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QUANTITATIVE CONVERGENCE THEOREMS FOR A CLASS
OF BERNSTEIN -DURRMEYER OPERATORS
PRESERVING LINEAR FUNCTIONS

TEOPEMMU ITPO KIUVIBKICHY 3BIKHICTH JJIS1 OJTHOI'O
KJIACY OIEPATOPIB BEPHIITEIHA - TYPPMEMEPA,
SIKI 3BEPITAIOTD JITHIVMHI ®YHKIIIT

We supplement recent results on a class of Bernstein — Durrmeyer operators preserving linear functions. This
is done by discussing two limiting cases and proving quantitative Voronovskaya-type assertions involving
the first and second order moduli of smoothness. The results generalize and improve earlier statements for
Bernstein and genuine Bernstein — Durrmeyer operators.

OTpuMaHi HEHIOJABHO Pe3yJbTaTH IIOAO OZHOTO Kiacy omeparopiB bepHureitna— lyppmeiiepa, siki 30epi-
TaroTh JiHIiHI (QyHKI], JOMOBHEHO IUISIXOM BUBYCHHS JBOX I'PaHUYHHMX BHUIQJIKIB Ta JOBEACHHS KiIbKICHHX
TBEpKEHb THILy BOpOHOBCHKOT, 110 MICTATH MOYI [NIAKOCTI IIEPIIOTO Ta JPYroro nopsiakis. Pesynsraru y3a-
TaJIbHIOIOTh Ta MOKPAIYIOTh HOMEPEeHI TBEpKEHHS JUIs oneparopi bepHiTeiiHa Ta cripaBkHIX omneparopis
Bepuurreiina — lyppmeiiepa.

1. Introduction. In the present paper we continue our research on a class of one pa-
rameter operators U/, of Bernstein — Durrmeyer type which preserve linear functions and
constitute a link between the so-called ”genuine Bernstein—Durrmeyer operators”U,,
and the classical Bernstein operators B,,. A predecessor of this paper (see [1]) will ap-
pear soon in the Czechoslovak Mathematical Journal. Investigation on the operators in
question started in a 2007 note by the second author (see [2]). In both articles more
pertinent references can be found. We recall some basic facts.

Denote by L]0, 1] the space of bounded Lebesgue integrable functions on [0, 1] and
by II,, the space of polynomials of degree at most n € Ny. The following definition
was first given in [2].

Definition 1.1. Let p > 0and n € N, n > 1. Define the operator U : Lg[0,1] —
— I, for f € Lg[0,1] and z € [0,1] by

UL(f,) =Y F7(f) pri() =
k=0

[y

= 3 /f(t)/ifl,k(t)dt Pnk(®) + fO)(L — )" 4 f(1)z".
k=1 \}

The fundamental functions p,, i, are defined by

Pnk(T) = (Z)xk(l—x)"_k, 0<k<n, k,neN, ze€]01].

Moreover, for 1 <k <n-—1,
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Iup k(t) _ tk:pfl(]_ _ t)(nfk)pfl
" B(kp, (n = k)p)

and

1
/tl Ya—ty—tat, =z, y>0,
0

is Euler’s Beta function. For p = 1 we obtain

n—1 1
Un(fe) = (=13 | [ £OPn-asr(dt | pste)+
k=1

+(1 - x)nf(o) + xnf(]-)v f € CB[Ov 1}7

while, for p — oo, for each f € C[0,1], the sequence UF(f,x) uniformly converges to
the Bernstein polynomial

Zf( )pnk z).

For several further properties of the Uf the reader is referred to our recent article
[1] from which we will also use some results in the present note.

Here we supplement the results from [1]. In particular, we discuss the case p — 0,
consider iterates of U£ and prove two quantitative Voronovskaya-type assertions, thus
generalizing and improving corresponding earlier results for U,, and B,,. Details will be
given below.

2. Previous results on moments. In what follows we write e;(t) = 7, t € [0, 1],
for j > 0. Two basic properties of the functionals £ i, are the following:

k
FP . (e0)=1,  FP (e1)=—, 0<k<n.
; ; n
This implies
Uy (eo) = eo, Up(e1) = ex,
i.e., the operators Uf preserve linear function. Clearly this fact has an impact on the
moments and the Voronovskaya-type theorem. In the following we use the definition
U(t):=t(1—1t),tel01].
In [1] we proved the following formulae for the moments of U£.
Theorem 2.1. For x,y € [0,1], we have

Uﬁ(eoal’) = 1) U£<€1 _y€0733) =T =Y,

and, forr > 1,

/

(Us(er = yeo) ) +

x

p¥(z)

