UDC 517.9 M. Mursaleen, A. K. Noman (Aligarh Muslim Univ., India)

ON SOME IMBEDDING RELATIONS BETWEEN CERTAIN SEQUENCE SPACES^{*} ПРО ДЕЯКІ СПІВВІДНОШЕННЯ ВКЛАДЕННЯ МІЖ ПЕВНИМИ ПРОСТОРАМИ ПОСЛІДОВНОСТЕЙ

In the present paper, we introduce the sequence space ℓ_p^{λ} of non-absolute type which is a *p*-normed space and a *BK*-space in the cases of $0 and <math>1 \le p < \infty$, respectively. Further, we derive some imbedding relations and construct the basis for the space ℓ_p^{λ} , where $1 \le p < \infty$.

Введено поняття простору послідовностей ℓ_p^{λ} неабсолютного типу, який є *p*-нормованим простором і *BK*-простором у випадках $0 і <math>1 \leq p < \infty$ відповідно. Крім того, отримано деякі співвідношення вкладення та побудовано базис для простору ℓ_p^{λ} , де $1 \leq p < \infty$.

1. Introduction. By w, we denote the space of all complex valued sequences. Any vector subspace of w is called a sequence space.

A sequence space E with a linear topology is called a K-space provided each of the maps $p_i: E \to \mathbb{C}$ defined by $p_i(x) = x_i$ is continuous for all $i \in \mathbb{N}$; where \mathbb{C} denotes the complex field and $\mathbb{N} = \{0, 1, 2, \ldots\}$. A K-space E is called an FK-space provided E is a complete linear metric space. An FK-space whose topology is normable is called a BK-space [2, p. 1451], that is, a BK-space is a Banach sequence space with continuous coordinates [11, p. 187].

We shall write ℓ_{∞} , c and c_0 for the sequence spaces of all bounded, convergent and null sequences, respectively, which are *BK*-spaces with the usual sup-norm defined by

$$\|x\|_{\ell_{\infty}} = \sup_{k} |x_k|,$$

where, here and in the sequel, the supremum \sup_k is taken over all $k \in \mathbb{N}$. Also, by ℓ_p , 0 , we denote the sequence space of all*p* $-absolutely convergent series. It is known that the space <math display="inline">\ell_p$ is a complete *p*-normed space and a *BK*-space in the cases of $0 and <math display="inline">1 \le p < \infty$, respectively, with respect to the usual *p*-norm and ℓ_p -norm defined by

$$\|x\|_{\ell_p} = \sum_k |x_k|^p, \quad 0$$

and

$$||x||_{\ell_p} = \left(\sum_k |x_k|^p\right)^{1/p}, \quad 1 \le p < \infty,$$

respectively. For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞ .

Let X and Y be sequence spaces and $A = (a_{nk})$ be an infinite matrix of complex numbers a_{nk} , where $n, k \in \mathbb{N}$. Then, we say that A defines a matrix mapping from X into Y, and we denote it by writing $A: X \to Y$, if for every sequence $x = (x_k) \in X$ the sequence $Ax = \{A_n(x)\}$, the A-transform of x, exists and is in Y, where

^{*}Research of the second author was supported by Department of Mathematics, Faculty of Education and Science, Al Baida University, Yemen.

M. MURSALEEN, A. K. NOMAN

$$A_n(x) = \sum_k a_{nk} x_k, \quad n \in \mathbb{N}.$$
(1.1)

By (X: Y), we denote the class of all infinite matrices $A = (a_{nk})$ such that $A: X \to Y$. Thus, $A \in (X: Y)$ if and only if the series on the right-hand side of (1.1) converges for each $n \in \mathbb{N}$ and every $x \in X$, and $Ax \in Y$ for all $x \in X$. A sequence x is said to be A-summable to $l \in \mathbb{C}$ if Ax coverges to l which is called the A-limit of x.

For a sequence space X, the matrix domain of an infinite matrix A in X is defined by

$$X_A = \left\{ x \in w \colon Ax \in X \right\} \tag{1.2}$$

which is a sequence space.

We shall write $e^{(k)}$ for the sequence whose only non-zero term is a 1 in the k th place for each $k \in \mathbb{N}$.

The approach constructing a new sequence space by means of the matrix domain of a particular limitation method has recently been employed by several authors in many research papers (see, for example, [1-7,12-15,17,18]). The main purpose of this paper is to introduce the sequence space ℓ_p^{λ} of non-absolute type and is to derive some related results. Further, we establish some imbedding relations concerning the space ℓ_p^{λ} , $0 . Finally, we construct the basis for the space <math>\ell_p^{\lambda}$, where $1 \le p < \infty$.

2. The sequence space ℓ_p^{λ} of non-absolute type. Throughout this paper, let $\lambda = (\lambda_k)_{k \in \mathbb{N}}$ be a strictly increasing sequence of positive reals tending to ∞ , that is

$$0 < \lambda_0 < \lambda_1 < \dots$$
 and $\lambda_k \to \infty$ as $k \to \infty$. (2.1)

By using the convention that any term with a negative subscript is equal to naught, we define the infinite matrix $\Lambda = (\lambda_{nk})$ by

$$\lambda_{nk} = \begin{cases} \frac{\lambda_k - \lambda_{k-1}}{\lambda_n}, & 0 \le k \le n, \\ 0, & k > n, \end{cases}$$
(2.2)

for all $n, k \in \mathbb{N}$. Then, it is obvious by (2.2) that the matrix $\Lambda = (\lambda_{nk})$ is a triangle, that is $\lambda_{nn} \neq 0$ and $\lambda_{nk} = 0$ for all $k > n, n \in \mathbb{N}$. Further, by using (1.1), we have for every $x = (x_k) \in w$ that

$$\Lambda_n(x) = \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) x_k, \quad n \in \mathbb{N}.$$
(2.3)

