A. Ashyralyev (Fatih Univ., Istanbul, Turkey)

ON A PROBLEM OF DETERMINING THE PARAMETER OF A PARABOLIC EQUATION
 ПРО ЗАДАЧУ ВИЗНАЧЕННЯ ПАРАМЕТРА ПАРАБОЛІЧНОГО РІВНЯННЯ

The boundary-value problem of determining the parameter p of a parabolic equation

$$
v^{\prime}(t)+A v(t)=f(t)+p(0 \leq t \leq 1), \quad v(0)=\varphi, \quad v(1)=\psi
$$

in arbitrary Banach space E with the strongly positive operator A is considered. The exact estimates in Hölder norms for the solution of this problem are established. In applications, exact estimates for the solution of the boundary-value problems for parabolic equations are obtained.

Розглянуто крайову задачу визначення параметра p параболічного рівняння

$$
v^{\prime}(t)+A v(t)=f(t)+p(0 \leq t \leq 1), \quad v(0)=\varphi, \quad v(1)=\psi
$$

у довільному банаховому просторі E із сильно додатним оператором A. Встановлено точні за нормами Гельдера оцінки для розв'язку цієї задачі. У застосуваннях одержано точні оцінки для розв’язків крайових задач для параболічних рівнянь.

1. Introduction. Methods of solutions of the nonlocal boundary-value problems for evolution equations with a parameter have been studied extensively by many researchers (see, e.g., [1-21] and the references given therein).

We consider the following local boundary-value problem for the differential equation

$$
\begin{equation*}
v^{\prime}(t)+A v(t)=f(t)+p(0 \leq t \leq 1), \quad v(0)=\varphi, \quad v(1)=\psi \tag{1.1}
\end{equation*}
$$

in an arbitrary Banach space with linear (unbounded) operator A and an unknown parameter p.

In the paper [1] the solvability of the problem (1.1) in the space $C(E)$ of the continuous E-valued functions $\varphi(t)$ defined on $[0,1]$, equipped with the norm

$$
\|\varphi\|_{C(E)}=\max _{0 \leq t \leq 1}\|\varphi(t)\|_{E}
$$

was studied under the necessary and sufficient conditions for the operator A. The solution depends continuously on the initial and boundary data. Namely:

Theorem 1.1. Assume that $-A$ is the generator of the analytic semigroup $\exp \{-t A\}(t \geq 0)$ and all points $2 \pi i k, k \in Z, k \neq 0$ are not belongs to the spectrum $\sigma(A)$. Let $v(0) \in E, v(1) \in D(A)$ and $f(t) \in C^{\beta}(E), 0<\beta \leq 1$. Then for the solution $(v(t), p)$ of problem (1.1) in $C(E) \times E$ the estimates

$$
\begin{gathered}
\|p\|_{E} \leq M\left[\|v(0)\|_{E}+\|v(1)\|_{E}+\|A v(1)\|_{E}+\frac{1}{\beta}\|f\|_{C^{\beta}(E)}\right] \\
\|v\|_{C(E)} \leq M\left[\|v(0)\|_{E}+\|v(1)\|_{E}+\|f\|_{C(E)}\right]
\end{gathered}
$$

hold, where M does not depend on $\beta, v(0), v(1)$ and $f(t)$. Here $C^{\beta}(E)$ is the space obtained by completion of the space of all smooth E-valued functions $\varphi(t)$ on $[0,1]$ in
the norm

$$
\|\varphi\|_{C^{\beta}(E)}=\max _{0 \leq t \leq 1}\|\varphi(t)\|_{E}+\sup _{0 \leq t<t+\tau \leq 1} \frac{\|\varphi(t+\tau)-\varphi(t)\|_{E}}{\tau^{\beta}}
$$

We say $(v(t), p)$ is the solution of the problem (1.1) in $C_{0}^{\beta, \gamma}(E) \times E_{1}$ if the following conditions are satisfied:
i) $v^{\prime}(t), A v(t) \in C_{0}^{\beta, \gamma}(E), p \in E_{1} \subset E$,
ii) $(v(t), p)$ satisfies the equation and boundary conditions (1.1).

Here $C_{0}^{\beta, \gamma}(E),(0 \leq \gamma \leq \beta, 0<\beta<1)$ is the Hölder space with weight obtained by completion of the space of all smooth E-valued functions $\varphi(t)$ on $[0,1]$ in the norm

$$
\|\varphi\|_{C_{0}^{\beta, \gamma}(E)}=\max _{0 \leq t \leq 1}\|\varphi(t)\|_{E}+\sup _{0 \leq t<t+\tau \leq 1} \frac{(t+\tau)^{\gamma}\|\varphi(t+\tau)-\varphi(t)\|_{E}}{\tau^{\beta}} .
$$

In the present paper the exact estimates in Hölder norms for the solution of problem (1.1) are proved. In applications, exact estimates for the solution of the boundary-value problems for parabolic equations are obtained.
2. $C_{0}^{\boldsymbol{\beta}, \gamma}(\boldsymbol{E})$-estimates for the solution of problem (1.1). We study the problem (1.1) in the spaces $C_{0}^{\beta, \gamma}(E)$. To these spaces there correspond the spaces of traces $E_{1}^{\beta, \gamma}$, which consist of the elements $w \in E$ for which the following norm is finite:

$$
\begin{gathered}
|w|_{1}^{\beta, \gamma}=\max _{0 \leq z \leq 1}\|A \exp \{-z A\} w\|_{E}+ \\
+\sup _{0 \leq z<z+\tau \leq 1} \frac{(z+\tau)^{\gamma}\|A(\exp \{-(z+\tau) A\}-\exp \{-z A\}) w\|_{E}}{\tau^{\beta}} .
\end{gathered}
$$