Up _ r4+1 _
h((er —yeo) ™, @) T

1—2y)r + np(x
+( y) p(

y)
UP((e1 — yeo)
e P((er —yeo)", x)+

r¥(y)
np+r

-1

Uf((e1 —yeo) ™, ).
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For brevity we use M, (x) := M, ,(z) := Mf (z) := Uf((e1 — zeo)",x), n > 1,
r >0, z € [0,1], in what follows. It is immediate that

/

(Mo (@) = (US((e1 = yeo) )

— rM,_y (). @2.1)

zly=x

Using (2.1) and putting y = « in Theorem 2.1 we obtain the following recursion for
the central moments.
Corollary 2.1.
Mno(x)zla M, 1(:13)10,

s

and, forr > 1,
e D) ) W)
Mn,r+1(-r) - Tlp+7' Mn,'rfl( )+ TL,D+T' Mmr( )+ np+r(Mn,r( )) -
In particular:
My o) = PHDT@)
np+1
_ (p+D(p+2)¥(x)V'(x)
Meslo) = G D g+ 2)
My a(x) = 2P0+ 1)20%(2)n

(np +1)(np +2)(np + 3)

L =8+ D) +3p +3)¥%(2) + (p+ D(p+2)(p +3)¥(x)
(np +1)(np +2)(np +3) '

3. The case 0 < p < 1 revisited. Note that the above equalities for U/ are true
for 0 < p. It is thus of interest to describe the behavior of U# as p — 0. We show first
that, for any fixed n > 1, U£(f; x) uniformly converges with a certain speed to the first
Bernstein polynomial of f, i.e., to the linear function

Bi(f;x) = fO)(1 —z) + f(1) - 2.

To this end we use the following result which essentially comes from the first author’s
dissertation (cf. [3, p. 117]); see also the proof of Theorem 2.1 in [4].

Theorem 3.1. Let L: C[0,1] — C[0, 1] be a positive linear operator reproducing
linear functions. Then for f € C[0,1] and x € [0,1] the following inequality holds:

[L(f52) = Bu(fi)| < Jn (5 V/Eer - (e —en)im))
Proof. For g € C2[0,1] arbitrary we have
[L(f5) = Bulfio)| < |(E = BO(f = gs)] + |(E - Bu)(gio)]| <
< (1L + 1B = glloe + (2 = Ba)(g;0)] =
=2[lf = gllee + [(L = B1)(g; 7).
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Since both L and B; reproduce linear functions, we have

L(B1g) = B1(B1g) = Big € 111,

giving
(L = B1)(g;%)| = |L(g; z) — Bi(g; ¥) — L(B1g; z) + B1(Bag; x)| =
= |L(9 — Big;z)| < L(lg — Bigl;x) <
1
< 59"l L(er(eo = ex); ).
Thus

[L(752) ~ B(f50)] < 20 ~ gl + 519" e Ller(eo — ex)s )

1
We now use Lemma 2 in [5] (also published in [6]) showing that for 0 < h < 3 fixed
and any € > 0 there is a polynomial p = p(h, €) such that

17 = plleo < Senfih) +

and
"]l < 5ogeon(i ).

In the above we take g = p and arrive at

|L(f;x) = Bi(fi2)| <

3 L(e1(eg — e1); x)wa(f; h).

3
— 2
2 wa(f;h) + €+4h

If L(ei(eo — e1);x) = 0, then |L(f;x) — Bi(f;)| < gc@(f'h) + 2¢ for h and €
arbitrarily small. Hence in this case |L( fiz) = Bi(f;zx ‘ = 0, and the inequality of the
theorem is true.

Otherwise we take h = \/L(e1(ep — €1); ) and let € tend to zero. This shows that
the inequality is true for all cases of z € [0, 1].

Theorem 3.1 is proved.
It is now easy to derive the following theorem.
Theorem 3.2. For Uf, 0 < p < oo,n > 1, we have

or (512 v ).

»M@

} - B (f7 ) |
In particular, for any fixed n, we have
im U f=Bf
p—0
uniformly.
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Proof. 1t is only necessary to observe that
Up(ei(eo — e1);w) = Uf(er; @) — Uf(ez;w) =
=z —z°— [UF(e2;2) — a:2] =z(l—z) - M} ,(x) =

1 _
=) = R,

—z2(l—z)—
z(1—x) |

Theorem 3.2 is proved.

It is also interesting to describe the convergence to f(z) for 0 < p < 1 fixed. In
fact, there is uniform convergence for n — oo, however, getting slower and slower as p
approaches 0.

Using Corollary 2.2.1 on p. 31 of the second author’s book [7], we have the following
theorem.