Recently, Mursaleen and Noman [14] introduced the sequence spaces c_0^{λ} , c^{λ} and ℓ_{∞}^{λ} as follows:

$$c_0^{\lambda} = \Big\{ x \in w \colon \lim_n \Lambda_n(x) = 0 \Big\},$$
$$c^{\lambda} = \Big\{ x \in w \colon \lim_n \Lambda_n(x) \text{ exists} \Big\}$$

and

$$\ell_{\infty}^{\lambda} = \Big\{ x \in w \colon \sup_{n} |\Lambda_{n}(x)| < \infty \Big\}.$$

ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 4

490

Moreover, it has been shown that the inclusions $c_0 \subset c_0^{\lambda}$, $c \subset c^{\lambda}$ and $\ell_{\infty} \subset \ell_{\infty}^{\lambda}$ hold. We refer the reader to [14] for relevant terminology.

Now, as a natural continuation of the above spaces, we define ℓ_p^{λ} as the set of all sequences whose Λ -transforms are in the space ℓ_p , 0 ; that is

$$\ell_p^{\lambda} = \left\{ x \in w \colon \sum_n |\Lambda_n(x)|^p < \infty \right\}, \quad 0 < p < \infty.$$

With the notation of (1.2), we may redefine the space ℓ_p^{λ} , $0 as the matrix domain of the triangle <math>\Lambda$ in the space ℓ_p . This can be written as follows:

$$\ell_p^{\lambda} = (\ell_p)_{\Lambda}, \quad 0
(2.4)$$

It is trivial that ℓ_p^{λ} , 0 , is a linear space with the coordinatewise addition $and scalar multiplication. Further, it follows by (2.4) that the space <math>\ell_p^{\lambda}$, 0 ,becomes a*p*-normed space with the following*p*-norm:

$$||x||_{\ell_p^{\lambda}} = ||\Lambda(x)||_{\ell_p} = \sum_n |\Lambda_n(x)|^p, \quad 0$$

Moreover, since the matrix Λ is a triangle, we have the following result which is essential in the text.

Theorem 2.1. The sequence space ℓ_p^{λ} , $1 \le p < \infty$, is a BK-space with the norm given by

$$\|x\|_{\ell_p^{\lambda}} = \|\Lambda(x)\|_{\ell_p} = \left(\sum_n |\Lambda_n(x)|^p\right)^{1/p}, \quad 1 \le p < \infty.$$
(2.5)

Proof. Since (2.4) holds and ℓ_p , $1 \le p < \infty$, is a *BK*-space with the ℓ_p -norm (see [10, p. 218]), this result is immediate by Theorem 4.3.12 of Wilansky [19, p. 63].

Remark 2.1. One can easily check that the absolute property does not hold on the space ℓ_p^{λ} , $0 , that is <math>||x||_{\ell_p^{\lambda}} \neq |||x|||_{\ell_p^{\lambda}}$ for at least one sequence $x \in \ell_p^{\lambda}$. This tells us that ℓ_p^{λ} is a sequence space of non-absolute type, where $|x| = (|x_k|)$.

Theorem 2.2. The sequence space ℓ_p^{λ} of non-absolute type is linear isometric to the space ℓ_p , where 0 .

Proof. To prove this, we should show the existence of a linear isometry between the spaces ℓ_p^{λ} and ℓ_p , where 0 . For this, let us consider the transformation<math>T defined, with the notation of (2.3), from ℓ_p^{λ} to ℓ_p by $x \mapsto \Lambda(x) = Tx$. Then $Tx = \Lambda(x) \in \ell_p$ for every $x \in \ell_p^{\lambda}$. Also, the linearity of T is trivial. Further, it is easily to see that x = 0 whenever Tx = 0 and hence T is injective.

Furthermore, for any given $y = (y_k) \in \ell_p$, we define the sequence $x = (x_k)$ by

$$x_k = \frac{\lambda_k y_k - \lambda_{k-1} y_{k-1}}{\lambda_k - \lambda_{k-1}}, \quad k \in \mathbb{N}.$$

Then, we have for every $n \in \mathbb{N}$ that

$$\Lambda_n(x) = \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) x_k = \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k y_k - \lambda_{k-1} y_{k-1}) = y_n.$$

This shows that $\Lambda(x) = y$ and since $y \in \ell_p$, we obtain that $\Lambda(x) \in \ell_p$. Thus, we deduce that $x \in \ell_p^{\lambda}$ and Tx = y. Hence, the operator T is surjective.

Moreover, let $x \in \ell_p^{\lambda}$ be given. Then, we have that

$$|Tx||_{\ell_p} = ||\Lambda(x)||_{\ell_p} = ||x||_{\ell_p^{\lambda}}$$

and hence T is an isometry. Consequently, the spaces ℓ_p^{λ} and ℓ_p are linear isometric for 0 .

Theorem 2.2 is proved.

Finally, we know that the space ℓ_2 is the only Hilbert space among the Banach spaces $\ell_p, 1 \leq p < \infty$. Thus, we conclude this section with the following corollary which is immediate by Theorems 2.1 and 2.2.

