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ПРО ДЕЯКI ПIДМНОГОВИДИ
(k, µ)-КОНТАКТНИХ МНОГОВИДIВ

The object of the present paper is to study invariant submanifolds of a (k, µ)-contact manifold and to find
the necessary and sufficient conditions for an invariant submanifold of a (k, µ)-contact manifold to be totally
geodesic.

Метою статтi є вивчення iнварiантних пiдмноговидiв (k, µ)-контактного многовиду та встановлення
необхiдних i достатнiх умов для того, щоб iнварiантний пiдмноговид (k, µ)-контактного многовиду був
цiлком геодезичним.

1. Introduction. It is well known [1, 2] that the tangent sphere bundle of a flat Rie-
mannian manifold admits a contact metric structure satisfying R(X,Y )ξ = 0, where R
is the curvature tensor. On the other hand, on a manifold M equipped with a Sasakian
structure (φ, ξ, η, g), one has

R(X,Y )ξ = η(Y )X − η(X)Y, X, Y ∈ Γ(TM). (1)

As a generalization of both R(X,Y )ξ = 0 and the Sasakian case (1), Blair, Koufogior-
gos and Papantoniou [3] introduced the case of contact metric manifolds with contact
metric structure (φ, ξ, η, g) which satisfy

R(X,Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ) (2)

for all X, Y ∈ Γ(TM), where k and µ are real constants and 2h is the Lie derivative
of φ in the direction ξ. A contact metric manifold belonging to this class is called a
(k, µ)-contact manifold. In fact, there are many motivations for studying (k, µ)-contact
manifolds: the first is that, in the non-Sasakian case (that is, for k 6= 1) the condition (2)
determines the curvature completely; moreover, while the values of k and µ change,
the form of (2) is invariant under D-homothetic deformations [3]; finally there is a
complete classification of these manifolds, given in [4] by Boeckx, who proved also that
any non-Sasakian (k, µ)-contact manifold is locally homogeneous and strongly locally
φ-symmetric [5, 6]. There are also non-trivial examples of (k, µ)-contact manifolds,
the most important being the unit tangent sphere bundle of a Riemannian manifold of
constant sectional curvature with the usual contact metric structure.

An odd dimensional invariant submanifold of a (k, µ)-contact manifold is a subman-
ifold for which the structure tensor field φ maps tangent vectors into tangent vectors.
Such a submanifold inherits a contact metric stucture from the ambient space and it is
in fact a (k, µ)-contact manifold [16].
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In [11] Kon proved that an invariant submanifold of a Sasakian manifold is to-
tally geodesic, provided the second fundamental form of the immersion is covariantly
constant. Generalising this result of Kon the authors [16] proved that if the second fun-
damental form of an invariant submanifold in a (k, µ)-contact manifold is covariantly
constant then either k = 0 or the submanifold is totally geodesic.

Motivated by these works we have studied the possible necessary and sufficient con-
ditions of an invariant submanifold of a (k, µ)-contact manifold to be totally geodesic.
In this paper we have generalized the results of [16]. In the present paper we have
proved that the recurrency, 2-recurrency and generalised 2-recurrency of the second
fundamental form of an invariant submanifold of a (k, µ)-contact manifold are equiva-
lent. And any one of these three conditions can be taken as a necessary and sufficient
condition of the submanifold to be totally geodesic. Since N(k)-contact metric mani-
fold is a special case of (k, µ)-contact manifold, therefore the above results also hold
in any N(k)-contact metric manifold. Finally we have studied the semiparallelity of an
invariant submanifold of a (k, µ)-contact manifold.

2. Preliminaries. An n-dimensional manifold Mn(n is odd) is said to admit an
almost contact structure [1, 15, 18] if it admits a tensor field φ of type (1, 1), a vector
field ξ and a 1-form η satisfying

φ2X = −X + η(X)ξ, η(ξ) = 1, (3)

φξ = 0, η(φX) = 0. (4)

An almost contact metric structure is said to be normal if the induced almost complex
structure J on the product manifold Mn × R defined by

J

(
X, f

d

dt

)
=

(
φX − fξ, η(X)

d

dt

)
is integrable, where X is tangent to M, t is the coordinate of R and f is a smooth
function on Mn × R. Let g be the compatible Riemannian metric with almost contact
structure (φ, ξ, η), that is,

g(φX, φY ) = g(X,Y )− η(X)η(Y ).

