. If G is a group of cardinality k = |G| and F C Pg is a lefi-
invariant downward closed family of subsets of G, then

a<kt

Proof. Clearly, 7<+"(F) C 7*(F). So, it suffices to show that each set A € 7% (F)
belongs to <" (F).

First we consider the case of infinite cardinal x = |G|. For any A € 7 (F)
and € G\ {e}, we get ANzA € 7<F (F) and hence AN zA € 7% (F) for
some ordinal a, < k™. Let & = sup{a,: xz € G\ {e}} < kT and observe that
ANzAe 7o (F) C 7(F) forall z € G\ {e} and thus A € 7*F1(F) C <" (F).

Now consider the case of finite . In this case 7<%" (F) = 7%(F). By Proposition 2,
the inclusion A € 7%(F) will follow as soon as we check that for any elements
9gos---> 9k € G\{e}

gé‘)...gfjA c F.

Define a sequence of subsets (Cy,)_, letting Cyp = {e, go} and Cp,11 = Cy, - {€, gnt1}
for n < k. Since Cy; \ Co = U;<,,<,, Cn \ Cn—1 and [Cy \ Co| < |G\ Co| = K — 2,
there is a positive number n < k such that C,,_; = C,,. For this number we get

Chp - {evgn} =Ch_1- {eagn} =C, =Ch1.

Now consider the sequence hy, ..., hy, h,+ defined by h; = g; ift <nand h; = g,
if n < i < k. This sequence induces a sequence of sets (D;);<,+ defined inductively
by Do = {e,ho} and D; = D;_1 - {e, h;} for 0 < i < ™. It follows that D; = C; for
i <mand D; = C;_; forn < i < k™. In particular, D,.+ = C,. Since A € et (F),
we get the required inclusion

N odia= Nad= () sa= () dfponzacs

0y rin€{0,1} geCy geD, + i0yeenri,+ €{0,1}

implying A € 77(F) = <" (F).

Proposition 3 is proved.

Remark 2. In general the ordinal x* in Proposition 3 cannot be replaced by a
smaller ordinal: by [4], for a group G containing an element of infinite order, we get
T*(Fa) # 7%(F¢) for each countable ordinal o.

In Boolean groups the situation is totally different. By a Boolean group we understand
a group G such that 2% = e for all z € G. Let [G]=" = {A C G: |A] < n}.

Theorem 1. For a group G, the following statements hold:

(1) G is Boolean if and only if T*(Ip) = 7(Zs) = [G]=Y;
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RELATIVELY THIN AND SPARSE SUBSETS OF GROUPS 219

(2) if G is Boolean, then 7*(Fg) = 7(Fg);

(3) if G is infinite and 7*(Fg) = 7(Fq), then G is Boolean;

(4) if T is a left invariant ideal, G has no elements of order 2 and Ty, T» € 7(I),
then Ty UTy € 7(Z).

Proof. 1. For every group G, 7(Zy) = [G]=!. Let G be a Boolean group, A €
€ P(Q), |A| >1,a,b€ A, a#b, g=ab~!. Then {a,b} C gAN Aso A ¢ 7([G]=h)
and 7*(Zy) = [G]=1.

On the other hand, assume that G has an element a such that a® # e. We put
A = {e,a} and note that [gA N A] < 1 for every g € G, g # e. It follows that
A€ 1([GI=Y) so 7% (Zy) # [G]=E.

2. We take an arbitrary subset A € 72(F¢). By Proposition 2(2),

ANgANn fAN fgA € Fg

for all f,g € G\ {e}. Weput f = g and get ANgA € Fg so A € 7(Fg) and
™(Fg) = 7(Fa)-

3. We suppose the contrary, choose an element g € G such that g? # e and construct
a subset A € 72(Fg) \ 7(Fg). Assume that G is countable, G = {g,,: n < w}, go = e
and put G,, = {g;: @ < n}. We put 2y = e and choose inductively a sequence (x,, )new
of elements of G such that, for every n < w,

(Gn U {97971}){3%-&-1’93%-&-1} N(Gp U {97971}){$079$0a ey Ty §Tp } = D,
We consider the set A = {x,,, gz, : 1 € w} and observe that
gANA={gz,:necw}, g "ANA={z,: ncw}

By the choice of (z,,)new, JANA € 7(Fg), gt ANA € 7(Fg). If f € G\{g,97*, e}
then fA N A is finite. Hence A € 72(Fg). Since gA N A is infinite, A ¢ 7(Fg) so
Aer*(Fa)\1(Fa).