Corollary 2.1. Except the case p = 2, the space ℓ_p^{λ} is not an inner product space, *hence not a Hilbert space for* $1 \le p < \infty$ *.*

3. Some imbedding relations. In the present section, we establish some imbedding relations concerning the space ℓ_p^{λ} , 0 . We essentially characterize the case inwhich the imbedding $\ell_p \subset \ell_p^{\lambda}$ holds for $1 \leq p < \infty$.

The notion of imbedded Banach spaces can be found in [9] (Chapter I) and it can be given as follows:

Let X and Y be Banach spaces. Then, we say that X is imbedded in Y if the following conditions are satisfied:

(i) $x \in X$ implies $x \in Y$, that is, the space Y includes X.

(ii) The space Y includes a vector space structure on X coinciding with the structure of X.

(iii) There exists a constant C > 0 such that $||x||_Y \le C ||x||_X$ for all $x \in X$.

In what follows, we shall denote the imbedding of X in Y by $X \subset Y$, assuming that the symbol \subset means not only the set-theoretic inclusion, but imbedding have the properties (ii) and (iii). Further, we say that the imbedding $X \subset Y$ strictly holds if the space Y strictly includes X.

Since any two sequence spaces have the same vector space structure, the condition (ii) is redundant when X and Y are BK-spaces.

Now, we may begin with the following basic result:

Theorem 3.1. If $0 , then the imbedding <math>\ell_p^{\lambda} \subset \ell_s^{\lambda}$ strictly holds.

Proof. Since the space ℓ_s strictly includes ℓ_p , the space ℓ_s^{λ} strictly includes ℓ_p^{λ} . Therefore, this result is immediate by the fact that the topology of the space ℓ_p^{λ} is stronger than the topology of ℓ_s^{λ} , that is

$$||x||_{\ell_{\alpha}^{\lambda}} = ||\Lambda(x)||_{\ell_{\alpha}} \le ||\Lambda(x)||_{\ell_{\alpha}} = ||x||_{\ell_{\alpha}^{\lambda}}$$

 $\begin{array}{l} \text{for all } x \in \ell_p^\lambda, \text{ where } 0$

Although the imbeddings $c_0 \subset c_0^{\lambda}$, $c \subset c^{\lambda}$ and $\ell_{\infty} \subset \ell_{\infty}^{\lambda}$ always holds, the space ℓ_p may not be included in ℓ_p^{λ} for 0 . This will be shown in the following lemmain which we write $\frac{1}{\lambda} = \left(\frac{1}{\lambda_k}\right)$. **Lemma 3.1.** Let $0 . Then, the spaces <math>\ell_p$ and ℓ_p^{λ} overlap. Further, if

 $\frac{1}{\lambda} \notin \ell_p$ then neither of the spaces ℓ_p and ℓ_p^{λ} includes the other one.

ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 4

492

Proof. Obviously, the spaces ℓ_p and ℓ_p^{λ} always overlap, since the sequence $(\lambda_1 - \lambda_0, -\lambda_0, 0, 0, \ldots)$ belongs to both spaces ℓ_p and ℓ_p^{λ} for 0 .

Suppose now that $\frac{1}{\lambda} \notin \ell_p$, $0 , and consider the sequence <math>x = e^{(0)} = (1, 0, 0, \ldots) \in \ell_p$. Then, by using (2.3), we have for every $n \in \mathbb{N}$ that

$$\Lambda_n(x) = \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) e_k^{(0)} = \frac{\lambda_0}{\lambda_n}.$$

Thus, we obtain that

$$\sum_{n} |\Lambda_n(x)|^p = \lambda_0^p \sum_{n} \frac{1}{\lambda_n^p}$$

which shows that $\Lambda(x) \notin \ell_p$ and hence $x \notin \ell_p^{\lambda}$. Thus, the sequence x is in ℓ_p but not in ℓ_p^{λ} . Hence, the space ℓ_p^{λ} does not include ℓ_p when $\frac{1}{\lambda} \notin \ell_p$, where 0 . $On the other hand, let <math>1 \le p < \infty$ and define the sequence $y = (y_k)$ by

$$y_{k} = \begin{cases} \frac{1}{\lambda_{k}}, & k \text{ is even,} \\ \\ -\frac{1}{\lambda_{k-1}} \left(\frac{\lambda_{k-1} - \lambda_{k-2}}{\lambda_{k} - \lambda_{k-1}} \right), & k \text{ is odd,} \end{cases}$$

Then $y \notin \ell_p$, since $\frac{1}{\lambda} \notin \ell_p$. Besides, we have for every $n \in \mathbb{N}$ that

$$\Lambda_n(y) = \begin{cases} \frac{1}{\lambda_n} \left(\frac{\lambda_n - \lambda_{n-1}}{\lambda_n} \right), & n \text{ is even,} \\ 0, & n \text{ is odd.} \end{cases}$$

Thus, we obtain that

$$\sum_{n} |\Lambda_{n}(y)|^{p} = \sum_{n} |\Lambda_{2n}(y)|^{p} = \sum_{n} \frac{1}{\lambda_{2n}^{p}} \left(\frac{\lambda_{2n} - \lambda_{2n-1}}{\lambda_{2n}}\right)^{p} \leq \\ \leq \frac{1}{\lambda_{0}^{p}} + \sum_{n=1}^{\infty} \frac{1}{\lambda_{2n-2}^{p}} \left(\frac{\lambda_{2n} - \lambda_{2n-2}}{\lambda_{2n}}\right)^{p} \leq \\ \leq \frac{1}{\lambda_{0}^{p}} + \sum_{n=1}^{\infty} \frac{1}{\lambda_{2n-2}^{p}} \left(\frac{\lambda_{2n}^{p} - \lambda_{2n-2}^{p}}{\lambda_{2n}^{p}}\right) = \\ = \frac{1}{\lambda_{0}^{p}} + \sum_{n=1}^{\infty} \left(\frac{1}{\lambda_{2n-2}^{p}} - \frac{1}{\lambda_{2n}^{p}}\right) = \frac{2}{\lambda_{0}^{p}} < \infty.$$

