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YETTER – DRINFEL’D HOPF ALGEBRAS ON BASIC CYCLE*

ХОПФОВI АЛГЕБРИ ЄТТЕРА – ДРIНФЕЛЬДА НА БАЗОВОМУ ЦИКЛI

A class of Yetter – Drinfel’d Hopf algebras on basic cycle are constructed.

Побудовано клас хопфових алгебр Єттера – Дрiнфельда на базовому циклi.

1. Introduction. Let H be a Hopf algebra. A Yetter – Drinfel’d module over H is a K-linear space
V such that V is both an H-module and an H-comodule and satisfies a compatibility condition.
Yetter – Drinfel’d Hopf algebras are Hopf algebras in Yetter – Drinfel’d module category. It is a class
of braided Hopf algebras. Nichols algebras [11], (G,χ)-Hopf algebras [12, p. 206] (10.5.11) and
twisted Hopf algebras [10] are important examples of Yetter – Drinfel’d Hopf algebras.

Radford’s projection theorem [13] leads to a decomposition of the given Hopf algebra into a
Radford biproduct of two factors, one is no longer a Hopf algebra, but rather a Yetter – Drinfel’d
Hopf algebra over the other factor. After Radford’s work, some important advances are the followings.
Doi considered Hopf modules in Yetter – Drinfel’d module category in [6]. Scharfschwerdt proved
Nichols – Zoeller theorem for Yetter – Drinfel’d Hopf algebras, see [15]. Schauenburg proved that a
Yetter – Drinfel’d module category is equivalent to a category of the left modules over the Drinfel’d
double, and also to a Hopf bimodule category, see [16]. Sommerhäuser studied Yetter – Drinfel’d Hopf
algebras over groups of prime order in [17]. Andruskiewitsch and Schneider studied Nichols algebras
in [1]. Recently, Grana, Heckenberger and Vendramin classified Nichols algebras of irreducible
Yetter – Drinfel’d module over nonabelian groups in [7].

The quiver methods in the representation theory of algebras were considered by Ringel in [14].
The coalgebra structure on quivers were considered by Chin and Montgomery in [4]. Quivers allow
one to present algebras or coalgebras in a useful way. For example, Cibils and Rosso constructed Hopf
quivers and quiver quantum groups in [3] and [5] respectively. Green and Solberg have investigated
the structure of finite dimensional basic Hopf algebras in [8].

One can get a Hopf algebra or a quantum group via quivers. The constructions of braided Hopf
algebras via quivers are not numerous. In this paper, we provide such an explicit construction via
quivers. Let Cd(n) be a subcoalgebra of the coalgebra KZc

n of paths in the oriented cycle quiver Zc
n of

length n with basis the set of all paths of length strictly less than d. Assume that G = {1, g, . . . , gn−1}
is a group and KG a group Hopf algebra. In this paper, we prove that Cd(n) is a Yetter – Drinfel’d
module over KG. Moreover, Cd(n) is a Yetter – Drinfel’d Hopf algebra over KG, see Theorem 5.

Throughout, K will denote a fixed field. All algebras, coalgebras, (co)modules, ⊗ and Hom
are over K. For basic definitions and facts about coalgebras, Hopf algebras and (co)modules we
refer to Sweedler’s book [18]. In particular, the comultiplication of a coalgebra C is denoted by
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∆(c) =
∑

c1 ⊗ c2 for all c ∈ C, and the structure map of a left C-comodule V is denoted by

ρ(v) =
∑

v−1 ⊗ v0 for all v ∈ V. For quivers we refer to Auslander – Reiten – Smal ’s book [2].

2. Preliminaries. Let (H,m, u,4, ε, S) be a Hopf algebra with antipode S. A left Yetter –
Drinfel’d module over H is a K-vector space V such that V is both a left H-module with action →
and left H-comodule with coaction ρ, and satisfies the compatibility condition:∑

(h→ v)−1 ⊗ (h→ v)0 =
∑

h1v
−1S(h3)⊗ h2 → v0, (1)

for all h ∈ H, v ∈ V. The category of left Yetter – Drinfel’d modules over H is denoted by H
HYD.

The category is a pre-braided category and the pre-braiding is given by

τV,W : V ⊗W −→W ⊗ V, v ⊗ w 7−→
∑

(v−1 → w)⊗ v0.

The above map is a braiding when H has a bijective antipode. Denote by S̄ the inverse of S. The
inverse of τV,W is

τ−1
V,W

: W ⊗ V −→ V ⊗W, w ⊗ v 7−→
∑

v0 ⊗ S̄(v−1)→ w.