Theorem 3.3. For0<p<oo,n>1, feC|0,1] and x € [0,1] there holds

ol In(p+1) el —x)
‘U"(f’x)_f(x)’§<1+2np—i—1>w2<f’ n)

Proof. The inequality is trivially true if z € {0,1}. Otherwise we put h =

z(1—x)

n

Theorem 3.3 is proved.

Remark 3.1. The inequality of Theorem 3.3 can also be derived from Theorem
5.2, formula (5.3), case = 0 in [1]. For a similar inequality see Theorem 2.3, inequal-
ity (2.11) in [2].
n(p+1

(p+1)
np+1
comes arbitrarily large for p close to 0. However, uniform convergence is still warranted

for n — co. We have seen before that the situation is different for n fixed and p — 0.

Remark 3.2. The linear function B; f is also the uniform limit of over-iterated
operator images [U£]™ f, if m — co. Here n > 1 and 0 < p < oo are fixed. In fact,
using Corollary 2.4 in [4] it is easy to see that

in the theorem cited and arrive immediately at the upper bound claimed.

p+1

In view of for n — oo, the constant in front of ws(f;...) be-

U™ (f;2) = Ba(f;2)] <

< %W2 <f7 \/(1 - npp_:_ll) ¢(l‘)>7 f € 0[07 1]) T € [Ov 1]'

p+1
np+1

Forn > 1,0 < p < oco,one has 0 < 1 —

< 1, and this implies uniform
convergence as m — oo.

4. Quantitative Voronovskaya theorem with first order modulus. In the present
section we prove a quantitative Voronoskaja theorem using the least concave majorant
of the first order modulus of continuity. This will be based upon the following general
theorem.

Theorem 4.1 (see [8]). Let g € Ny, f € C?0,1] and L: C[0,1] — C[0,1] be a
positive linear operator. Then
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f(x)

r!

L(f.2) = Y L((er — 2)", )

r=0

+1
< Uermafun) (i L Lerelt)
q ¢+1 L{ler —aft,)

<

Here @ is the least concave majorant of the first order modulus of continuity.

We use the above theorem for ¢ = 2, also recalling that U2 (e;) = e;, 4 = 0, 1. This
leads to the following theorem.

Theorem 4.2. For U?, given as above, f € C?[0,1], n > 2 and x € (0,1) we
have
np+1 1

P fw) - f@) -

p— V(a)f" (@)

<

<

o L p? p¥(z)
()@ ( ,3\/rﬁp\/(np+ I + ot 1), 4.1)

502 + 13p 4 12 7p2+3p+2)2
p? "\ plp+1)
Proof. The general estimate from Theorem 4.1 reduces to

| —

where m, = max {

UL(F.) ~ f(@) ~ SUL((er — 2)) 1" ()| <

- oy LUL(ler — )3, 2)
5Un((e1 —2)%2)® < ,3(]5((61_3;)2’15))

<

Using the above representation of the second moment this turns into

(p+1)¥(x)

2.0 - i) - LIS

f”(af)‘ <

S;(p—&-l)@(m)@( " 1U£(|61—.’L'|3,m)>. 4.2)

np+1 "3UL((e1 — 2)2, )

We now consider two cases.

Case 4.1. x € P ,1— P .
np+1 np+1

Using the Cauchy — Schwarz inequality we first observe that

Ub(ler — f,2) _ w@’((el —a)hn) M)
Ub((er —x)2,2) — | UL((er — x)2,x) Ms(z)

The above representations of the two moments show that

My(x) _ (Bplp+1)n —6(p* +3p+3)¥(x) + (p+2)(p+3) _
My (x) (np+2)(np + 3) -
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3p(p + 1)n + ('”2)(’”3)} U(z).

1
<
~ (np+2)(np+3) [
In the above interval we have

P P\ _rlln—1)p+1]
\D(x)zanrl(l_anrl)_ (np+1)2

Therefore

(np+2)(np+3)

(p+2)(p+3)(np+1)
p(pn+1—p)

<

{Sp(p +1)n +

< p¥(z) [3(p+1) +2(/}+2)(p+3)} p¥(z )Cp,
np+1 P P> np+1

5p% 4+ 13p + 12
where ¢, = 20012
p Ul P

np+1 np+1’

Case 4.2. x € {0,

919

We only consider the left interval; for the right one the statement follows by sym-

metry. We have successively

UL(ler — e,2) = U (2(e1 — 2)2(@ — e1)1,2) + UL ((e1 — 2)°, ) =

—22 / (2 — 8 ()it | pop(@) +2(1 — 2)"a® + My(x) <

1

<2:8% / W2 L (0)dt | () + 2020 () + My () =
k=1 \}

ety (14 L) 4 D DUV )