If G is uncountable, we choose a countable subgroup G’ of G containing g and
repeat the construction of A inside G’.

4. Assuming the converse, we put X = 77 U 1. By Proposition 2(2), there exist
g, f € G\ {e} suchthat X NgX N fXNgfX ¢ Z. We observe that

XngXnfXnfeX= |J (TnglnfTnfgT).
i,5,k,1e{1,2}

We choose i,7,k,1 € {1,2} such that T; N gT; N fT, N fgI; ¢ Z. Without loss of
generality, ¢ = 1. Since T} € 7(Z), we get j = k = 2. Since T € 7(Z), we get, g = f.
Since G has no elements of order 2, we have fg # e. Thus, 71 N fgT € T and we get
a contradiction.

Theorem 1 is proved.

Remark 3. Let G be an infinite Boolean group. By Theorem 1(2), 7*(F¢g) =
= 7(Fg). We take any infinite thin subset A and x € G\ {e}. Then the union A Uz A
is not thin because (AU xA) Nz(AUxA) DO zA is infinite. Consequently, the family
7*(F¢) is not additive and 7*(F¢) is not an ideal.

In contrast, for every left-invariant ideal F in a torsion-free group G the family
7<%(F) is a left-invariant ideal for each limit ordinal «, see [4]. In particular, the family
7*(F) is an ideal in Pg.
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220 IE. LUTSENKO, I. V. PROTASOV

Theorem 2. Let G be an infinite group and T be a left-invariant ideal in Pg.
Then 7(Z) C S(Z), where S(Z) is the ideal of all T-small subsets of G.

Proof. We suppose the contrary and fix A € 7(Z) such that A ¢ S(Z). Since A
is not Z-small, by Proposition 1(3), there exists F' € F¢ such that F'A is Z-thick. Let
F={f1,..., fu}. Since G is infinite, G\ F~'F # @. We choose h € G\ F~'F and
put

Aij = AN hfiA, i je{l,... n}.

Taking into account that A € 7(Z) and f;lh fi # e, we conclude that A;; € 7. We
put B ={x € FA: hx € FA}. By Proposition 1(4), B is Z-thick. Given any = € B,
we choose f;, f; and a,b € A such that z = fia, hx = f;b so fia = h™'f;b and
b= f;lhfia. Hence, a € A;j and x € FA;;. It follows that B C J FA;; so
B € 7, which is impossible because B is Z-thick.

Theorem 2 is proved.

Corollary 1. Let G be an infinite group, I be a lefi-invariant ideal in Pg. Then
the ideal S(Z) is thin-complete.

Proof. Applying Theorem 2 to S(Z), we get S(Z) C 7(S(Z)) C S(S(T)). To verify
that S(S(Z)) C S(Z), we show that every S(Z)-large subset L is Z-large. We choose
F € Fg and S € S(Z) such that G = FL U S. By Proposition 1(1), G \ S is Z-large.
Hence, there exist H € Fg and I € Z suchthat G = H(G\S)UI =HFLUI,so L
is Z-large.

Corollary 1 is proved.

For every group G, 7(Zy) coincides with the family [G]<! of all at most one-element
subsets. If G is finite, then S(Zp) = {@}. Thus, Corollary 1 is not true for finite groups.

2. Relatively sparse subsets of groups. Let G be an infinite group and F be a
subfamily in Pg. We say that a subset A C G is F-sparse if, for any infinite subset S
of G, there exists a finite subset F' C .S such that

n
ij=1

ﬂxAEf.

zeF

We denote by o(F) the family of all F-sparse subsets of G. If F is left invariant
and downward closed then so is o(F). Repeating the arguments from [2, p. 494, 495],
the reader can verify that o(F) is a left invariant ideal provided that F is a left invariant
ideal. Alternatively, this statement can be derived from Theorem 3, see Corollary 2.