Assume that $-A$ is the generator of the analytic semigroup $\exp \{-t A\}(t \geq 0)$ with exponentially decreasing norm, when $t \rightarrow+\infty$, i.e., the following estimates hold:

$$
\begin{equation*}
\|\exp \{-t A\}\|_{E \rightarrow E} \leq M e^{-\delta t}, t\|A \exp \{-t A\}\|_{E \rightarrow E} \leq M, \quad t>0, \quad M>0, \quad \delta>0 \tag{2.1}
\end{equation*}
$$

From (2.1) it follows that

$$
\begin{equation*}
\|T\|_{E \rightarrow E} \leq M(\delta) \tag{2.2}
\end{equation*}
$$

Here $T=(I-\exp \{-A\})^{-1}$. We have that

$$
\begin{align*}
& v(t)=\exp \{-t A\} v(0)+\int_{0}^{t} \exp \{-(t-s) A\} f(s) d s+(I-\exp \{-t A\}) A^{-1} p \\
& p=T\left\{A v(1)-A \exp \{-A\} v(0)-\int_{0}^{1} A \exp \{-(1-s) A\} f(s) d s\right\} \tag{2.3}
\end{align*}
$$

for the solution of problem (1.1) in the space $C_{0}^{\beta, \gamma}(E)$ (see, for example, [1, 22]).

Theorem 2.1. Let $v(0)-A^{-1} f(0), v(1)-A^{-1} f(1) \in E_{1}^{\beta, \gamma}$ and $f(t) \in C_{0}^{\beta, \gamma}(E)$, $0 \leq \gamma \leq \beta, 0<\beta<1$. Then for the solution $(v(t), p)$ of problem (1.1) in $C_{0}^{\beta, \gamma}(E) \times$ $\times E_{1}^{\beta, \gamma}$ the estimates

$$
\begin{gather*}
\left\|v^{\prime}\right\|_{C_{0}^{\beta, \gamma}(E)}+\|A v-p\|_{C_{0}^{\beta, \gamma}(E)}+\max _{0 \leq t \leq 1}\left|v(t)-A^{-1} f(t)\right|_{1}^{\beta, \gamma} \leq \\
\leq M\left[\left|v(0)-A^{-1} f(0)\right|_{1}^{\beta, \gamma}+\left|v(1)-A^{-1} f(1)\right|_{1}^{\beta, \gamma}+\beta^{-1}(1-\beta)^{-1}\|f\|_{C_{0}^{\beta, \gamma}(E)}\right] \tag{2.4}
\end{gather*}
$$

$$
\begin{gather*}
\left|A^{-1} p\right|_{1}^{\beta, \gamma} \leq M\left[\left|v(0)-A^{-1} f(0)\right|_{1}^{\beta, \gamma}+\right. \\
\left.+\left|v(1)-A^{-1} f(1)\right|_{1}^{\beta, \gamma}+\beta^{-1}(1-\beta)^{-1}\|f\|_{C_{0}^{\beta, \gamma}(E)}\right] \tag{2.5}
\end{gather*}
$$

hold, where M does not depend on $\gamma, \beta, v(0), v(1)$ and $f(t)$.
Proof. Using formula (2.3), we can write

$$
\begin{gather*}
A v(t)-f(t)=\exp \{-t A\}(A v(0)-f(0))+\exp \{-t A\}(f(0)-f(t))+ \\
+\int_{0}^{t} A \exp \{-(t-s) A\}(f(s)-f(t)) d s+(I-\exp \{-t A\}) p= \\
=\exp \{-t A\}(A v(0)-f(0))+(I-\exp \{-t A\}) p+J(t) \tag{2.6}\\
p=T\{A v(1)-f(1)-\exp \{-A\}(A v(0)-f(0))- \\
\left.-\int_{0}^{1} A \exp \{-(1-s) A\}(f(s)-f(1)) d s+\exp \{-A\}(f(1)-f(0))\right\}= \\
\quad=T\{A v(1)-f(1)-\exp \{-A\}(A v(0)-f(0))-J(1)\} \tag{2.7}
\end{gather*}
$$

where

$$
J(t)=\exp \{-t A\}(f(0)-f(t))+\int_{0}^{t} A \exp \{-(t-s) A\}(f(s)-f(t)) d s
$$

By [22], Theorems 5.1 and 5.2 in Chapter 1,

$$
\begin{gather*}
\|J\|_{C_{0}^{\beta, \gamma}(E)} \leq M \beta^{-1}(1-\beta)^{-1}\|f\|_{C_{0}^{\beta, \gamma}(E)} \tag{2.8}\\
\left|A^{-1} J(t)\right|_{1}^{\beta, \gamma} \leq M \beta^{-1}(1-\beta)^{-1}\|f\|_{C_{0}^{\beta, \gamma}(E)} . \tag{2.9}
\end{gather*}
$$