Let A be a Yetter – Drinfel’d module. We call the 6-tuple (A,m, u,4, ε, S) a Yetter – Drinfel’d
Hopf algebra (or Hopf algebra in H

HYD) if A satisfies the following conditions:
(a1) (A,m, u) is a left H-module algebra, i.e.,

h→ (ab) =
∑

(h1 → a)(h2 → b), h→ 1A = ε(h)1A.

(a2) (A,m, u) is a left H-comodule algebra, i.e.,

ρ(ab) =
∑

(ab)−1 ⊗ (ab)0 =
∑

a−1b−1 ⊗ a0b0,

ρ(1A) = 1H ⊗ 1A.

(a3) (A,4, ε) is a left H-module coalgebra, i.e.,

4(h→ a) =
∑

(h1 → a1)⊗ (h2 → a2), εA(h→ a) = εH(h)εA(a).

(a4) (A,4, ε) is a left H-comodule coalgebra, i.e.,∑
a−1 ⊗ (a0)1 ⊗ (a0)2 =

∑
a1

−1a2
−1 ⊗ a10 ⊗ a20,∑

a−1εA(a0) = εA(a)1H .

(a5) 4 and ε are algebra maps in H
HYD, i.e.,

4(ab) =
∑

a1(a2
−1 → b1)⊗ a20b2,

4(1) = 1⊗ 1, ε(ab) = ε(a)ε(b), ε(1A) = 1k.
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(a6) There exists a K-linear map S : A −→ A in H
HYD such that it is a convolution inverse of

identity, i.e., S ∗ Id = uε = Id ∗ S.
When the pre-braiding τ is trivial, Yetter – Drinfel’d Hopf algebras are ordinary Hopf algebras,

see [18, p. 8] for details. However, generally, Yetter – Drinfel’d Hopf algebras are not ordinary Hopf
algebras because the bialgebra axiom asserts that they obey (a5).

Let q ∈ K. For nonnegative integer l and 0 ≤ m ≤ l, the Gaussian polynomials is defined to be(
l

m

)
q

:=
(l)!q

m!q(l −m)!q

where
l!q := 1q . . . lq, 0!q := 1, lq := 1 + q + . . .+ ql−1.

Next, we will give several conclusions of Gaussian polynomials. They will be used in next
section. Firstly, we recall the q-Pascal identity, it can be found in [9] (Proposition IV.2.1).(

l

m

)
q

=

(
l − 1

m− 1

)
q

+ qm
(
l − 1

m

)
q

=

(
l − 1

m

)
q

+ ql−m

(
l − 1

m− 1

)
q

. (2)

For any scalar a and a variable element z, for any positive integer l, Kassel proved that

(a− z)(a− qz) . . . (a− ql−1z) =

l∑
k=0

(−1)k
(
l

k

)
q

q
k(k−1)

2 al−kzk

(see [9], IV.2.7). Especially, let a = 1 and z = 1, we have

l∑
k=0

(−1)kq
k(k−1)

2

(
l

k

)
q

= 0. (3)

Moreover, the following equation also holds.
Lemma 1. Let l and k be nonnegative integers. For any integer s, where 0 ≤ s ≤ l + k, we

have ∑
m+p=s

0≤m≤l,0≤p≤k

qm(k−p)

(
l + k − s
l −m

)
q

(
s

m

)
q

=

(
l + k

l

)
q

. (4)

3. Construction. Let Zc
n denote the basic cycle of length n, i.e., an oriented graph with n

vertices e0, . . . , en−1, and a unique arrow ai from ei to ei+1 for each 0 ≤ i ≤ n− 1. The indices are
taken modulo n. Set γmi := ai+m−1 . . . ai+1ai to be the path of length m starting at the vertex ei.
Note that γ0i = ei and γ1i = ai.

Let Cd(n) be the subcoalgebra of KZc
n with basis the set of all paths of length strictly less than d.

Observe that if the order of q is d, then
(
d
l

)
q

= 0 for 1 ≤ l ≤ d− 1. Then Cd(n) is a path coalgebra

with comultiplication 4(γli) =
∑l

k=0 γ
l−k
i+k ⊗ γ

k
i , and counit ε(γli) = δl,0. Here, δl,0 is the Kronecker

symbol.
Define a multiplication on Cd(n) by
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γliγ
s
j =

(
l + s

l

)
q

γl+s
i+j , (5)

where l+ s < d. Observe that if l+ s ≥ d, then γliγ
s
j = 0 since qd = 1. It is easy to see that the unit

element of Cd(n) is 1 = γ00 .

Definition 1. Let A be a vector space. We call A a pre-bialgebra if A is an algebra and a
coalgebra.

From Definition 1, we know that a pre-bialgebra is a bialgebra if and only if 4 and ε are algebra
morphisms.

