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SOLVABILITY OF BOUNDARY-VALUE
PROBLEMS FOR NONLINEAR FRACTIONAL

DIFFERENTIAL EQUATIONS"

PO3B’SI3YBAHICTh KPAHOBUX 3AJTAY JIJISI HEJTHIMHUX
APOBOBUX JTUPEPEHIUIAJIBHUX PIBHAHDb

We consider the existence of nontrivial solutions of boundary-value problem for the nonlinear fractional
differential equation

D%u(t) + A[f(t, u(?)) +q(#)] =0, 0<t<1,
u(0) =0, u(l) = Bu(n),

where A > 0 is a parameter, 1 < a < 2,7 € (0,1), 8 € R = (—00,+0c0), Bn*~1 # 1, D* is the
Riemann - Liouville differential operator of order o, and f: (0,1) x R — R is continuous, f may be singular
att = 0 and/or t = 1, q(¢): [0,1] — [0,400) is continuous. We give some sufficient conditions for the
existence of nontrivial solutions to the above boundary-value problems. Our approach is based on Leray—
Schauder nonlinear alternative. Particularly, we do not use the nonnegative assumption and monotonicity of f
which was essential for the technique used in almost all existed literature.

Po3misiHyTO iCHYBaHHS HETPHBiaIbHUX PO3B’SI3KiB KpalloBOi 3a/1aui Ui HENiHIHUX Apo0OBUX AubepeHIiatb-
HUX PiBHSHb

Du(t) + A[f(t,u(t)) + ¢(t)] =0, 0<t<1,
u(0) =0, u(l) = Bu(n),

me A > 0—mapamerp, 1 < a < 2,7 € (0,1), 8 € R = (—o0, +00), An*~1 # 1, D® — nudepenmiansauit
oneparop Pimanna — Jliysiuist nopsiaky o, ¢yskuis f: (0,1) X R — R HenmepepeHa, npudoMy f Moxe OyTH
cunryisiproro npu ¢ = 0 ta (abo) ¢ = 1, ¢(¢): [0,1] — [0, +o00) HenepepsHa. HaBeneno nesiki nocrarni
YMOBH ISl iCHyBaHHSI HETPHUBIAIBHUX PO3B’SI3KiB BKA3aHMUX KPaWOBUX 3a7ad. 3aCTOCOBAHMH y JTOCIIPKEHHSIX
miaxin 6a3yeTbes Ha HeNMiHilHIl anbrepHatuBi Jlepea — [laynepa. 3okpeMa, He BUKOPUCTOBYETBCS IIPUITYILICHHS
PO HEBiJ’€MHICTh, @ TAKOXX MOHOTOHHICTh (QYHKIII f, 10 OyJI0 iICTOTHHM IS METOAUKH, 3aCTOCOBAaHOI Maiixe
y BCIX OIHCAHHX y JITEPaTypi HOCITIIHKESHHIX.

1. Introduction. Fractional calculus has played a significant role in engineering, science,
economy, and other fields. Many papers and books on fractional calculus, fractional
differential equations have appeared recently, (see [1, 6—9]). It should be noted that
most of papers and books on fractional calculus are devoted to the solvability of linear
initial fractional differential equations in terms of special functions [5]. Recently, there are
some papers deal with the existence and multiplicity of solutions (or positive solutions)
of nonlinear initial fractional differential equations by the use of techniques of nonlinear
analysis (fixed-point theorems, Leray — Shauder theory, etc.), see [7 - 10]. However, there
are few papers consider the three-point problem for linear ordinary differential equations
of fractional order, see [11, 12]. No contributions exist, as far as we know, concerning
the existence and multiplicity of positive solutions of the following problem:

Deu(t) + A[f(t,u(t) + q(t)] =0, 0<t<1,
u(0) =0, u(l) = Bu(n),
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where A > 0 is a parameter, 1 < a < 2, € (0,1), € R = (—o0,+00) are real
numbers, 3n # 1, and D§, is the Riemann-Liouville differential operator of order
a, and f: (0,1) x R — R is continuous, f may be singular at ¢ = 0 and/or ¢t = 1,
q(t): [0,1] — [0,400) is continuous. As far as we known, there has no paper which
deal with the boundary-value problem for nonlinear fractional differential equation (1.1).