From the definition of the space $E_{1}^{\beta, \gamma}$ and the estimate (2.1) it follows that

$$
\left|\exp \{-t A\}\left(v(0)-A^{-1} f(0)\right)+(I-\exp \{-t A\}) A^{-1} p\right|_{1}^{\beta, \gamma} \leq
$$

$$
\begin{gather*}
\leq\|\exp \{-t A\}\|_{E \rightarrow E}\left|v(0)-A^{-1} f(0)\right|_{1}^{\beta, \gamma}+\|I-\exp \{-t A\}\|_{E \rightarrow E}\left|A^{-1} p\right|_{1}^{\beta, \gamma} \leq \\
\leq M\left[\left|v(0)-A^{-1} f(0)\right|_{1}^{\beta, \gamma}+\left|A^{-1} p\right|_{1}^{\beta, \gamma}\right] \tag{2.10}
\end{gather*}
$$

for all $t, t \in[0,1]$. By (2.2), (2.9), (2.10) and the triangle inequality

$$
\begin{gather*}
\max _{0 \leq t \leq 1}\left|v(t)-A^{-1} f(t)\right|_{1}^{\beta, \gamma} \leq \\
\leq M\left[\left|v(0)-A^{-1} f(0)\right|_{1}^{\beta, \gamma}+\left|A^{-1} p\right|_{1}^{\beta, \gamma}+\beta^{-1}(1-\beta)^{-1}\|f\|_{C_{0}^{\beta, \gamma}(E)}\right], \tag{2.11}\\
\left|A^{-1} p\right|_{1}^{\beta, \gamma} \leq\|T\|_{E \rightarrow E}\left[\left|v(1)-A^{-1} f(1)\right|_{1}^{\beta, \gamma}+\right. \\
\left.+\|\exp \{-A\}\|_{E \rightarrow E}\left|v(0)-A^{-1} f(0)\right|_{1}^{\beta, \gamma}+\left|A^{-1} J(1)\right|_{1}^{\beta, \gamma}\right] \leq \\
\leq M\left[\left|v(1)-A^{-1} f(1)\right|_{1}^{\beta, \gamma}+\left|v(0)-A^{-1} f(0)\right|_{1}^{\beta, \gamma}+\left|A^{-1} J(1)\right|_{1}^{\beta, \gamma}\right] \tag{2.12}
\end{gather*}
$$

Estimate for $\max _{0 \leq t \leq 1}\left|v(t)-A^{-1} f(t)\right|_{1}^{\beta, \gamma}$ and estimate (2.5) are proved. Using formula (2.6) and equation (1.1), we can write

$$
\begin{equation*}
v^{\prime}(t)=\exp \{-t A\}(A v(0)-f(0)-p)+J(t) \tag{2.13}
\end{equation*}
$$

Applying the triangle inequality and the definition of the space $C_{0}^{\beta, \gamma}(E)$, we obtain

$$
\left\|v^{\prime}\right\|_{C_{0}^{\beta, \gamma}(E)} \leq\left|v(0)-A^{-1} f(0)\right|_{1}^{\beta, \gamma}+\left|A^{-1} p\right|_{1}^{\beta, \gamma}+\|J\|_{C_{0}^{\beta, \gamma}(E)} .
$$

From this estimate and (2.12), (2.12) it follows that

$$
\begin{gathered}
\left\|v^{\prime}\right\|_{C_{0}^{\beta, \gamma}(E)} \leq M\left[\left|v(0)-A^{-1} f(0)\right|_{1}^{\beta, \gamma}+\right. \\
\left.+\left|v(1)-A^{-1} f(1)\right|_{1}^{\beta, \gamma}+\beta^{-1}(1-\beta)^{-1}\|f\|_{C_{0}^{\beta, \gamma}(E)}\right] .
\end{gathered}
$$

The estimate for $A v(t)-p$ in the norm $C_{0}^{\beta, \gamma}(E)$ follows from this estimate and the triangle inequality. Theorem 2.1 is proved.

Remark 2.1. The spaces $C_{0}^{\beta, \gamma}(E)$ in which exact estimates has been established, depend on parameters β and γ. However, the constants in these inequalities depend only on β. Hence, we can be choose the parameter γ freely, which increases the number of spaces.

With the help of A we introduce the fractional space $E_{\alpha}(E, A), 0<\alpha<1$, consisting of all $v \in E$ for which the following norms are finite:

$$
\|v\|_{\alpha}=\sup _{\lambda>0}\left\|\lambda^{1-\alpha} A \exp \{-\lambda A\} v\right\|_{E}+\|v\|_{E}
$$

3. $C_{0}^{\boldsymbol{\beta}, \gamma}\left(\boldsymbol{E}_{\alpha-\beta}\right)$-estimates for the solution of problem (1.1). We study the problem (1.1) in the spaces $C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right)$. To these spaces there correspond the spaces of traces
$E_{1+\alpha-\beta}^{\beta, \gamma}$, which consist of the elements $w \in E$ for which the following norm is finite:

$$
\begin{gathered}
|w|_{1+\alpha-\beta}^{\beta, \gamma}=\max _{0 \leq z \leq 1}\|A \exp \{-z A\} w\|_{\alpha-\beta}+ \\
+\sup _{0 \leq z<z+\tau \leq 1} \frac{(z+\tau)^{\gamma}\|A(\exp \{-(z+\tau) A\}-\exp \{-z A\}) w\|_{\alpha-\beta}}{\tau^{\beta}} .
\end{gathered}
$$