This shows that $\Lambda(y) \in \ell_p$ and hence $y \in \ell_p^{\lambda}$. Thus, the sequence y is in ℓ_p^{λ} but not in ℓ_p , where $1 \leq p < \infty$.

Similarly, one can construct a sequence belonging to the set $\ell_p^{\lambda} \setminus \ell_p$ for 0 .Therefore, the space ℓ_p also does not include ℓ_p^{λ} when $\frac{1}{\lambda} \notin \ell_p$ for 0 .

Lemma 3.1 is proved.

As an immediate consequence of Lemma 3.1, we have the following lemma.

Lemma 3.2. If the imbedding $\ell_p \subset \ell_p^{\lambda}$ holds, then $\frac{1}{\lambda} \in \ell_p$, where 0 .

Proof. Suppose that the imbedding $\ell_p \subset \ell_p^{\lambda}$ holds, where $0 , and consider the sequence <math>x = e^{(0)} = (1, 0, 0, ...) \in \ell_p$. Then $x \in \ell_p^{\lambda}$ and hence $\Lambda(x) \in \ell_p$. Thus, we obtain that

$$\lambda_0^p \sum_n \left(\frac{1}{\lambda_n}\right)^p = \sum_n |\Lambda_n(x)|^p < \infty$$

which shows that $\frac{1}{\lambda} \in \ell_p$. Lemma 3.2 is proved.

We shall later show that the condition $\frac{1}{\lambda} \in \ell_p$ is not only necessary but also sufficient for the imbedding $\ell_p \subset \ell_p^{\lambda}$ to be held, where $1 \le p < \infty$. Before that, by taking into

account the definition of the sequence $\lambda = (\lambda_k)$ given by (2.1), we find that

$$0 < \frac{\lambda_k - \lambda_{k-1}}{\lambda_n} < 1, \quad 0 \le k \le n,$$

for all $n, k \in \mathbb{N}$ with n + k > 0. Furthermore, if $\frac{1}{\lambda} \in \ell_1$ then we have the following lemma which is easy to prove.

lemma which is easy to prove. Lemma 3.3. If $\frac{1}{\lambda} \in \ell_1$, then

$$\sup_{k} \left(\lambda_k - \lambda_{k-1}\right) \sum_{n=k}^{\infty} \frac{1}{\lambda_n} < \infty.$$

Now, we prove the following:

Theorem 3.2. The imbedding $\ell_1 \subset \ell_1^{\lambda}$ holds if and only if $\frac{1}{\lambda} \in \ell_1$. **Proof.** The necessity is immediate by Lemma 3.2.

Conversely, suppose that $\frac{1}{\lambda} \in \ell_1$. Then, it follows by Lemma 3.3 that

$$M = \sup_{k} \left(\lambda_k - \lambda_{k-1}\right) \sum_{n=k}^{\infty} \frac{1}{\lambda_n} < \infty.$$

Therefore, we have for every $x = (x_k) \in \ell_1$ that

$$\|x\|_{\ell_{1}^{\lambda}} = \sum_{n} |\Lambda_{n}(x)| \leq \sum_{n=0}^{\infty} \frac{1}{\lambda_{n}} \sum_{k=0}^{n} (\lambda_{k} - \lambda_{k-1}) |x_{k}| =$$
$$= \sum_{k=0}^{\infty} |x_{k}| (\lambda_{k} - \lambda_{k-1}) \sum_{n=k}^{\infty} \frac{1}{\lambda_{n}} \leq M \sum_{k=0}^{\infty} |x_{k}| = M \|x\|_{\ell_{1}}.$$

This also shows that the space ℓ_1^{λ} includes ℓ_1 . Hence, the imbedding $\ell_1 \subset \ell_1^{\lambda}$ holds which concludes the proof.

Corollary 3.1. If $\frac{1}{\lambda} \in \ell_1$, then the imbedding $\ell_p \subset \ell_p^{\lambda}$ holds for $1 \leq p < \infty$.

Proof. The imbedding trivially holds for p = 1 by Theorem 3.2, above. Thus, let $1 and take any <math>x \in \ell_p$. Then $|x|^p \in \ell_1$ and hence $|x|^p \in \ell_1^{\lambda}$ by Theorem 3.2 which implies that $x \in \ell_p^{\lambda}$. This shows that the space ℓ_p is included in ℓ_p^{λ} .