In [7], the authors consider the existence and multiplicity of positive solutions of
nonlinear fractional differential equation boundary-value problem

Dy u(t) + f(t,u(t)) =0, 0<t<I1,
(12)
u(0) = u(l) =0,

where 1 < o < 2 is a real number. D, is the standard Riemann—Liouville fractional
derivative, and f: [0,1] x [0, 4+00) — [0, 4+00) is continuous.

In [10], the authors consider the existence and multiplicity of positive solutions of
nonlinear fractional differential equation boundary-value problem

Du(t) +a(t)f(u(t) =0, 0<t<]1,

1.3
uw(0) =u/(1) =0, (4

where 1 < o < 2 is a real number. D® is the Riemann — Liouville differential operator of
order o, and f: [0, 1] x [0, +00) — [0, +00) is continuous, a is a positive and continuous
function on [0, 1].

Motivated by the work mentioned above, in this paper, we establish serval sufficient
conditions of the existence of nontrivial solutions for the above nonlinear fractional
differential equations (1.1). Here, by a nontrivial solution of (1.1) we understand a
function u(t) # 0 which satisfies (1.1). Our results are new. Particularly, we do not
use the nonnegative assumption and monotonicity which was essential for the technique
used in almost all existed literature on f.

2. Preliminaries. For completeness, in this section, we will demonstrate and study
the definitions and some fundamental facts of fractional order.

Definition 2.1 ([6], Definition 2.1). For a positive function f(x) given in the interval
[0, 00), the integral

1

Isf($>zrs)/(xf(:))1sdt7 x>0,
0

where s > 0, is called Riemann— Liouville fractional integral of order s.
Definition 2.2 [6, p. 36 -37]. For a positive function f(x) given in the interval
[0, 0), the expression

pio - (i) / =

where n = [s] + 1, [s| denotes the integer part of number s, is called the Riemann—
Liouville fractional derivative of order s.
Remark. If f € C[0,1], then D°I° f(z) = f(x).
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In order to rewrite (1.1), (1.2) as an integral equation, we need to know the action of
the fractional integral operator I° on D®f for a given function f. To this end, we first
note that if A\ > —1, then

F()‘+ 1) t)\—s

Dst)\ —
'A—s+1) ’

Dtk =0, k=1,2,...,n,

where n = [s].

The following two lemmas, found in [7], are crucial in finding an integral representati-
on of the boundary-value problem (1.1).

Lemma 2.1. Let o > 0, u € C[0,1), then the differential equation

D%u(t) =0

has solutions u(t) = c1t® 1+ cot® 2+ ...+ cpt® " ¢; €R, i =0,1,...,n,n =
= [a] + 1.

From the lemma above, we deduce the following statement.

Lemma 2.2. Leta >0, u € C[0,1], then

IDYu(t) = u(t) + 1t + ept® 2 4. et "

Jor some c¢; R, i =0,1,...,n,n=[a] + 1.

The following theorems will play major role in our next analysis.

Lemma 2.3 [3, 4]. Let X be a real Banach space, € be a bounded open subset of
X,0€ 0, T:Q = X is a completely continuous operator. Then, either there exists
x € 0Q, > 1 such that T(x) = px, or there exists a fixed point x* € 0.

3. Main results. In this section, we give our main results. First, we have the
following lemma.

Lemma 3.1. If 1 <a <2 gyt +#1,uecC[0,1]. Let h(t) € C[0,1] be a
given function, then the boundary-value problem

D%u(t)+h(t) =0, 0<t<1,
u(0) =0, u(1) = Bu(n),

3.1)

has a unique solution

t
1

) =~ = oyt + s [ ) as-
0 0

gt 1 /
a 1
— h(s)ds.
1- B 1T(a / (#)
0
Proof- By the Lemma 2.2, we can reduce the equation of problem (3.1) to an
equivalent integral equation

1
— 71_‘7/ )2 h(s)ds + it + ot ™2
0
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for someconstants ¢, co € R. As boundary conditions for problem (3.1), we have co = 0
and

1

1—5nalr /1’ )* (s dsfﬁ/ (n— )"~ h(s)ds

0

C1 =

Therefore, the unique solution of (3.1) is
t 1
(0=~ =9 o+ s @ ds-
u = F(a) S S)as 1 6 P 1_‘ S
0 0

pre—1 1 h
al
1Bt F(a/ hs)ds
0

which completes the proof.
The lemma is proved.
Let E = C[0,1] be endowed with the maximum norm ||u|| = Jnax |u(t)|. Clearly,

it follows that (E, || - ||) is a Banach space.

