UDC 517.5

A. V. Bondarenko (Nat. Taras Shevchenko Univ. Kyiv, Ukraine)

ON A SPHERICAL CODE IN THE SPACE OF SPHERICAL HARMONICS ПРО СФЕРИЧНИЙ КОД У ПРОСТОРІ СФЕРИЧНИХ ГАРМОНІК

We propose a new method for the construction of new "nice" configurations of vectors on the unit sphere S^d with the use of spaces of spherical harmonics.

Запропоновано новий метод для побудови нових "гарних" конфігурацій векторів на одиничній сфері S^d з використанням просторів сферичних гармонік.

1. Introduction. This paper is inspired by classical book J. H. Conway and N. J. A. Sloane [1] and recent paper of H. Cohn and A. Kumar [2]. The exceptional arrangement of points on the spheres are discussed there. Especially interesting are constructions coming from well known E_8 lattice and Leech lattice Λ_{24} . The main idea of the paper is to use these arrangements for construction new good arrangements in the spaces of spherical harmonics \mathcal{H}_k^d . Recently we have use dramatically the calculations in these spaces to obtain new asymptotic existence bounds for spherical designs, see [3]. Below we need a few facts on spherical harmonics. Let Δ be the Laplace operator in \mathbb{R}^{d+1}

$$\Delta = \sum_{j=1}^{d+1} \frac{\partial^2}{\partial x_j^2}$$

We say that a polynomial P in \mathbb{R}^{d+1} is harmonic if $\Delta P = 0$. For integer $k \ge 1$ the restriction to S^d of a homogeneous harmonic polynomial of degree k is called a spherical harmonic of degree k. The vector space of all spherical harmonics of degree k will be denoted by \mathcal{H}_k^d (see [4] for details). The dimension of \mathcal{H}_k^d is given by

dim
$$\mathcal{H}_k^d = \frac{2k+d-1}{k+d-1} \begin{pmatrix} d+k-1\\k \end{pmatrix}$$
.

Consider usual inner product in \mathcal{H}_k^d

$$\langle P, Q \rangle := \int_{S^d} P(x) Q(x) d\mu_d(x),$$

where $\mu_d(x)$ is normalized Lebesgue measure on the unit sphere S^d . Now, for each point $x \in S^d$ there exists a unique polynomial $P_x \in \mathcal{H}_k^d$ such that

$$\langle P_x, Q \rangle = Q(x)$$
 for all $Q \in \mathcal{H}_k^d$.

It is well known that $P_x(y) = g((x, y))$, where g is a corresponding Gegenbauer polynomial. Let G_x be normalized polynomial P_x , that is $G_x = P_x / g(1)^{1/2}$. Note

© A. V. BONDARENKO, 2010

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 6

857

that $\langle G_{x_1}, G_{x_2} \rangle = g((x_1, x_2)) / g(1)$. So, if we have some arrangement $X = \{x_1, \dots, x_N\}$ on S^d with known distribution of inner products (x_i, x_j) , then, for each k, we have corresponding set $G_X = \{G_{x_1}, \dots, G_{x_N}\}$ in \mathcal{H}_k^d , also with known distribution of inner products. Using this construction we will obtain in the next section the optimal antipodal spherical (35, 240, 1/7) code from minimal vectors of E_8 lattice. Here is the definition.

Definition 1. An antipodal set $X = \{x_1, ..., x_N\}$ on S^d is called antipodal spherical (d + 1, N, a) code, if $|(x_i, x_j)| \leq a$, for some a > 0 and for all x_i , $x_j \in X$, $i \neq j$, which are not antipodal. Such code is called optimal if for any antipodal set $Y = \{y_1, ..., y_N\}$ on S^d there exists $y_i, y_j \in Y$, $i \neq j$, which are not antipodal and $|(y_i, y_j)| \geq a$.