Theorem 3.1. Let $v(0)-A^{-1} f(0), v(1)-A^{-1} f(1) \in E_{1+\alpha-\beta}^{\beta, \gamma}$ and $f(t) \in$ $\in C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right), 0 \leq \gamma \leq \beta \leq \alpha, 0<\alpha<1$. Then for the solution $(v(t), p)$ of problem (1.1) in $C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right) \times E_{1+\alpha-\beta}^{\beta, \gamma}$ the estimates

$$
\begin{gather*}
\left\|v^{\prime}\right\|_{C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right)}+\|A v-p\|_{C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right)}+\max _{0 \leq t \leq 1}\left|v(t)-A^{-1} f(t)\right|_{1}^{\beta, \gamma} \leq \\
\leq M\left[\left|v(0)-A^{-1} f(0)\right|_{1+\alpha-\beta}^{\beta, \gamma}+\right. \\
\left.+\left|v(1)-A^{-1} f(1)\right|_{1+\alpha-\beta}^{\beta, \gamma}+\alpha^{-1}(1-\alpha)^{-1}\|f\|_{C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right)}\right] \tag{3.1}\\
\left|A^{-1} p\right|_{1+\alpha-\beta}^{\beta, \gamma} \leq M\left[\left|v(0)-A^{-1} f(0)\right|_{1+\alpha-\beta}^{\beta, \gamma}+\right. \\
\left.+\left|v(1)-A^{-1} f(1)\right|_{1+\alpha-\beta}^{\beta, \gamma}+\alpha^{-1}(1-\alpha)^{-1}\|f\|_{C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right)}\right] \tag{3.2}
\end{gather*}
$$

hold, where M does not depend on $\gamma, \beta, \alpha, v(0), v(1)$ and $f(t)$.
Proof. By [22], Theorem 5.3 in Chapter 1,

$$
\begin{gather*}
\|J\|_{C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right)} \leq M \alpha^{-1}(1-\alpha)^{-1}\|f\|_{C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right)} \tag{3.3}\\
\left|A^{-1} J(t)\right|_{1+\alpha-\beta}^{\beta, \gamma} \leq M \alpha^{-1}(1-\alpha)^{-1}\|f\|_{C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right)} \tag{3.4}
\end{gather*}
$$

From the definition of the space $E_{1+\alpha-\beta}^{\beta, \gamma}$ and the estimate (2.1) it follows that

$$
\begin{align*}
& \mid \exp \{-t A\}\left(v(0)-A^{-1} f(0)\right)+\left.(I-\exp \{-t A\}) A^{-1} p\right|_{1+\alpha-\beta} ^{\beta, \gamma} \leq \\
& \leq\|\exp \{-t A\}\|_{E \rightarrow E}\left|v(0)-A^{-1} f(0)\right|_{1+\alpha-\beta}^{\beta, \gamma}+ \\
&+\|-\exp \{-t A\}\|_{E \rightarrow E}\left|A^{-1} p\right|_{1+\alpha-\beta}^{\beta, \gamma} \leq \\
& \leq M\left[\left|v(0)-A^{-1} f(0)\right|_{1+\alpha-\beta}^{\beta, \gamma}+\left|A^{-1} p\right|_{1+\alpha-\beta}^{\beta, \gamma}\right] \tag{3.5}
\end{align*}
$$

for all $t, t \in[0,1]$. By (2.2), (3.4), (3.5) and the triangle inequality

$$
\max _{0 \leq t \leq 1}\left|v(t)-A^{-1} f(t)\right|_{1+\alpha-\beta}^{\beta, \gamma} \leq
$$

$$
\begin{align*}
& \leq M\left[\left|v(0)-A^{-1} f(0)\right|_{1+\alpha-\beta}^{\beta, \gamma}+\left|A^{-1} p\right|_{1+\alpha-\beta}^{\beta, \gamma}+\alpha^{-1}(1-\alpha)^{-1}\|f\|_{C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right)}\right] \tag{3.6}\\
& \quad\left|A^{-1} p\right|_{1+\alpha-\beta}^{\beta, \gamma} \leq\|T\|_{E \rightarrow E}\left[\left|v(1)-A^{-1} f(1)\right|_{1+\alpha-\beta}^{\beta, \gamma}+\right. \\
& \left.\quad+\|\exp \{-A\}\|_{E \rightarrow E}\left|v(0)-A^{-1} f(0)\right|_{1+\alpha-\beta}^{\beta, \gamma}+\left|A^{-1} J(1)\right|_{1+\alpha-\beta}^{\beta, \gamma}\right] \leq \\
& \leq M\left[\left|v(1)-A^{-1} f(1)\right|_{1+\alpha-\beta}^{\beta, \gamma}+\left|v(0)-A^{-1} f(0)\right|_{1+\alpha-\beta}^{\beta, \gamma}+\left|A^{-1} J(1)\right|_{1+\alpha-\beta}^{\beta, \gamma}\right] \tag{3.7}
\end{align*}
$$

Estimate for $\max _{0 \leq t \leq 1}\left|v(t)-A^{-1} f(t)\right|_{1+\alpha-\beta}^{\beta, \gamma}$ and estimate (3.2) are proved. Applying (2.13), the triangle inequality and the definition of the space $C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right)$, we obtain

$$
\left\|v^{\prime}\right\|_{C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right)} \leq\left|v(0)-A^{-1} f(0)\right|_{1}^{\beta, \gamma}+\left|A^{-1} p\right|_{1}^{\beta, \gamma}+\|J\|_{C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right)} .
$$

From this estimate and (3.7), (3.7) it follows that

$$
\begin{gathered}
\left\|v^{\prime}\right\|_{C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right)} \leq M\left[\left|v(0)-A^{-1} f(0)\right|_{1+\alpha-\beta}^{\beta, \gamma}+\right. \\
\left.+\left|v(1)-A^{-1} f(1)\right|_{1+\alpha-\beta}^{\beta, \gamma}+\alpha^{-1}(1-\alpha)^{-1}\|f\|_{C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right)}\right] .
\end{gathered}
$$

The estimate for $A v(t)-p$ in the norm $C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right)$ follows from this estimate and the triangle inequality.