1—= (np+1)(np+2)
P (z) np+1 (p+1)(p+2)
= np+1)2 [2 - Dpr1 e
P> (x)
T (np 12"

(p+1(p+2)

where d, = 6 + g (the latter being correct for n > 2). Hence

Ut(ler — 2P'.2) _ PW(@)d, np+1 \/ 2 [ pdy )’
( |

UL(lex —x)%,2) — (np+1)2 (p+1)¥(z) | (np+1)2 \p+1

From the above two cases it follows that the r.h.s. in (4.2) is bounded from above by

Lp+1)¥(z) (. p?
2 np+1 ( ’SF\/np+1 np+1)>
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pdp
p+1

1
et gives the final

2
) } Multiplying both sides by
p+1

where m, = max {cp, (

result.
np+ 1

Remark 4.1. The above multiplication by is somewhat arbitrary. It is, for

example, also possible to multiply by np + 1 or simply by n to arrive at slightly different
inequalities.
Remark 4.2. 1In case p = 1 the right-hand side of inequality (4.1) becomes

LI 1 V()
Q\Il(x)w<f 72\/(71—&-1)2 +n+1>,

1 | . 1 U(x)
§\Il(x)w <f ’4\/(n+ 1)2 + n+ 1) ’

which is obtained using the approach in [§].

5. Quantitative Voronovskaya theorem with second order modulus. In this sec-
tion we replace the quantity @, (f”;...) by the second order modulus of smoothness
wa(f;d) given by

improving the term

sup {|f(z = h) = 2f(@) + fle+h)|, a+h<z<b-h 0<h<d},

1
for0 <6 < ok The general underlying inequality was recently given in [5] and reads

as follows.
Theorem 5.1. Let L: C[0,1] — C[0,1] be a positive linear operator such that

1
Le; = e;, i = 0,1. If f € C?[0,1], then for any 0 < h < 3 the following inequality
holds:

(i) = £10) - yller = o))

<

< L((er — 2)*2) %

5 [L((er —2)%2)] 3 1 L(er —2)%2) .
‘ {m«el—w“l(f h)+ (4+ 672 (e _@z;z))wﬂf ﬂ)}-

We will use the theorem in its following form.
L((e; — z)%; )

Corollary 5.1. Putting h = || ———5—=
orollary utting (e )% 2)

and assuming that h > 0, the

inequality in the theorem becomes:

<

(i) = F(o) = (1 — 2% )"0

5 |L((e1 — 2)°; )|
6 /L((er — 2)2L((ex — 2)%; @)

X

< L((er —m>2;x>{
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", L((61 *LL‘)4;LE) Ew ", L((el 71’)4;x)
X“”( ’ L((el—x)Q;m)>+16 2( "V L((er — )% ))}

X

In the case of UP we temporarily write X = ¥(x), X' = ¥'(x) and

4 M) _ My(z)
' ]\4'2(I)]\4-4(£ZZ)7 ’ MQ(:Z:) '
Explicitly,
. (p+2)*(X")*(np + 3)

(np+2){[3p(p + 1)n — 6(p> +3p + 3]X + (p +2)(p + 3)}’

g 3lele+1)n—2(p" +3p+3)|X + (p+2)(p+3)
(np+2)(np + 3) ’

Inserting the information available on Uf now into the inequality of Corollary 5.1 and
multiplying both sides by np + 1 leads to the assertion of the following theorem.

Theorem 5.2. For U?, given as above, f € C?[0,1], n > 2 and z € [0, 1], the
following inequality holds:

(o + DIV (F) — £(0)] - 5 0t )| <

< (o + 00le) { 3V (17 VB) + (V) }.
Moreover,

(i) if f € C3[0,1], then

(o + DIVE(f) ~ F0] = 25 o) )| = @10 (=) 1571,

and
(i) if f € C’4[07 1], then

(o + D[02(1.2) = )] - L5 w0 @) = w0 (5) 170

In both cases O(...) is independent of f and x.
Corollary 5.2. For p = 1 this coincides with the inequalities in Theorem 5 of [5].

Proceeding as before, i.e., inserting the information on U/ into the inequality of

Corollary 5.1, but multiplying both sides by n (instead of np+ 1), implies the following
corollary.

Corollary 5.3.

lim
p—00

alv2(sia) - 1) - 5" o) <

< tin " o) {3V (75 V) + (15 VE) ).
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In other words, for n > 2 we have

<

n[Ba(f:7) — f(2)] — 59(@) (@)

5. W@l
6/3(n—2)(z)+1

< (x) +

I \/S(n — 27);5(1;) +1

13 L, [3(n—2)p(x) + 1
N P =

This is the same inequality as the one given in Theorem 4 of [5].
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