Further, let $x = (x_k) \in \ell_p$ be given. Then, for every $n \in \mathbb{N}$, we obtain by applying the Hölder's inequality that

$$|\Lambda_n(x)|^p \le \left[\sum_{k=0}^n \left(\frac{\lambda_k - \lambda_{k-1}}{\lambda_n}\right) |x_k|\right]^p \le \\ \le \left[\sum_{k=0}^n \left(\frac{\lambda_k - \lambda_{k-1}}{\lambda_n}\right) |x_k|^p\right] \left[\sum_{k=0}^n \frac{\lambda_k - \lambda_{k-1}}{\lambda_n}\right]^{p-1} = \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) |x_k|^p.$$

Thus, we derive that

$$\|x\|_{\ell_p^{\lambda}}^p = \sum_n |\Lambda_n(x)|^p \le \sum_{n=0}^{\infty} \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) |x_k|^p =$$
$$= \sum_{k=0}^\infty |x_k|^p (\lambda_k - \lambda_{k-1}) \sum_{n=k}^\infty \frac{1}{\lambda_n} \le M \sum_{k=0}^\infty |x_k|^p = M \|x\|_{\ell_p}^p,$$

where $M = \sup_{k} \left[(\lambda_k - \lambda_{k-1}) \sum_{n=k}^{\infty} \frac{1}{\lambda_n} \right] < \infty$ by Lemma 3.3. Hence, the imbedding $\ell_p \subset \ell_p^{\lambda}$ also holds for 1 .

Corollary 3.1 is proved.

Now, as a generalization of Theorem 3.2, the following theorem shows the necessity and sufficiency of the condition $\frac{1}{\lambda} \in \ell_p$ for the imbedding $\ell_p \subset \ell_p^{\lambda}$ to be held, where $1 \leq p < \infty$.

Theorem 3.3. The imbedding $\ell_p \subset \ell_p^{\lambda}$ holds if and only if $\frac{1}{\lambda} \in \ell_p$, where $1 \leq p < \infty$.

Proof. The necessity is trivial by Lemma 3.2. Thus, we turn to the sufficiency. For this, suppose that $\frac{1}{\lambda} \in \ell_p$, where $1 \le p < \infty$. Then $\frac{1}{\lambda^p} = \left(\frac{1}{\lambda^p_k}\right) \in \ell_1$. Therefore, it follows by Lemma 3.3 that

$$\sup_{k} (\lambda_k - \lambda_{k-1})^p \sum_{n=k}^{\infty} \frac{1}{\lambda_n^p} \le \sup_{k} (\lambda_k^p - \lambda_{k-1}^p) \sum_{n=k}^{\infty} \frac{1}{\lambda_n^p} < \infty.$$

Further, we have for every fixed $k \in \mathbb{N}$ that

$$\Lambda_n(e^{(k)}) = \begin{cases} \frac{\lambda_k - \lambda_{k-1}}{\lambda_n}, & 0 \le k \le n, \\ 0, & k > n, \end{cases} \quad n \in \mathbb{N}.$$

Thus, we obtain that

$$\|e^{(k)}\|_{\ell_p^{\lambda}}^p = (\lambda_k - \lambda_{k-1})^p \sum_{n=k}^{\infty} \frac{1}{\lambda_n^p} < \infty, \quad k \in \mathbb{N},$$

which yields that $e^{(k)} \in \ell_p^{\lambda}$ for every $k \in \mathbb{N}$, i.e., every basis element of the space ℓ_p is in ℓ_p^{λ} . This shows that the space ℓ_p^{λ} contains the Schauder basis for the space ℓ_p such

that

496

$$\sup_{k} \|e^{(k)}\|_{\ell_p^{\lambda}} < \infty.$$

Therefore, we deduce that the space ℓ_p^{λ} includes ℓ_p . Moreover, by using the same technique used in the proof of Corollary 3.1, it can similarly be shown that the topology of the space ℓ_p is stronger than the topology of ℓ_p^{λ} . Hence, the imbedding $\ell_p \subset \ell_p^{\lambda}$ holds, where $1 \leq p < \infty$.

Theorem 3.3 is proved.

Now, in the following example, we give an important particular case of the space ℓ_p^{λ} , where $1 \leq p < \infty$.

Example 3.1. Consider the particular case of the sequence $\lambda = (\lambda_k)$ given by $\lambda_k = k + 1$ for all $k \in \mathbb{N}$. Then $\frac{1}{\lambda} \notin \ell_1$ and hence ℓ_1 is not included in ℓ_1^{λ} by Lemma 3.1.

On the other hand, we have $\frac{1}{\lambda} \in \ell_p$ for $1 and so <math>\ell_p$ is included in ℓ_p^{λ} . Further, by applying the well-known inequality (see [8, p. 239])

$$\sum_{n} \left(\sum_{k=0}^{n} \frac{|x_k|}{n+1} \right)^p < \left(\frac{p}{p-1} \right)^p \sum_{n} |x_n|^p, \quad 1 < p < \infty,$$

we immediately obtain that

$$\|x\|_{\ell_p^{\lambda}} < \frac{p}{p-1} \, \|x\|_{\ell_p}, \quad 1 < p < \infty,$$

for all $x \in \ell_p$. This shows that the imbedding $\ell_p \subset \ell_p^{\lambda}$ holds for $1 . Moreover, this imbedding is strict. For example, the sequence <math>y = \{(-1)^k\}_{k \in \mathbb{N}}$ is not in ℓ_p but in ℓ_p^{λ} , since

$$\sum_{n} |\Lambda_n(y)|^p = \sum_{n} \left| \frac{1}{n+1} \sum_{k=0}^n (-1)^k \right|^p = \sum_{n} \frac{1}{(2n+1)^p} < \infty, \quad 1 < p < \infty.$$

Remark 3.1. In the special case $\lambda_k = k + 1$ $(k \in \mathbb{N})$ given in Example 3.1, we may note that the space ℓ_p^{λ} is reduced to the Cesàro sequence space X_p of non-absolute type, where $1 \le p < \infty$ (see [16, 17]).