Theorem 3.1 is proved.
Note that applying the definition of the space $E_{1+\alpha-\beta}^{\beta, \gamma}$, we can obtain

$$
|w|_{1+\alpha-\beta}^{\beta, \gamma} \leq M\|A w\|_{E_{\alpha-\gamma}}, \quad A w \in E_{\alpha-\gamma}
$$

We have not been able to establish the opposite inequality necessary for the equivalence of norms. Nevertheless, we have the following result.

Theorem 3.2. Let $v(0)-A^{-1} f(0), v(1)-A^{-1} f(1) \in E_{\alpha-\gamma}$ and $f(t) \in$ $\in C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right), 0 \leq \gamma \leq \beta \leq \alpha, 0<\alpha<1$. Then for the solution $(v(t), p)$ of problem (1.1) in $C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right) \times E_{\alpha-\gamma}$ the estimates

$$
\begin{gather*}
\left\|v^{\prime}\right\|_{C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right)}+\|A v-p\|_{C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right)}+\max _{0 \leq t \leq 1}\|A v(t)-f(t)\|_{\alpha-\gamma} \leq \\
\leq M\left[\|A v(0)-f(0)\|_{\alpha-\gamma}+\|A v(1)-f(1)\|_{\alpha-\gamma}+\alpha^{-1}(1-\alpha)^{-1}\|f\|_{C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right)}\right], \tag{3.8}
\end{gather*}
$$

hold, where M does not depend on $\gamma, \beta, \alpha, v(0), v(1)$ and $f(t)$.

Remark 3.1. The spaces $C_{0}^{\beta, \gamma}\left(E_{\alpha-\beta}\right)$ in which exact estimates has been established, depend on parameters α, β and γ. However, the constants in these inequalities depend only on α. Hence, we can be choose parameters β, γ freely, which increases the number of spaces. In particular, Theorems 3.1 and 3.2 imply the well-posedness theorem in $C\left(E_{\alpha}\right)$.

Remark 3.2. Theorems 2.1 and 3.1, 3.2 hold for the following boundary-value problems:

$$
\begin{aligned}
& v^{\prime}(t)+A v(t)=f(t)+p(0 \leq t \leq 1), \quad v(0)=\varphi, v(\lambda)=\psi, \quad 0<\lambda \leq 1 \\
& v^{\prime}(t)-A v(t)=f(t)+p(0 \leq t \leq 1), \quad v(1)=\varphi, v(\lambda)=\psi, \quad 0 \leq \lambda<1
\end{aligned}
$$

in an arbitrary Banach space with positive operator A and an unknown parameter p.
Applications. First, the boundary-value problem on the range $\left\{0 \leq t \leq 1, x \in \mathrm{R}^{n}\right\}$ for the $2 m$-order multidimensional parabolic equation is considered:

$$
\begin{align*}
& \frac{\partial v(t, x)}{\partial t}+\sum_{|r|=2 m} a_{r}(x) \frac{\partial^{|r|} v(t, x)}{\partial x_{1}^{r_{1}} \ldots \partial x_{n}^{r_{n}}}+\sigma v(t, x)=f(t, x)+p(x), 0<t<1 \\
& \sum_{|r|=2 m} a_{r}(x) \frac{\partial^{|r|} v(0, x)}{\partial x_{1}^{r_{1}} \ldots \partial x_{n}^{r_{n}}}+\sigma v(0, x)=f(0, x), \quad x \in \mathrm{R}^{n} \tag{4.1}\\
& \sum_{|r|=2 m} a_{r}(x) \frac{\partial^{|r|} v(1, x)}{\partial x_{1}^{r_{1}} \ldots \partial x_{n}^{r_{n}}}+\sigma v(1, x)=f(1, x), \quad x \in \mathrm{R}^{n} \\
& |r|=r_{1}+\ldots+r_{n}
\end{align*}
$$

where $a_{r}(x)$ and $f(t, x)$ are given as sufficiently smooth functions. Here, σ is a sufficiently large positive constant.