Now we need some information on the algebraic structure of the Stone—Cech
compactification SG of a discrete group GG. We take SG to be the set of all ultrafilters
on G identifying G with the set of all principal ultrafilters. The topology of can be
described by stating that the sets {A: A C G} form a base for open sets in SG
where A = {p € BG: A € p}. The set G* = BG \ G of all free ultrafilters on G
is closed in SG and the family {A*: A C G} is a base for open sets in G* where
A*={pe G*: Aep}.

Using the universal property of the Stone-Cech compactifications, the multiplication
on G can be extended to the semigroup operation on SG in such a way that all mappings
x — gr,g € Gand x — zp, p € BG from BG to G are continuous. Given any
q,p € BG and A C G, the product gp is defined by the rule:

Acqgpe{rcG:ztAcq}ep.
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RELATIVELY THIN AND SPARSE SUBSETS OF GROUPS 221

For the structure of the compact right-topological semigroup SG and its combinatorial
applications, see [5, 6].
For a family F of subsets of a group G, we put

Fr={qeBG: G\ Aecqforany Ac F}

and note that " is a bijection between the family of all left-invariant ideals of Pg and
the family of all closed left ideals of SG. For more information on this correspondence,
see [2, 7].

Given an ultrafilter p € G*, we say that a subset A of G is (F,p)-sparse if for

any P € p there exists a finite subset F/ C P such that () #7'A € F. We denote by
relF
o(F,p) the family of all (F, p)-sparse subsets of G. Clearly,

o(F)= ) o(F.p).

peG*

Theorem 3. Let F be a left-invariant ideal in Pg, A C G, p € G*. Then
(1) Aeo(F,p)ifandonly if A*NpF" = o;

@) (o(F) = d(GF).

Proof. (1)A¢ o(F,p)=3IPepVFCPFeFg: (ept 'A¢F &

JPep IgeF" VxeP: 27 'Acq &
& geFh: Aepg & A NpFh+ 0.

2)ge (c(F)=VQeqg:G\QeolF)&VQeqVpe G*:G\Q €
co(F,p) V@ c€q YpeG*: (G\Q)'NpF =2 & VQecq: (G\Q)"'N
NG*F =0 &VQ cq: (G\Q)*N(G*FN) =@ & qecd(G*F").

Corollary 2. Let F be a lefi-invariant ideal in Pg. Then

(1) o(F) is a lefi-invariant ideal in Pg;

(2) if F" is a right ideal in G then (o(F))" is a right ideal.

Proof.: We note that a closure of an arbitrary left (right) ideal of G is a left
(right) ideal, see Theorems 2.15 and 2.17 in [5]. Then both statements follow from
Theorem 3(2).

We say that a left-invariant ideal F in Pg is sparse-complete if o(F) = F (or
equivalently, by Theorem 3(2), F" = cl(G*F")) and denote by o*(F) the intersection
of all sparse-complete ideals containing F. Clearly, the sparse-completion o*(F) is the
smallest sparse-complete ideal such that 7 C o*(F).

We define also a sequence (0™(F))ne, of ideals by recursion: o%(F) = F,
o" Y F) = o(c™(F)) forn € w.

Theorem 4. Let G be an infinite group, F be a left invariant ideal in P¢. Then

(1) 0*(F) = Unew 0" (F);

(2) o Fg) # o™(Fg) for every n € w.

Proof. 1. Clearly, | J,,c,, o™ (F) € o*(F). On the other hand,

(g -<(eu)-
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=l <G* ﬂ(a”(]—'))A> Cecl (ﬂ G*(o"(ﬂ%) <

new new

Cel <ﬂ (0”"’1(.7:))/\) Cecl (ﬂ (U’L(.F))A> =

new new

s0 U, e, 0™ (F) is sparse-complete and o™ (F) C (,,c,, 0" (F)-

2. We suppose that G is countable, G = {g,: n € w}, F, = {g;: i < n}. For
n = 0, we take an arbitrary countable thin subset 7" and note that T' € o(F¢) \ Fa-

For n > 0, it suffices to choose an injective sequence (', )ze., in G and a decreasing
sequence (X, )mew Of subsets of G such that

(1)p, FpamXm N FrepX, =@ forallm < k < w;

(2)n gxmXm NaxmXy, =@ forall g € F,, \ {e} and m < w;

(3)n X € 0™(Fg) \ 0" Y (Fg) for each m < w.