Now, let $x = (x_k)$ be a null sequence of positive reals, that is

 $x_k > 0$ for all $k \in \mathbb{N}$ and $x_k \to 0$ as $k \to \infty$.

Then, as is easy to see, for every positive integer m there is a subsequence $\{x_{k_r}\}_{r\in\mathbb{N}}$ of the sequence x such that

$$x_{k_r} = O\left(\frac{1}{\left(r+1\right)^{m+1}}\right)$$

Further, this subsequence can be chosen such that $k_{r+1} - k_r \ge 2$ for all $r \in \mathbb{N}$.

In general, if $x = (x_k)$ is a sequence of positive reals such that $\liminf x_k = 0$, then there is a subsequence $x' = \{x_{k'_r}\}_{r \in \mathbb{N}}$ of the sequence x such that $\lim_r x_{k'_r} = 0$. Thus x' is a null sequence of positive reals. Hence, as we have seen above, for every positive integer m there is a subsequence $\{x_{k_r}\}_{r \in \mathbb{N}}$ of the sequence x' and hence of the sequence x such that $k_{r+1} - k_r \ge 2$ for all $r \in \mathbb{N}$ and

$$x_{k_r} = O\left(\frac{1}{\left(r+1\right)^{m+1}}\right),$$

where $k_r = k'_{\theta(r)}$ and $\theta \colon \mathbb{N} \to \mathbb{N}$ is a suitable increasing function. Thus, we obtain that

$$(r+1)x_{k_r} = O\left(\frac{1}{\left(r+1\right)^m}\right).$$

Now, let 0 . Then, we can choose a positive integer m such that <math>mp > 1. In this situation, the sequence $\{(r+1)x_{k_r}\}_{r\in\mathbb{N}}$ is in the space ℓ_p .

Obviously, we observe that the subsequence $\{x_{k_r}\}_{r\in\mathbb{N}}$ depends on the positive integer m which is, in turn, depending on p. Thus, our subsequence depends on p.

Hence, from the above discussion, we conclude the following result:

Lemma 3.4. Let $x = (x_k)$ be a sequence of positive reals such that $\liminf x_k = 0$. Then, for every positive number $p \in (0, \infty)$ there is a subsequence $x^{(p)} = \{x_{k_r}\}_{r \in \mathbb{N}}$ of x, depending on p, such that $k_{r+1} - k_r \ge 2$ for all $r \in \mathbb{N}$ and $\sum_r |(r+1)x_{k_r}|^p < \infty$.

Moreover, we have the following two lemmas (see [14]) which are needed in the sequel.

Lemma 3.5. For any sequence $x = (x_k) \in w$, the equalities

$$S_n(x) = x_n - \Lambda_n(x), \quad n \in \mathbb{N},$$
(3.1)

and

$$S_n(x) = \frac{\lambda_{n-1}}{\lambda_n - \lambda_{n-1}} \Big[\Lambda_n(x) - \Lambda_{n-1}(x) \Big], \quad n \in \mathbb{N},$$
(3.2)

hold, where the sequence $S(x) = \{S_n(x)\}$ is defined by

$$S_0(x) = 0$$
 and $S_n(x) = \frac{1}{\lambda_n} \sum_{k=1}^n \lambda_{k-1} (x_k - x_{k-1})$ for $n \ge 1$.

Lemma 3.6. For any sequence $\lambda = (\lambda_k)$ satisfying (2.1), the sequence $\left\{\frac{\lambda_k}{\lambda_k - \lambda_{k-1}}\right\}_{k \in \mathbb{N}}$ is bounded if and only if $\liminf \frac{\lambda_{k+1}}{\lambda_k} > 1$, and is unbounded if and only if $\liminf \frac{\lambda_{k+1}}{\lambda_k} = 1$.

Now, we know by Theorem 3.3 that the imbedding $\ell_p \subset \ell_p^{\lambda}$ holds whenever $\frac{1}{\lambda} \in \ell_p$, $1 \leq p < \infty$. More precisely, the following theorem gives the necessary and sufficient conditions for this imbedding to be strict.

Theorem 3.4. Let $1 \le p < \infty$. Then, the imbedding $\ell_p \subset \ell_p^{\lambda}$ strictly holds if and only if $\frac{1}{\lambda} \in \ell_p$ and $\liminf \frac{\lambda_{n+1}}{\lambda_n} = 1$.

Proof. Suppose that the imbedding $\ell_p \subset \ell_p^{\lambda}$ is strict, where $1 \leq p < \infty$. Then, the necessity of the first condition is immediate by Theorem 3.3. Further, since ℓ_p^{λ} strictly includes ℓ_p , there is a sequence $x \in \ell_p^{\lambda}$ such that $x \notin \ell_p$, that is $\Lambda(x) \in \ell_p$ while $x \notin \ell_p$. Thus, we obtain by (3.1) of Lemma 3.5 that $S(x) = \{S_n(x)\} \notin \ell_p$. Moreover, since $\Lambda(x) \in \ell_p$, we have $\sum_n |\Lambda_n(x)|^p < \infty$ and hence $\sum_n |\Lambda_n(x) - \Lambda_{n-1}(x)|^p < \infty$ by applying the Minkowski's inequality. This means that $\{\Lambda_n(x) - \Lambda_{n-1}(x)\} \notin \ell_p$. Thus, by combining this with the fact that $\{S_n(x)\} \notin \ell_p$, it follows by (3.2) that the

sequence $\left\{\frac{\lambda_{n-1}}{\lambda_n - \lambda_{n-1}}\right\}$ is unbounded and hence $\left\{\frac{\lambda_n}{\lambda_n - \lambda_{n-1}}\right\} \notin \ell_{\infty}$. This leads us with Lemma 3.6 to the necessity of the second condition.