It is assumed that the symbol

$$
B^{x}(\xi)=\sum_{|r|=2 m} a_{r}(x)\left(i \xi_{1}\right)^{r_{1}} \ldots\left(i \xi_{n}\right)^{r_{n}}, \quad \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathrm{R}^{n}
$$

of the differential operator of the form

$$
\begin{equation*}
B^{x}=\sum_{|r|=2 m} a_{r}(x) \frac{\partial^{|r|}}{\partial x_{1}^{r_{1}} \ldots \partial x_{n}^{r_{n}}} \tag{4.2}
\end{equation*}
$$

acting on functions defined on the space R^{n}, satisfies the inequalities

$$
0<M_{1}|\xi|^{2 m} \leq(-1)^{m} B^{x}(\xi) \leq M_{2}|\xi|^{2 m}<\infty
$$

for $\xi \neq 0$.
The problem (4.1) has a unique smooth solution. This allows us to reduce the problem (4.1) to the problem (1.1) in a Banach space $E=C^{\mu}\left(R^{n}\right)$ of all continuous bounded functions defined on \mathbb{R}^{n} satisfying a Hölder condition with the indicator $\mu \in(0,1)$ with a strongly positive operator $A=B^{x}+\sigma I$ defined by (4.2) (see [25] and [26]).

Theorem 4.1. For the solution of the boundary problem (4.1) the following estimates are satisfied:

$$
\begin{gathered}
\|v\|_{C_{0}^{1+\beta, \gamma}\left(C^{\mu}\left(R^{n}\right)\right)} \leq \frac{M(\mu)}{\beta(1-\beta)}\|f\|_{C_{0}^{\beta, \gamma}\left(C^{\mu}\left(R^{n}\right)\right)}, \quad 0 \leq \gamma \leq \beta<1, \quad 0<\mu<1 \\
\|v\|_{C_{0}^{1+\beta, \gamma}\left(C^{2 m(\alpha-\beta)}\left(R^{n}\right)\right)} \leq M(\alpha, \beta)\|f\|_{C_{0}^{\beta, \gamma}\left(C^{2 m(\alpha-\beta)}\left(R^{n}\right)\right)} \\
\|p\|_{C^{2 m(\alpha-\gamma)\left(R^{n}\right)}} \leq M(\alpha, \beta, \gamma)\|f\|_{C_{0}^{\beta, \gamma}\left(C^{2 m(\alpha-\beta)}\left(R^{n}\right)\right)} \\
0 \leq \gamma \leq \beta, \quad 0<2 m(\alpha-\beta)<1
\end{gathered}
$$

where $M(\mu), M(\alpha, \beta)$ and $M(\alpha, \beta, \gamma)$ does not depend on $f(t, x)$.
The proof of Theorem 4.1 is based on the abstract Theorems 2.1, 3.2 and on the following theorem on the structure of the fractional spaces $E_{\alpha}\left(A, C^{\mu}\left(R^{n}\right)\right)$.

Theorem 4.2. $\quad E_{\alpha}\left(A, C^{\mu}\left(R^{n}\right)\right)=C^{2 m \alpha+\mu}\left(R^{n}\right)$ for all $0<\alpha<\frac{1}{2 m}, 0<\mu<$ <1 [22].

Second, let Ω be the unit open cube in the n-dimensional Euclidean space \mathbb{R}^{n}, $0<x_{k}<1,1 \leq k \leq n$, with boundary $S, \bar{\Omega}=\Omega \cup S$. In $[0,1] \times \Omega$ we consider the mixed boundary-value problem for the multidimensional parabolic equation

$$
\begin{align*}
& \frac{\partial v(t, x)}{\partial t}-\sum_{r=1}^{n} \alpha_{r}(x) \frac{\partial^{2} v(t, x)}{\partial x_{r}^{2}}+\sigma v(t, x)=f(t, x)+p(x), \\
& x=\left(x_{1}, \ldots, x_{n}\right) \in \Omega, \quad 0<t<1, \\
& -\sum_{r=1}^{n} \alpha_{r}(x) \frac{\partial^{2} v(0, x)}{\partial x_{r}^{2}}+\sigma v(0, x)=f(0, x), \quad x \in \bar{\Omega}, \tag{4.3}\\
& -\sum_{r=1}^{n} \alpha_{r}(x) \frac{\partial^{2} v(1, x)}{\partial x_{r}^{2}}+\sigma v(1, x)=f(1, x), \quad x \in \bar{\Omega}, \\
& v(t, x)=0, \quad x \in S
\end{align*}
$$

where $\alpha_{r}(x)(x \in \Omega)$ and $f(t, x)(t \in(0,1), x \in \Omega)$ are given smooth functions and $\alpha_{r}(x) \geq a>0$. Here, σ is a sufficiently large positive constant.

We introduce the Banach spaces $C_{01}^{\beta}(\bar{\Omega}), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right), 0<x_{k}<1, k=$ $=1, \ldots, n$, of all continuous functions satisfying a Hölder condition with the indicator $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right), \beta_{k} \in(0,1), 1 \leq k \leq n$ and with weight $x_{k}^{\beta_{k}}\left(1-x_{k}-h_{k}\right)^{\beta_{k}}$, $0 \leq x_{k}<x_{k}+h_{k} \leq 1,1 \leq k \leq n$, which equipped with the norm

$$
\begin{aligned}
& \|f\|_{C_{01}^{\beta}(\bar{\Omega})}=\|f\|_{C(\bar{\Omega})}+\sup _{\substack{0 \leq x_{k}<x_{k}+h_{k} \leq 1, 1 \leq k \leq n}} \mid f\left(x_{1}, \ldots, x_{n}\right)- \\
& -f\left(x_{1}+h_{1}, \ldots, x_{n}+h_{n}\right) \mid \prod_{k=1}^{n} h_{k}^{-\beta_{k}} x_{k}^{\beta_{k}}\left(1-x_{k}-h_{k}\right)^{\beta_{k}},
\end{aligned}
$$

where $C(\bar{\Omega})$-is the space of the all continuous functions defined on $\bar{\Omega}$, equipped with the norm

$$
\|f\|_{C(\bar{\Omega})}=\max _{x \in \bar{\Omega}}|f(x)| .
$$

It is known that the differential expression [24]

$$
A v=-\sum_{r=1}^{n} \alpha_{r}(t, x) \frac{\partial^{2} v(t, x)}{\partial x^{2}}+\delta v(t, x)
$$

defines a positive operator A acting on $C_{01}^{\beta}(\bar{\Omega})$ with domain $D(A) \subset C_{01}^{2+\beta}(\bar{\Omega})$ and satisfying the condition $v=0$ on S.