Then Mn becomes an almost contact metric manifold equipped with an almost contact
metric structure (φ, ξ, η, g). From (3) it can be easily seen that

g(X,φY ) = −g(φX, Y ), g(X, ξ) = η(X),

for any vector fields X, Y on the manifold. An almost contact metric structure becomes
a contact metric structure if g(X,φY ) = dη(X,Y ), for all vector fields X, Y.

Let f : (M, g) −→ (M̄, ḡ) be an isometric immersion of an n-dimensional Rieman-
nian manifold (M, g) into (n + d)-dimensional Riemannian manifold (M̄, ḡ), n ≥ 2,

d ≥ 1. We denote by ∇ and ∇ the Levi-Civita connections of M and M̄ respectively,
and by T⊥M its normal bundle. Then for vector fields X, Y ∈ TM, the second fun-
damental form σ is given by the formula σ(X,Y ) = ∇XY − ∇XY. Furthermore, for
N ∈ T⊥(M), AN : TM −→ TM will denote the Weingarten operator in the direction
of N, ANX = ∇⊥

XN−∇XN, where∇⊥ denotes the normal connection of M. The sec-
ond fundamental form σ and AN are related by ḡ(σ(X,Y ), N) = g(ANX,Y ), where
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g is the induced metric of ḡ for any vector fields X,Y tangent to M. The covariant

derivative ∇σ and second covariant derivative ∇2
σ of σ are defined by(

∇Xσ
)
(Y, Z) = ∇⊥

X(σ(Y,Z))− σ(∇XY,Z)− σ(Y,∇XZ), (5)

(∇2
σ)(Z,W ;X,Y ) = (∇X∇Y σ)(Z,W ) =

= ∇⊥
X((∇Y σ)(Z,W ))− (∇Y σ)(∇XZ,W ) =

−(∇Xσ)(Z,∇YW )− (∇∇XY σ)(Z,W ), (6)

respectively, where ∇σ is a normal bundle valued tensor of type (0, 3) and ∇ is called
the van der Waerden – Bortolotti connection of M.

The basic equation of Gauss is given by [7]

R̄(X,Y, Z,W ) =

= R(X,Y, Z,W )− g(σ(X,W ), σ(Y,Z)) + g(σ(X,Z), σ(Y,W )).

However, for a (k, µ)-contact metric manifold Mn of dimension n, we have [2]

(∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX),

where h =
1

2
£ξφ. From the above equation we also have

∇Xξ = −φX − φh(X).

Now from the Gauss formula we have

∇Xξ = ∇Xξ + σ(X, ξ).

Since the submanifold M is invariant, we have from the above two equations,

∇Xξ = −φX − φh(X) and σ(X, ξ) = 0. (7)

3. Immersions of recurrent type. We denote by ∇pT the covariant differential of
the pth order, p ≥ 1, of a (0, k)-tensor field T, k ≥ 1, defined on a Riemannian manifold
(M, g) with the Levi-Civita connection ∇. According to [14], the tensor T is said to be
recurrent and 2-recurrent, if the following conditions hold on M

(∇T )(X1, . . . , Xk;X)T (Y1, . . . , Yk) = (∇T )(Y1, . . . , Yk;X)T (X1, . . . , Xk), (8)

(∇2T )(X1, . . . , Xk;X,Y )T (Y1, . . . , Yk) = (∇2T )(Y1, . . . , Yk;X,Y )T (X1, . . . , Xk),
(9)

respectively, where X, Y, X1, Y1, . . . , Xk, Yk ∈ TM. From (8) it follows that at a point
x ∈ M if the tensor T is non-zero, then there exists a unique 1-form θ, respectively, a
(0, 2)-tensor ψ, defined on a neighborhood U of x, such that

∇T = T ⊗ θ, θ = d(log ‖T‖), (10)

respectively

∇2T = T ⊗ ψ,

holds on U, where ‖T‖ denotes the norm of T.

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 11



1558 AVIK DE

The tensor T is said to be generalized 2-recurrent if

(∇2T )(X1, . . . , Xk;X,Y )− (∇T ⊗ θ)(X1, . . . , Xk;X,Y )T (Y1, . . . , Yk) =

= (∇2T )(Y1, . . . , Yk;X,Y )− (∇T ⊗ θ)(Y1, . . . , Yk;X,Y )T (X1, . . . , Xk)

holds on M, where θ is a 1-form on M. From this it follows that at a point x ∈ M

if the tensor T is non-zero then there exists a unique (0, 2)-tensor ψ, defined on a
neighborhood U of x, such that