Indeed, we put Qp, = U,,,c, TmXm- Let S = {x,;)}: m € w}, F be a finite subset
of S. Then [, 2Q;, contains some subset X,,, and, by (3),,, @, ¢ 0" (Fg). On the
other hand, by (1), (2),, and (3),,, @, € 0" (Fg). Thus, Q,, € 0" (Fg)\ o™ (Fa).

We show only how to construct ()1 and Q.

To satisfy (1)1, (2)1, (3)1, we choose inductively two injective sequences (2, )mew,
(Ym)mew in G (x,, after y,,) such that for every N € w and all m < k < N,

gEFm\{B}I

Fozm{yiim <i < N}NFap{yi: k<i< N} =g,
gTm{yi:m <i < N}Nzp{yi:m<i< N} =0,
Fryym N Fryy = 3.

Then we put X,,, = {y;: m < i < w}, and note that (z,)mew, and (X )mew
satisfy (1)1, (2)1, (3)1

To satisfy (1), (2)2, (3)2, we choose inductively three injective sequences (Zm ) mew,
(Ym)mew, (2m)mew 0 G (Y, after z,,, x,, after y,,) such that for every N € w and all
m<k<N,geF,\{e}:

Frop{yizi: m<i<j< N}NFra{yizj: E<i<j< N} =0,
9xm{yizizm <i<j< N}Nzp{yizj:m<i<j< N}=g,
Frym{zi:m <i < N}N Fpyp{zi: k<i < N} =@,
gymi{zim <i < N}Nyn{zi:m<i< N} =g,

FozmNFrz, = 9.
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RELATIVELY THIN AND SPARSE SUBSETS OF GROUPS 223

Then we put X,,, = {y;z;: m < i < j < w}, and note that (2, )mew and (X )mew
satisfy (1)2, (2)2, (3)2-

If G is uncountable, we fix some countable subgroup of GG and, for each n € w, pick
QCH, Qe (" Y Fu)NPu)\ (6™(Fu)NPu). Clearly, Q € o™ (Fg) \ o™ (Fa).

Theorem 4 is proved.

Theorem 5.  For a lefi-invariant ideal F of subsets of an infinite group G, we
have

(1) 7(F) € o(F);

(2) if G is torsion-fiee, then o(F) C 7*(F);

(3) if G is Abelian and {g € G: g* = e} is finite, then T*(F¢) € o(Fg).

Proof. 1. The inclusion 7(F) C o(F) follows from the definitions.

2. Assume that the group G is torsion-free and let A C G be F-sparse. According to
a characterization of 7*(F) proved in [4] and mentioned in Remark 1, in order to prove
that A € 7*(F) we need to show that for each sequence (g, )new € (G \ {€})* there is
n € w such that

4) N 9...grAeF.
i0,...,in €{0,1}
It follows from the torsion-free property of G that the set

C={gl...gi":necw,ig,... i, €{0,1}}

is infinite. Since A is F-sparse, there is a finite subset ' C C such that (. 24 € F.
For this set F' we can find n € w such that

Fc{gl.. . g ig,... i, €{0,1}}

and conclude that (4) holds.

3. First, we consider the case of countable group GG. Suppose that we have constructed
an infinite subset X of G such that

(5) Va,b,ce X,a#b#c=ab lc¢ X.

We choose a sequence (F},),c., of finite subsets of X such that each finite subset of
X appears in (Fy, )ne, infinitely many times. We enumerate G = {g,: n < w}, go = €,
and put G,, = {g;: ¢ < n}. We put ag = e and choose inductively a sequence (@, )new
in G such that, for all n € w,

6) Gpyi1any1Fri1 N Gn+1(CLQFo U...U anFn) =J.

We claim that the set A = | J,,.,, anF), belongs to 7%(Fg) \ o*(Fa).

Assuming that A € o*(Fg), we can find a finite subset F~! of X! such that
Nyer-1 9A = @. Since the set F' appears in (},),e., infinitely often, the intersection
(Nyer-1 gA contains infinitely many members of the injective sequence (an)new, SO We
get a contradiction.