Therefore, we can replace the mixed problem (4.3) by the abstract boundary problem (1.1). Using the results of Theorem 2.1, we can obtain that the following theorem.

Theorem 4.3. For the solution of the mixed boundary-value problem (4.3) the following estimate is valid:

$$
\begin{gathered}
\|v\|_{\left.C_{0}^{1+\beta, \gamma}\left(C_{01}^{\mu}(\bar{\Omega})\right)\right)} \leq \frac{M(\mu)}{\beta(1-\beta)}\|f\|_{\left.C_{0}^{\beta, \gamma}\left(C_{01}^{\mu}(\bar{\Omega})\right)\right)}, \\
0 \leq \gamma \leq \beta<1, \quad \mu=\left\{\mu_{1}, \ldots, \mu_{n}\right\}, \quad 0<\mu_{k}<1, \quad 1 \leq k \leq n,
\end{gathered}
$$

where $M(\mu)$ is independent of β, γ and $f(t, x)$.
Third, we consider the mixed boundary-value problem for parabolic equation

$$
\begin{align*}
& \frac{\partial v(t, x)}{\partial t}-a(x) \frac{\partial^{2} v(t, x)}{\partial x^{2}}+\sigma v(t, x)=f(t, x)+p(x), 0<t<1,0<x<1 \\
& -a(x) \frac{\partial^{2} v(0, x)}{\partial x^{2}}+\sigma v(0, x)=f(0, x), \quad 0 \leq x \leq 1 \tag{4.4}\\
& -a(x) \frac{\partial^{2} v(1, x)}{\partial x^{2}}+\sigma v(1, x)=f(1, x), \quad 0 \leq x \leq 1 \\
& u(t, 0)=u(t, 1), \quad u_{x}(t, 0)=u_{x}(t, 1), \quad 0 \leq t \leq 1
\end{align*}
$$

where $a(t, x)$ and $f(t, x)$ are given sufficiently smooth functions and $a(t, x) \geq a>0$. Here, σ is a sufficiently large positive constant.

We introduce the Banach spaces $C^{\beta}[0,1], 0<\beta<1$ of all continuous functions $\varphi(x)$ satisfying a Hölder condition for which the following norms are finite

$$
\|\varphi\|_{C^{\beta}[0,1]}=\|\varphi\|_{C[0,1]}+\sup _{0 \leq x<x+\tau \leq 1} \frac{|\varphi(x+\tau)-\varphi(x)|}{\tau^{\beta}}
$$

where $C[0,1]$ is the space of the all continuous functions $\varphi(x)$ defined on $[0,1]$ with the usual norm

$$
\|\varphi\|_{C[0,1]}=\max _{0 \leq x \leq 1}|\varphi(x)| .
$$

It is known that the differential expression [23]

$$
A v=-a(x) v^{\prime \prime}(x)+\delta v(x)
$$

define a positive operator A acting in $C^{\beta}[0,1]$ with domain $C^{\beta+2}[0,1]$ and satisfying the conditions $v(0)=v(1), v_{x}(0)=v_{x}(1)$.

Therefore, we can replace the mixed problem (4.4) by the abstract boundary value problem (4.4). Using the results of Theorems 2.1, 3.2, we can obtain that

Theorem 4.4. For the solution of the mixed problem (4.4) the following estimates are valid:

$$
\begin{gathered}
\|v\|_{C_{0}^{1+\beta, \gamma}\left(C^{\mu}[0,1]\right)} \leq \frac{M(\mu)}{\beta(1-\beta)}\|f\|_{C_{0}^{\beta, \gamma}\left(C^{\mu}[0,1]\right)}, \quad 0 \leq \gamma \leq \beta<1, \quad 0<\mu<1 \\
\|v\|_{C_{0}^{1+\beta, \gamma}\left(C^{2(\alpha-\beta)}[0,1]\right)} \leq M(\alpha, \beta)\|f\|_{C_{0}^{\beta, \gamma}\left(C^{2(\alpha-\beta)}[0,1]\right)} \\
\|p\|_{C^{2(\alpha-\gamma)}[0,1]} \leq M(\alpha, \beta, \gamma)\|f\|_{C_{0}^{\beta, \gamma}\left(C^{2(\alpha-\beta)}[0,1]\right)} \\
0 \leq \gamma \leq \beta, \quad 0<2 m(\alpha-\beta)<1
\end{gathered}
$$

where $M(\mu), M(\alpha, \beta)$ and $M(\alpha, \beta, \gamma)$ does not depend on $f(t, x)$.
The proof of Theorem 4.4 is based on the abstract Theorems 2.1, 3.2 and on the following theorem on the structure of the fractional spaces $E_{\alpha}(A, C[0,1])$.