Theorem 3.1. Suppose that f(t,0) # 0, t € [0,1], Bn*~! # 1, and there exist
nonnegative functions r € C[0,1], p € C(0,1) (p may be singular at t = 0 and/or
t=1) such 1that

(Hy) / (1—8)*"1p(s)ds < 400;
(Ho) ti?e function f satisfies

lf(t,w)| < p®)|ul +r(t), ae (t,u)e€ (0,1) xR,

and there exists to € [0, 1] such that p(ty) # 0.
Then there exists a constant \* > 0, such that for any 0 < A\ < \*, the boundary-
value problem (1.1) has at least one nontrivial solution v* € C[0, 1].

Proof. Let
n
) Jor=s12"pts)as,
0

A= (1+] =5
1 5|/
B = (1 + ‘1—/877(’_1 ) /(17 — s)a_lk(s)ds,

1—pnot
1—pnet
0
where k(s) = r(s) + ¢(s). By Lemma 3.1, problem (1.1) has a solution u = u(t) if and
only if u solves the operator equation

(1) pls)ds +

1— gyt

o—__

(1—8)*"'k(s)ds + ‘

o _

t

T0) =~y [ (=9 [Fsu(s) + a(o)] dst
a—1 A P’
o T /677 F(a()/ (s,u(s)) + q(s)] ds—
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Bta_l A f a—1
R o / (1= 9" [£(s,u(9) + a(s)] ds

in F/. So we only need to seek a fixed point of 7" in F. In view of nonnegativeness and

toe—l ta—l
—(1—s)>L, B
1—ppet 1—ppet
[f(t,u) +q(¢t)] and (Hy), by Ascoli— Arzela Theorem, it is well known that this operator
T: E — FE is a completely continuous operator.

continuity of (t—s)*~ 1, (n—s)*~! and continuity of
1

Since |f(t,0)] < r(¢), ae., t € [0,1], we know / [r(t) + g(t)]dt > 0. From
0

1
p(to) # 0, we easily obtain / p(s)ds > 0. Let
0

m=— Q={ueC0,1]: [u <m}
Suppose u € 982, i > 1 such that Tu = pu. Then

pm = pllul] = |[Tull = max [(Tu)(t)] <

t

A —8)* Y f(s. u(s s)|ds
< max ()O/oe Y £ (s, u(s)) + q(s) | ds+

o<t<1 T

N o=l A
02621 11— Bro—1| T(a)

(1= )" f(s,u(s)) +aq(s)lds+

o _

te 1 i
0oy |1|_ﬁ|577a 1 T(a) / —8)* 7 f(s,u(s)) + q(s)|ds <
0

A

= Ta)

(1= )27 (If (s, u(9)| + g(s))ds+

o _

1 A / a—1
TG T / (1= )" (1G5, uls))| + g(s))ds+
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) / (1 - 5 p(s)ds+

0/ (1= 9 plo)ds|

< Al:(]__’_ 1
~ (o) 1—pnt

+

_B
1— pnet

+m [(1 + ‘1_577(“ ) /1(1 —8)*r(s) + q(s)]ds+
0

n
g [+ q<s>]ds] .
0
r

Choose \* = %. Then when 0 < A < \*, we have

Jull < Sl + 5

pjul = D) U 94"

Consequently,
< 1 + i -1
=9 oma =™

This contradicts g > 1, by Lemma 2.3, T has a fixed point u* € Q, since f(¢,0) Z 0,
then when 0 < A < \*, the boundary-value problem (1.1) has at least one nontrivial
solution u* € C[0, 1].

Theprem 3.1 is proved.

Remark. Though the paper [13] devoted to a much more general case of multipoint
problems for equations of arbitrary order « > 1, our condition on f is obvious more
general than [13]. For example, for Example 4.1, our results are not covered by Salem’s
results.

Theorem 3.2. Suppose that f(t,0) # 0, t € [0,1], Bn*~! # 1, and there exist

nonnegative functions p € C(0,1) (p may be singular at t = 0 and/or t = 1) such that
1

(Hy) / (1—8)"!p(s)ds < 4o00;
(Hs) thoe function f satisfies

|f(tur) = ftug)| < p(t)|lur —ugl, ae (tiu;) € (0,1) xR, i=1,2,

and there exists to € [0, 1] such that p(ty) # 0.

Then there exists a constant X\* > 0, such that for any 0 < A\ < \*, the boundary-
value problem (1.1) has an unique nontrivial solution u* € C|0, 1].