The following lemma is routine, we omit the proof.
Lemma 2. Coalgebra Cd(n) is a pre-bialgebra with multiplication (5).
Let G = {1, g, g2, . . . , gn−1} be a group. Then KG is a Hopf algebra, see [12] (1.5.3). It is clear

that Cd(n) becomes a left KG-module with the left module structure

gs → γli = qslγli (6)

and Cd(n) is also a left KG-comodule with comodule structure

ρ(γli) =
∑

gl ⊗ γli. (7)

Then we have the following lemma.
Lemma 3. Coalgebra Cd(n) is a Yetter – Drinfel’d module over KG with module (6) and co-

module (7).
Proof. Take gs ∈ KG and γli ∈ Cd(n). Recall that∑

(gs → γli)
−1 ⊗ (gs → γli)

0 = qslgl ⊗ γli.

Moreover, we have∑
(gs)1(γ

l
i)
−1S((gs)3)⊗ (gs)2 → γli = gsglS(gs)⊗ gs → γli = gl ⊗ qslγli.

This means that (1) holds. Thus Cd(n) is a Yetter – Drinfel’d module over KG.
Next, we will give the main theorem.
Theorem 1. Coalgebra Cd(n) is a Yetter – Drinfel’d Hopf algebra over KG.
Proof. We divide the proof into six steps as the definition of Yetter – Drinfel’d Hopf algebras. In

the following, we take γli, γ
k
j ∈ Cd(n) and gs ∈ G.

It is easy to check that (a1) – (a4) hold. We only need to show (a5) and (a6).

(a5) It is obvious that 4(1) = 1 ⊗ 1, ε(γliγ
k
j ) =

(
l + k

l

)
q

δl+k,0 = δl,0δk,0 = ε(γli)ε(γ
l
j) and

ε(1) = 1. Next, we will prove the comultiplication4 is an algebra map in Yetter – Drinfel’d category.
On one hand, we have

4(γliγ
k
j ) =

(
l + k

l

)
q

4(γl+k
i+j ) =

(
l + k

l

)
q

l+k∑
s=0

γl+k−s
i+j+s ⊗ γ

s
i+j . (8)

On the other hand, we obtain∑
(γli)1((γ

l
i)2

−1 → (γkj )1)⊗ (γli)2
0
(γkj )2 =
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=
l∑

m=0

k∑
p=0

γl−m
i+m((γmi )−1 → γk−p

j+p )⊗ (γmi )0(γpj ) =

=
l∑

m=0

k∑
p=0

γl−m
i+m(gm → γk−p

j+p )⊗ (γmi γ
p
j ) =

=
l∑

m=0

k∑
p=0

qm(k−p)

(
l −m+ k − p

l −m

)
q

(
m+ p

m

)
q

γl+k−m−p
i+j+m+p ⊗ γ

m+p
i+j . (9)

For s = 0, 1, . . . , l+ k, comparing the coefficient of γl+k−s
i+j+s ⊗ γsi+j in equation (8) and equation (9),

we get (
l + k

l

)
q

γl+k−s
i+j+s ⊗ γ

s
i+j =

∑
m+p=s

0≤m≤l,0≤p≤k

qm(k−p)

(
l + k − s
l −m

)
q

(
s

m

)
q

γl+k−s
i+j+s ⊗ γ

s
i+j

by (4). Thus(
l + k

l

)
q

l+k∑
s=0

γl+k−s
i+j+s ⊗ γ

s
i+j =

l∑
m=0

k∑
p=0

qm(k−p)

(
l −m+ k − p

l −m

)
q

(
m+ p

m

)
q

γl+k−m−p
i+j+m+p ⊗ γ

m+p
i+j .

That means
4(γliγ

k
j ) =

∑
(γli)1((γ

l
i)2

−1 → (γkj )1)⊗ (γli)2
0
(γkj )2.

Hence 4 is an algebra map in Yetter – Drinfel’d category.
(a6) Define S : A −→ A by

S(γli) = (−1)lq
l(l−1)

2 γl−i−l.

Then S is a convolution inverse of identity, since

(S ∗ Id)(γli) =
l∑

m=0

S(γl−m
i+m)γmi =

l∑
m=0

(−1)l−mq
(l−m)(l−m−1)

2 γl−m
−i−lγ

m
i =

=

l∑
m=0

(−1)l−mq
(l−m)(l−m−1)

2

(
l

l −m

)
q

γl−l.

If l = 0,we have (S∗Id)(γ0i ) = γ00 . If l 6= 0,we have
∑l

m=0
(−1)l−mq

(l−m)(l−m−1)
2

(
l

l −m

)
q

γl−l =

= 0 by (3). In a word, (S ∗ Id)(γli) = 0. Similarly, (Id ∗S)(γli) = 0. So S is the convolution inverse
of identity.

Thus Cd(n) is a Yetter – Drinfel’d Hopf algebra over the group algebra KG.
Theorem 1 is proved.
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