In the other words, antipodal spherical (d + 1, N, a) code is optimal if a is a minimal possible number for fixed N, d.

Definition 2. An antipodal set $X = \{x_1, ..., x_N\}$ on S^d forms spherical 3design if and only if

$$\frac{1}{N^2} \sum_{i,j=1}^{N} (x_i, x_j)^2 = \frac{1}{d+1}.$$

Note, that for all $x_1, \ldots, x_N \in S^d$ the following inequality hold

$$\frac{1}{N^2} \sum_{i,j=1}^{N} (x_i, x_j)^2 \ge \frac{1}{d+1}.$$

Another equivalent definition is the following:

The set of points $x_1, \ldots, x_N \in S^d$ is called a spherical 3-design if

$$\int_{S^d} P(x) \, d\mu_d(x) = \frac{1}{N} \sum_{i=1}^N P(x_i)$$

for all algebraic polynomials in d + 1 variables and of total degree at most 3, where μ_d is normalized Lebesgue measure on S^d .

Thus we will prove the following theorem.

Theorem 1. There exists an optimal antipodal spherical (35, 240, 1/7) code, those vectors form spherical 3-design.

2. Construction and the proof of optimality. *Proof of Theorem* 1. Let $X = \{x_1, ..., x_{120}\}$ be any subset of 240 normalized minimal vectors of E_8 lattice, such that no pair of antipodal vectors presents in X. Take in the space \mathcal{H}_2^7 the polynomials

$$G_{x_i}(y) \; = \; g_2((x_i,y)) \,, \quad i = \; 1, \, \dots \,, \, 120 \,,$$

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 6

where $g_2(t) = \frac{8}{7}t^2 - \frac{1}{7}$ is a corresponding normalized Gegenbauer polynomial. Since $(x_i, x_j) = 0$ or $\pm 1/2$, for $i \neq j$, then $\langle G_{x_i}, G_{x_j} \rangle = g_2((x_i, y_j)) = \pm 1/7!$ It looks really like a mystery the fact that $|g_2((x_i, x_j))| = \text{const}$, for any different x_i , $x_j \in X$. But exactly this is essential for the proof of optimality of our code. Since, dim $\mathcal{H}_2^7 = 35$, then the points $G_{x_1}, \ldots, G_{x_{120}}, -G_{x_1}, \ldots, -G_{x_{120}}$ provide antipodal spherical (35, 240, 1/7) code. Here is a proof of optimality. Take arbitrary antipodal set of points $Y = \{y_1, \ldots, y_{240}\}$ in \mathbb{R}^{35} . Then, the inequality

$$\frac{1}{240^2} \sum_{i,j=1}^{240} (y_i, y_j)^2 \ge 1/35,$$

implies that $(y_i, y_j)^2 \ge 1/49$, for some $y_i, y_j \in Y$, $i \ne j$, which are not antipodal. This immediately gives us an optimality of our construction. The other reason why it works, that is our set is also spherical 3-design in \mathbb{R}^{35} . We are still not able generalize this construction even for Leech lattice Λ_{24} . We also don't know whether the construction described above is an optimal spherical (35, 240, 1/7) code.

Acknowledgement. The author would like to thank Professor Henry Cohn for the fruitfull discussions on the paper.

- Conway J. H., Sloane N. J. A. Sphere packings, lattices and groups. New York: Springer, 1999. 703 p.
- Cohn H., Kumar A. Universally optimal distribution of points on spheres // J. Amer. Math. Soc. 2007. – 20. – P. 99 – 148.
- Bondarenko A., Viazovska M. Spherical designs via Brouwer fixed point theorem // SIAM J. Discrete Math. – 2010. – 24. – P. 207 – 217.
- Mhaskar H. N., Narcowich F. J., Ward J. D. Spherical Marcinkiewich Zygmund inequalities and positive quadrature // Math. Comp. – 2000. – 70. – P. 1113 – 1130.

Received 22.07.09