Proof. 1In fact, if us = 0, then we have |f(t,u1)| < p(t)|lusr| + |f(t,0)], ae.
(t,u1) € [0,1] x R. From Theorem 3.1, we know the boundary-value problem (1.1) has
a nontrivial solution u* € C[0, 1].

But in this case, we prefer to concentrate on the uniqueness of nontrivial solutions
for the boundary-value problem (1.1). Let 7" be given in Theorem 3.1, we shall show
that T is a contraction. In fact,
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ITuy — Tuaf| = max [(Tur) () — (Tuz)(1)] <

t

max A —8)* N f(s,ui(s)) — F(s,uq(s))|ds
()O/o: o £, ua(s)) — £(5, ua(s))]ds+

—o<t<1 I

At 1

X Tt iy J (9 (s () = f s uals))|dst

o—__

n

At 1

)% <

+012ta<1 1 — Bno—1 T'(« / ’f s,u1(s)) — f(s,ua(s ’ds
0

t
< max A /(t —8)* p(s)|uy — ug|ds+
0

1

bY; 1 o1

A T e | O bl
0

AlBJt
0221 |1 — Bne—1] I‘

s)|ur — uglds <

O\:

1

A

m/ |U1 — U2|d$+
0

A 1

T Byt T(@) | 79" POl — uslds+

o _

n
AlB| /
— <
T 1| Ta S~ ualds <
0
A\ 1
a 1 -1
F(a / s)ds + |1—5 — 1|/ p(s)ds+
0
|B| / a 1
+ |1_B77a 1| —S ( )dS Hul_uQH

T
If we choose \* = %, where A as in the Theorem 3.1. Then when 0 < A < A\*, we
have
1
ITur = Tusll < 5 llus — uell

So T is indeed a contraction. Finally we use the Banach fixed point theorem to deduce
the existence of an unique solution to the boundary-value problem (1.1).
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Corollary 3.1. Suppose that f(t,0) # 0, and

t
0 < M = limsup max ()] < +00,
|u|—+o00 0<t<1 |U|
M+1-c¢ 1 |BIn>

+ + <1,
al'(a) 1= pne=t L= Bt
where € > 0 such that M +1 —¢< > 0. Then there exists a constant \* > 0, such that for
any 0 < A < \*, the boundary-value problem (1.1) has at least one nontrivial solution
u* € C[0,1].
Proof. Lete > 0 such that M + 1 —e > 0. By (3.2), there exists H > 0 such that

[ftuwl <M +1=e)ul,  |u=H, 0<t<1.
Let N = maxyc(o1],juj<# |f(t,u)|. Then for any (t,u) € [0,1] x R, we have
|[f(t,u)] < (M +1—¢)ul+ N.

From Theorem 3.2 we know the boundary-value problem (1.1) has at least one nontrivial
solution u* € C[0,1].

4. Examples.

Example 4.1. Consider the following third-order three-point problem:

3t?sint

41—t

Dgfy(t) =\ (y + t3> + Acost, 0<t<l,
4.1
1
y(0) = 0,y(1) = 2v2y (2>

3t2sint 1
where f(t,y) = y——— + t3, ¢(t) = cost. We choose p(t) =
fty) =y Vi q(t) p(t)

then

:2”\/5(;_111:,) _ 12+4f6—3\/§1n37

and

r
(3/2) _ VT ~ 0.204568.
2A 24 + 82 — 6v/21n3

Choose \* = VT ~ 0.204568, then by Theorem 3.1, (4.1)
24 +8v2—6v2In3
3T

has a nontrivial solution y* € C][0,1] for any A € (0,
Y 0,1] Y ( 24 4+ 8v/2 — 64/21n3
~ (0,0.204568].
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Example 4.2. Consider the following second-order boundary-value problem:

1 _
~Dyly(t) = ﬁ(y — cosy) + et 0<t<l,
4.2)
y(0) = y(1) = 0.
In this example f(t,y(t)) = #( — cosy), then
p 7y - \/m y y I
|t 1 (8) — £t 2(8)| < p(E) |y — val,
1 . 3T
where p(t) = ——, by Computation, we get \* = =~ 0.204568.
Plt) = = by Comp s 24+ 8v2 — 6v2In3
Choose \* = VT =~ 0.204568, then by Theorem 3.2, (4.2) has a
24 +8v2 — 6v2In3
. . 3T
nontrivial solution y* € C0, 1] forany A € | 0, ~ (0,0.204568].
24 +8v2 —6v2In3
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