∇2T = ∇T ⊗ θ + T ⊗ ψ,

holds on U.
The notion of generalized 2-recurrent tensors in Riemannian spaces is introduced by

Ray [13].
J. Deprez defined the immersion to be semiparallel if

R̄(X,Y ).σ = (∇X∇Y −∇Y∇X −∇[X,Y ])σ = 0,

holds for all vector fields X, Y tangent to M. J. Deprez mainly paid attention to the
case of semiparallel immersions in real space forms [8, 9]. Later, Lumiste showed that
a semiparallel submanifold is the second order envelope of the family of parallel sub-
manifolds [12]. In [10] H. Endo studied semiparallelity condition for a contact metric
manifold. He showed that a semiparallel contact metric manifold is totally geodesic
under certain conditions.

4. Recurrent submanifolds of (k, µ)-contact manifolds. To prove the main theo-
rem we first state two lemmas.

Lemma 1 [19]. Let M be a submanifold of a contact metric manifold M. If ξ is
orthogonal to M, then M is anti-invariant.

Lemma 2 [17]. We know that if (M,φ, ξ, η, g) be a contact Riemannian manifold
and ξ belong to the (k, µ)-nullity distribution, then k ≤ 1. If k < 1, then (M,φ, ξ, η, g)

admits three mutually orthogonal and integrable distributions D(0), D(λ), D(−λ),

defined by the eigenspaces of h, where λ =
√

1− k.
Now, if X ∈ D(λ), then hX = λX and if X ∈ D(−λ), then hX = −λX.
Theorem 1. Let M be an invariant submanifold of a (k, µ)-contact manifold, with

k 6= 0. Then the following conditions are equivalent:
(i) M is totally geodesic;
(ii) the second fundamental form σ is recurrent;
(iii) the second fundamental form σ is 2-recurrent;
(iv) the second fundamental form σ is generalized 2-recurrent.
Proof. Suppose M is totally geodesic, then (ii), (iii) and (iv) are trivially true.
Now suppose σ is recurrent, then from (10), we get

(∇̄Xσ)(Y,Z) = θ(X)σ(Y,Z),

where θ is a 1-form on M. Then in view of (5), we obtain

∇⊥
X(σ(Y,Z))− σ(∇XY,Z)− σ(Y,∇XZ) = θ(X)σ(Y,Z). (11)

By Lemma 1, ξ ∈ TM. So, taking Z = ξ in (11), we have
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∇⊥
X(σ(Y, ξ))− σ(∇XY, ξ)− σ(Y,∇Xξ) = θ(X)σ(Y, ξ).

Then using (7), we obtain

σ(Y,∇Xξ) = 0.

Using (7) we get

σ(Y,X)− σ(Y, hX) = 0.

Therefore, Lemma 2 yields (1 ± λ)σ(Y,X) = 0, which implies σ(Y,X) = 0,

provided λ 6= ±1, or k 6= 0.

Thus M is totally geodesic, provided k 6= 0.

Proceeding in a similar manner we can prove that if σ is 2-recurrent or generalized
2-recurrent, then also M is totally geodesic.

Theorem 1 is proved.
Theorem 2. Let M be an invariant submanifold of a (k, µ)-contact manifold M̄.

Then M is totally geodesic if and only if M is semiparallel, provided k 6= ±µ
√

1− k.
Proof. We have

(R̄(X,Y ).σ)(V,W ) =

= R⊥(X,Y )(σ(V,W ))− σ(R(X,Y )V,W )− σ(V,R(X,Y )W ).

Suppose M is semiparallel. Then R̄(X,Y ).σ = 0, that is, R̄(X, ξ).σ = 0. Therefore,
we have

R⊥(X, ξ)(σ(V,W )) = σ(R(X, ξ)V,W ) + σ(V,R(X, ξ)W ).

Putting V = ξ, and using (7) we obtain

σ(R(X, ξ)ξ,W ) = 0. (12)

Using (2) in (12) we obtain

(k ± µ
√

1− k)σ(X,W ) = 0.

Therefore, σ(X,W ) = 0, provided k 6= ±µ
√

1− k. Hence M is totally geodesic. The
converse statement is trivial. This completes the proof of the theorem.

The corollary follows immediately:
Corollary. Let M be an invariant submanifold of a (k, µ)-contact manifold M̄.

Then the following conditions are equivalent:
(i) M is totally geodesic;
(ii) R̄(X, ξ).σ = 0;

(iii) R̄(X,Y ).σ = 0, where X and Y are arbitrary vector fields on M.
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