Conversely, since $\frac{1}{\lambda} \in \ell_p$, we have by Theorem 3.3 that the imbedding $\ell_p \subset \ell_p^{\lambda}$ holds. Further, since $\liminf \frac{\lambda_{k+1}}{\lambda_k} = 1$, we obtain by Lemma 3.6 that

$$\liminf \frac{\lambda_k - \lambda_{k-1}}{\lambda_k} = 0.$$

Thus, it follows by Lemma 3.4 that there is a subsequence $\lambda^{(p)} = \{\lambda_{k_r}\}_{r \in \mathbb{N}}$ of the sequence $\lambda = (\lambda_k)$, depending on p, such that $k_{r+1} - k_r \ge 2$ for all $r \in \mathbb{N}$ and

$$\sum_{r} \left| (r+1) \left(\frac{\lambda_{k_r} - \lambda_{k_r-1}}{\lambda_{k_r}} \right) \right|^p < \infty.$$
(3.3)

Let us now define the sequence $y = (y_k)$ for every $k \in \mathbb{N}$ by

$$y_k = \begin{cases} r+1, & k = k_r, \\ -(r+1)\left(\frac{\lambda_{k-1} - \lambda_{k-2}}{\lambda_k - \lambda_{k-1}}\right), & k = k_r+1, \quad r \in \mathbb{N}, \\ 0, & \text{otherwise.} \end{cases}$$

Then, it is clear that $y \notin \ell_p$. Moreover, we have for every $n \in \mathbb{N}$ that

$$\Lambda_n(y) = \begin{cases} (r+1)\left(\frac{\lambda_n - \lambda_{n-1}}{\lambda_n}\right), & n = k_r, \\ 0, & n \neq k_r, \end{cases} \quad r \in \mathbb{N}.$$

This and (3.3) imply that $\Lambda(y) \in \ell_p$ and hence $y \in \ell_p^{\lambda}$. Thus, the sequence y is in ℓ_p^{λ} but not in ℓ_p . Therefore, the imbedding $\ell_p \subset \ell_p^{\lambda}$ strictly holds, where $1 \le p < \infty$.

Theorem 3.4 is proved.

As an immediate consequence of Theorem 3.4, we have the following result:

Theorem 3.5. The equality $\ell_p^{\lambda} = \ell_p$ holds if and only if $\liminf \frac{\lambda_{n+1}}{\lambda_n} > 1$, where $1 \le p < \infty$.

Proof. The necessity is immediate by Theorems 3.3 and 3.4. For, if the equality holds then ℓ_p is imbedded in ℓ_p^{λ} and hence $\frac{1}{\lambda} \in \ell_p$ by Theorem 3.3. Further, since the imbedding $\ell_p \subset \ell_p^{\lambda}$ cannot be strict, we have by Theorem 3.4 that $\liminf \frac{\lambda_{n+1}}{\lambda_n} \neq 1$ and hence $\liminf \frac{\lambda_{n+1}}{\lambda_n} > 1$.

Conversely, suppose that $\liminf \frac{\lambda_{n+1}}{\lambda_n} > 1$. Then, there exists a constant a > 1 such that $\frac{\lambda_{n+1}}{\lambda_n} \ge a$ and hence $\lambda_n \ge \lambda_0 a^n$ for all $n \in \mathbb{N}$. This shows that $\frac{1}{\lambda} \in \ell_1$ which leads us with Corollary 3.1 to the consequence that the imbedding $\ell_p \subset \ell_p^{\lambda}$ holds and hence ℓ_p is included in ℓ_p^{λ} , where $1 \le p < \infty$.

On the other hand, by using Lemma 3.6, we have the bounded sequence $\left\{\frac{\lambda_n}{\lambda_n - \lambda_{n-1}}\right\}$ and hence $\left\{\frac{\lambda_{n-1}}{\lambda_n - \lambda_{n-1}}\right\} \in \ell_{\infty}$. Now, let $x \in \ell_p^{\lambda}$. Then $\Lambda(x) = \{\Lambda_n(x)\} \in \ell_p$ and hence $\{\Lambda_n(x) - \Lambda_{n-1}(x)\} \in \ell_p$.

Now, let $x \in \ell_p^{\lambda}$. Then $\Lambda(x) = \{\Lambda_n(x)\} \in \ell_p$ and hence $\{\Lambda_n(x) - \Lambda_{n-1}(x)\} \in \ell_p$. Thus, we obtain by (3.2) that $S(x) = \{S_n(x)\} \in \ell_p$. Therefore, it follows by (3.1) that $x = S(x) + \Lambda(x) \in \ell_p$. This shows that $x \in \ell_p$ for all $x \in \ell_p^{\lambda}$ and hence ℓ_p^{λ} is also included in ℓ_p . Consequently, the equality $\ell_p^{\lambda} = \ell_p$ holds, where $1 \le p < \infty$.

Theorem 3.5 is proved.