The inclusion A € 72(F¢) will follow from Proposition 2(2) as soon as we show
that

[ANgAN fANgfA|l < oo

for all g, f € G\ {e}. Suppose the contrary and choose corresponding g, f. By (6), there
exists n € w such that

anFyn N ganFy N fan By N gfan by # 9.
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We pick t € F;, such that
gt € Fn, [fteF,, gfteF,,

sot, tg, tf, tfg € X.Buttf(t—)tg =tfg and, by (5), tfg ¢ X.

If GG is uncountable, we take a countable subgroup G’ and construct A inside G’.

To complete the proof, we construct X as a union X = J,,,, X, of an increasing
sequence of finite subsets {X,,: n € w}, |X,| = n. We put Xy = & and assume that,
for some n € w, we have chosen a subset X, satisfying (5) with X,, instead of X, and
XnNX, I = . Since G has only finite number of elements of order 2, we can choose
an element x,, 1 € G such that

(7 (@1 Xn X, Uz, 1 X0 X)) N X, = 95

) %214-1 # €

9) Tnt1 ¢ X;1§

(10) .Tn+1X;1.CI,‘n+1 =J.

We put X,, 11 = X,, U{z,41}. By (8) and (9), X,,41 N ngl = @. By (7) and (10),
X1 satisfies (5).

Theorem 5 is proved.

Corollary 3. Let G be an infinite Abelian group with finite number of elements
of order 2. Then 7*(Fg) € 7(Fa), 7(0(Fa)) € o(Fq), and o(o(Fg)) € o(Fe). In
particular, the ideal o(Fg) of sparse sets is not thin-complete.

If the group G is torsion-free, then Theorem 5 guarantees that 7 C 7(F) C o(F) C
C 7*(F), which implies the equivalence of the equalities F = 7(F) = 7*(F) (the thin-
completeness) and F = o(F) (the sparse-completeness). Thus we obtain the following
surprising:

Corollary 4. Let F be a left-invariant ideal of subsets of an infinite group G. If G
is torsion-free, then F is thin-complete if and only if F is sparse-complete. Consequently,
T(F) = 0*(F).

We conclude this section discussing the intrinsic structure of o (F).

Remark 4. Let G be an infinite group and F be a left-invariant ideal in P¢. For
a subset A C G, we consider the set

EA{FEfgl nl'A¢]:}7

zEF

partially ordered by the relation C . It follows from the definition that A is F-sparse if
and only if the 3 4 is well-founded in the sense that it contains no infinite chains. In this
case we can assign to each set F' € X 4 the ordinal

rank(F) = sup {rank(E) + 1: F C E € X4, |E\ F| =1},

where sup(@) = 0. So, the maximal elements of ¥4 have rank 0, their immediate
predecessors have rank 1 and so on. Let

rank(X4) = sup {rank(F) +1: F € ¥4} = rank(@) + 1

be the rank of the family X 4.
For an ordinal « let
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0a(F) ={A € o(F):rank($4) < a+ 1} and oca(F) = | os(F).
B<a

Sets from the family o, (F) are called («, F)-sparse. Observe that a set A C G is
(n, F)-sparse for a natural number n € w if and only if for each infinite set S C G there
is a set F' C G of cardinality |F'| < n + 1 such that (., 2A € F. Now we see that
(n, Fa)-sparse sets coincide with (n + 1)-sparse sets studied in [2]. By Lemma 1.2 of
[2] the union AU B of an (n, Fg)-space set A C G and an (m, F¢)-sparse set B C G
is (m + n, Fg)-sparse. Consequently, the family o, (F¢) is an ideal in G.

Question 1. For which ordinals « the family o (F) is an ideal in P ? Is it true
for each limit (additively indecomposablé) ordinal o?

Repeating the argument of Proposition 3, we can prove that

o(F)= | oalP),

a<|G|*

0 0<|g+(F) = o(F) is an ideal in P¢ according to Corollary 2.
We note that a similar construction using the rank function of well-founded trees has
been used in [4] for describing the intrinsic structure of the ideal 7*(G).
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