Theorem 4.5 [23]. $E_{\alpha}(A, C[0,1])=C^{2 \alpha}[0,1]$ for all $0<\alpha<\frac{1}{2}$.
Acknowledgement. The author would like to thank Prof. Pavel Sobolevskii (Jerusalem, Israel), for his helpful suggestions to the improvement of this paper.

1. Eidelman $Y u . S$. Boundary value problems for differential equations with parameters: PhD Thesis (in Russian). - Voronezh, 1984.
2. Eidelman $Y u . S$. The boundary value problem for differential equations with a parameter // Differents. Uravneniya. - 1978. - 14. - P. 1335-1337.
3. Eidelman Yu. S. Two-point boundary value problem for differential equations with a parameter // Dop. Akad. Nauk Ukr. RSR. Ser. A. - 1983, № 4. - S. 15-18.
4. Prilepko A. I. Inverse problems of potential theory // Mat. Zametki. - 1973. - 14. - S. 755-767.
5. Iskenderov A. D., Tagiev R. G. The inverse problem of determining the right-hand sides of evolution equations in Banach space // Nauchn. Trudy Azerbaidzhan. Gos. Univ. - 1979. - 1. - S. 51-56.
6. Rundell W. Determination of an unknown nonhomogeneous term in a linear partial differential equation from overspecified boundary data // Applicable Anal. - 1980. - 10. - P. 231-242.
7. Prilepko A. I., Vasin I. A. Some time-dependent inverse problems of hydrodynamics with final observation // Dokl. Akad. Nauk SSSR. - 1990. - 314. - S. 1075-1078.
8. Prilepko A. I., Kostin A. B. On certain inverse problems for parabolic equations with final and integral observation // Mat. Sb. - 1992. - 183, № 4. - 49-68.
9. Prilepko A. I. and Tikhonov I. V. Uniqueness of the solution of an inverse problem for an evolution equation and applications to the transfer equation // Mat. Zametki. - 1992. - 51, № 2. - S. 77-87.
10. D. G. Orlovski On a problem of determining the parameter of an evolution equation // Differents. Uravneniya. - 1990. - 26. - S. 1614-1621.
11. Choulli M. and Yamamoto M. Generic well-posedness of an inverse parabolic problem- the Hölder-space approach // Inverse Problems. - 1996. - 12. - P. 195-205.
12. Choulli M. and Yamamoto M. Generic well-posedness of a linear inverse parabolic problem with diffusion parameters // J. Inv. Ill-Posed Problems. - 1999. - 7, № 3. - P. 241-254.
13. Eidelman Yu. S. Conditions for the solvability of inverse problems for evolution equations // Dokl. Akad. Nauk Ukr. SSR Ser. A. - 1990. - № 7. - S. 28-31.
14. Clement Ph., Guerre-Delabrire S. On the regularity of abstract Cauchy problems and boundary value problems // Atti Accad. Naz. Lincei. Cl. sci. Fis., mate. natur. Rend. - 1998. - Sez. 9. - 9, № 4. P. 245-266.
15. Agarwal R., Bohner M., Shakhmurov V. B. Maximal regular boundary value problems in Banach-valued weighted spaces // Boundary-Value Problems. - 2005. - 1. - P. 9-42.
16. Gorbachuk V. I., Gorbachuk M. L. Boundary value problems for differential-operator equations (in Russian). - Kiev: Naukova Dumka, 1984.
17. Lunardi A. Analytic semigroups and optimal regularity in parabolic problems // Oper. Theory: Adv. and Appl. - Basel etc.: Birkhäuser, 1995.
18. Ashyralyev A. Well-posedness of the boundary value problem for parabolic equations in difference analogues of spaces of smooth functions // Math. Probl. Eng. - 16 p., 2007.
19. Ashyralyev A. O., Sobolevskii P. E. The linear operator interpolation theory and the stability of differenceschemes // Dokl. Akad. Nauk SSSR. - 1984. - 275, № 6. - S. 1289-1291.
20. Ashyralyev A., Karatay I., Sobolevskii P. E. Well-posedness of the nonlocal boundary value problem for parabolic difference equations // Discrete Dynam. Nature and Soc. - 2004. - 2004, № 2. - P. 273-286.
21. Ashyralyev A., Hanalyev A., Sobolevskii P. E. Coercive solvability of nonlocal boundary value problem for parabolic equations // Abstract and Applied Analysis. - 2001. - 6, № 1. - P. 53-61.
22. Ashyralyev A., Sobolevskii P. E. Well-posedness of parabolic difference equations // Oper. Theory: Adv. and Appl. - Basel etc.: Birkhäuser, 1994.
23. Ashyralyev A. Fractional spaces generated by the positivite differential and difference operator in a Banach space // Proc. Conf. "Math. Methods and Engineering", Kenan Taş et al. - Netherlands: Springer, 2007. - P. 13-22.
24. Sobolevskii P. E. The coercive solvability of difference equations // Dokl. Acad. Nauk SSSR. - 1971. 201, № 5. - S. 1063-1066.
25. Smirnitskii Yu. A., Sobolevskii P. E. Positivity of multidimensional difference operators in the C-norm // Uspechi. Mat. Nauk. - 1981. - 36, № 4. - S. 202-203.
26. Smirnitskii Yu. A. Fractional powers of elliptic difference operators: PhD Thesis (in Russian). - Voronezh, 1983).
