UDC 517.5
A. V. Bondarenko (Nat. Taras Shevchenko Univ. Kyiv, Ukraine)

ON A SPHERICAL CODE
IN THE SPACE OF SPHERICAL HARMONICS
ПРО СФЕРИЧНИЙ КОД У ПРОСТОРІ СФЕРИЧНИХ ГАРМОНІК

We propose a new method for the construction of new "nice" configurations of vectors on the unit sphere S^{d} with the use of spaces of spherical harmonics.

Запропоновано новий метод для побудови нових „гарних" конфігурацій векторів на одиничній сфері S^{d} з використанням просторів сферичних гармонік.

1. Introduction. This paper is inspired by classical book J. H. Conway and N. J. A. Sloane [1] and recent paper of H. Cohn and A. Kumar [2]. The exceptional arrangement of points on the spheres are discussed there. Especially interesting are constructions coming from well known E_{8} lattice and Leech lattice Λ_{24}. The main idea of the paper is to use these arrangements for construction new good arrangements in the spaces of spherical harmonics \mathcal{H}_{k}^{d}. Recently we have use dramatically the calculations in these spaces to obtain new asymptotic existence bounds for spherical designs, see [3]. Below we need a few facts on spherical harmonics. Let Δ be the Laplace operator in \mathbb{R}^{d+1}

$$
\Delta=\sum_{j=1}^{d+1} \frac{\partial^{2}}{\partial x_{j}^{2}}
$$

We say that a polynomial P in \mathbb{R}^{d+1} is harmonic if $\Delta P=0$. For integer $k \geq 1$ the restriction to S^{d} of a homogeneous harmonic polynomial of degree k is called a spherical harmonic of degree k. The vector space of all spherical harmonics of degree k will be denoted by \mathcal{H}_{k}^{d} (see [4] for details). The dimension of \mathcal{H}_{k}^{d} is given by

$$
\operatorname{dim} \mathcal{H}_{k}^{d}=\frac{2 k+d-1}{k+d-1}\binom{d+k-1}{k}
$$

Consider usual inner product in \mathcal{H}_{k}^{d}

$$
\langle P, Q\rangle:=\int_{S^{d}} P(x) Q(x) d \mu_{d}(x)
$$

where $\mu_{d}(x)$ is normalized Lebesgue measure on the unit sphere S^{d}. Now, for each point $x \in S^{d}$ there exists a unique polynomial $P_{x} \in \mathcal{H}_{k}^{d}$ such that

$$
\left\langle P_{x}, Q\right\rangle=Q(x) \quad \text { for all } \quad Q \in \mathcal{H}_{k}^{d}
$$

It is well known that $P_{x}(y)=g((x, y))$, where g is a corresponding Gegenbauer polynomial. Let G_{x} be normalized polynomial P_{x}, that is $G_{x}=P_{x} / g(1)^{1 / 2}$. Note
that $\left\langle G_{x_{1}}, G_{x_{2}}\right\rangle=g\left(\left(x_{1}, x_{2}\right)\right) / g(1)$. So, if we have some arrangement $\quad X=$ $=\left\{x_{1}, \ldots, x_{N}\right\}$ on S^{d} with known distribution of inner products $\left(x_{i}, x_{j}\right)$, then, for each k, we have corresponding set $G_{X}=\left\{G_{x_{1}}, \ldots, G_{x_{N}}\right\}$ in \mathcal{H}_{k}^{d}, also with known distribution of inner products. Using this construction we will obtain in the next section the optimal antipodal spherical $(35,240,1 / 7)$ code from minimal vectors of E_{8} lattice. Here is the definition.

Definition 1. An antipodal set $X=\left\{x_{1}, \ldots, x_{N}\right\}$ on S^{d} is called antipodal spherical $(d+1, N, a)$ code, if $\left|\left(x_{i}, x_{j}\right)\right| \leq a$, for some $a>0$ and for all x_{i}, $x_{j} \in X, \quad i \neq j$, which are not antipodal. Such code is called optimal if for any antipodal set $Y=\left\{y_{1}, \ldots, y_{N}\right\}$ on S^{d} there exists $y_{i}, y_{j} \in Y, i \neq j$, which are not antipodal and $\left|\left(y_{i}, y_{j}\right)\right| \geq a$.

In the other words, antipodal spherical $(d+1, N, a)$ code is optimal if a is a minimal possible number for fixed N, d.

Definition 2. An antipodal set $X=\left\{x_{1}, \ldots, x_{N}\right\}$ on S^{d} forms spherical 3design if and only if

$$
\frac{1}{N^{2}} \sum_{i, j=1}^{N}\left(x_{i}, x_{j}\right)^{2}=\frac{1}{d+1}
$$

Note, that for all $x_{1}, \ldots, x_{N} \in S^{d}$ the following inequality hold

$$
\frac{1}{N^{2}} \sum_{i, j=1}^{N}\left(x_{i}, x_{j}\right)^{2} \geq \frac{1}{d+1}
$$

Another equivalent definition is the following:
The set of points $x_{1}, \ldots, x_{N} \in S^{d}$ is called a spherical 3-design if

$$
\int_{S^{d}} P(x) d \mu_{d}(x)=\frac{1}{N} \sum_{i=1}^{N} P\left(x_{i}\right)
$$

for all algebraic polynomials in $d+1$ variables and of total degree at most 3 , where μ_{d} is normalized Lebesgue measure on S^{d}.

Thus we will prove the following theorem.
Theorem 1. There exists an optimal antipodal spherical (35, 240, 1/7) code, those vectors form spherical 3-design.
2. Construction and the proof of optimality. Proof of Theorem 1. Let $X=$ $=\left\{x_{1}, \ldots, x_{120}\right\}$ be any subset of 240 normalized minimal vectors of E_{8} lattice, such that no pair of antipodal vectors presents in X. Take in the space \mathcal{H}_{2}^{7} the polynomials

$$
G_{x_{i}}(y)=g_{2}\left(\left(x_{i}, y\right)\right), \quad i=\overline{1, \ldots, 120}
$$

where $g_{2}(t)=\frac{8}{7} t^{2}-\frac{1}{7}$ is a corresponding normalized Gegenbauer polynomial. Since $\left(x_{i}, x_{j}\right)=0$ or $\pm 1 / 2$, for $i \neq j$, then $\left\langle G_{x_{i}}, G_{x_{j}}\right\rangle=g_{2}\left(\left(x_{i}, y_{j}\right)\right)= \pm 1 / 7$! It looks really like a mystery the fact that $\left|g_{2}\left(\left(x_{i}, x_{j}\right)\right)\right|=$ const, for any different x_{i}, $x_{j} \in X$. But exactly this is essential for the proof of optimality of our code. Since, $\operatorname{dim} \mathcal{H}_{2}^{7}=35$, then the points $G_{x_{1}}, \ldots, G_{x_{120}},-G_{x_{1}}, \ldots,-G_{x_{120}}$ provide antipodal spherical $(35,240,1 / 7)$ code. Here is a proof of optimality. Take arbitrary antipodal set of points $Y=\left\{y_{1}, \ldots, y_{240}\right\}$ in \mathbb{R}^{35}. Then, the inequality

$$
\frac{1}{240^{2}} \sum_{i, j=1}^{240}\left(y_{i}, y_{j}\right)^{2} \geq 1 / 35
$$

implies that $\left(y_{i}, y_{j}\right)^{2} \geq 1 / 49$, for some $y_{i}, y_{j} \in Y, i \neq j$, which are not antipodal. This immediately gives us an optimality of our construction. The other reason why it works, that is our set is also spherical 3-design in \mathbb{R}^{35}. We are still not able generalize this construction even for Leech lattice Λ_{24}. We also don't know whether the construction described above is an optimal spherical (35, 240, 1/7) code.

Acknowledgement. The author would like to thank Professor Henry Cohn for the fruitfull discussions on the paper.

1. Conway J. H., Sloane N. J. A. Sphere packings, lattices and groups. - New York: Springer, 1999. 703 p.
2. Cohn H., Kumar A. Universally optimal distribution of points on spheres // J. Amer. Math. Soc. 2007. - 20. - P. 99-148.
3. Bondarenko A., Viazovska M. Spherical designs via Brouwer fixed point theorem // SIAM J. Discrete Math. - 2010. - 24. - P. 207-217.
4. Mhaskar H. N., Narcowich F. J., Ward J. D. Spherical Marcinkiewich - Zygmund inequalities and positive quadrature // Math. Comp. - 2000. - 70. - P. 1113-1130.