Finally, we conclude this section by the following corollary:

Corollary 3.2. Although the spaces ℓ_p^{λ} , c_0 , c and ℓ_{∞} overlap, the space ℓ_p^{λ} does not include any of the other spaces. Further, if $\liminf \frac{\lambda_{n+1}}{\lambda_n} = 1$ then none of the spaces c_0 , c or ℓ_{∞} includes the space ℓ_p^{λ} , where 0 .

Proof. Let $0 . Then, it is obvious by Lemma 3.1 that the spaces <math>\ell_p^{\lambda}$, c_0 , c and ℓ_{∞} overlap.

Further, the space ℓ_p^{λ} does not include the space c_0 . To show this, we define the sequence $x = (x_k) \in c_0$ by

$$x_k = \frac{1}{\left(k+1\right)^{1/p}}, \quad k \in \mathbb{N}.$$

Then, we have for every $n \in \mathbb{N}$ that

$$|\Lambda_n(x)| = \frac{1}{\lambda_n} \sum_{k=0}^n \frac{\lambda_k - \lambda_{k-1}}{(k+1)^{1/p}} \ge \frac{1}{\lambda_n (n+1)^{1/p}} \sum_{k=0}^n (\lambda_k - \lambda_k - 1) = \frac{1}{(n+1)^{1/p}}$$

which shows that $\Lambda(x) \notin \ell_p$ and hence $x \notin \ell_p^{\lambda}$. Thus, the sequence x is in c_0 but not in ℓ_p^{λ} . Hence, the space ℓ_p^{λ} does not include any of the spaces c_0 , c or ℓ_{∞} .

Moreover, if $\liminf \frac{\lambda_{n+1}}{\lambda_n} = 1$ then the space ℓ_{∞} does not include the space ℓ_p^{λ} . To see this, let 0 . Then, Lemma 3.4 implies that the sequence <math>y, defined in the proof of Theorem 3.4, is in ℓ_p^{λ} but not in ℓ_{∞} . Therefore, none of the spaces c_0 , c or ℓ_{∞} includes the space ℓ_p^{λ} when $\liminf \frac{\lambda_{n+1}}{\lambda_n} = 1$, where 0 .

Corollary 3.2 is proved.

4. The basis for the space ℓ_p^{λ} . In the present section, we give a sequence of points of the space ℓ_p^{λ} which forms a basis for ℓ_p^{λ} , where $1 \le p < \infty$.

If a normed sequence space X contains a sequence (b_n) with the property that for every $x \in X$ there is a unique sequence of scalars (α_n) such that

$$\lim_{n} \|x - (\alpha_0 b_0 + \alpha_1 b_1 + \ldots + \alpha_n b_n)\| = 0,$$

then (b_n) is called a Schauder basis (or briefly basis) for X. The series $\sum_k \alpha_k b_k$ which has the sum x is then called the expansion of x with respect to (b_n) , and written as $x = \sum_k \alpha_k b_k$.

Now, because of the transformation T defined from ℓ_p^{λ} to ℓ_p in the proof of Theorem 2.2 is onto, the inverse image of the basis $\{e^{(k)}\}_{k\in\mathbb{N}}$ of the space ℓ_p is the basis for the new space ℓ_p^{λ} , where $1 \leq p < \infty$. Therefore, we have the following:

Theorem 4.1. Let $1 \le p < \infty$ and define the sequence $e^{(k)}(\lambda) = \{e_n^{(k)}(\lambda)\}_{n \in \mathbb{N}}$ of the elements of the space ℓ_p^{λ} for every fixed $k \in \mathbb{N}$ by

$$e_n^{(k)}(\lambda) = \begin{cases} (-1)^{n-k} \frac{\lambda_k}{\lambda_n - \lambda_{n-1}}, & k \le n \le k+1, \\ 0, & n < k \text{ or } n > k+1, \end{cases}$$
(4.1)

Then, the sequence $\{e^{(k)}(\lambda)\}_{k\in\mathbb{N}}$ is a basis for the space ℓ_p^{λ} and every $x \in \ell_p^{\lambda}$ has a unique representation of the form

$$x = \sum_{k} \alpha_k(\lambda) e^{(k)}(\lambda), \tag{4.2}$$

where $\alpha_k(\lambda) = \Lambda_k(x)$ for all $k \in \mathbb{N}$,

Proof. Let $1 \le p < \infty$. Then, it is clear by (4.1) that

$$\Lambda(e^{(k)}(\lambda)) = e^{(k)} \in \ell_p, \quad k \in \mathbb{N},$$

and hence $e^{(k)}(\lambda) \in \ell_p^{\lambda}$ for all $k \in \mathbb{N}$. Further, let $x \in \ell_p^{\lambda}$ be given. For every non-negative integer m, we put

$$x^{(m)} = \sum_{k=0}^{m} \alpha_k(\lambda) e^{(k)}(\lambda).$$

Then, we have that

$$\Lambda(x^{(m)}) = \sum_{k=0}^{m} \alpha_k(\lambda) \Lambda(e^{(k)}(\lambda)) = \sum_{k=0}^{m} \Lambda_k(x) e^{(k)}$$

and hence

$$\Lambda_n(x - x^{(m)}) = \begin{cases} 0, & 0 \le n \le m, \\ & \\ \Lambda_n(x), & n > m, \end{cases} \qquad n, m \in \mathbb{N}.$$

Now, for any given $\varepsilon > 0$, there is a non-negative integer m_0 such that

$$\sum_{n=m_0+1}^{\infty} |\Lambda_n(x)|^p \le \left(\frac{\varepsilon}{2}\right)^p.$$

Hence, we have for every $m \ge m_0$ that

$$\|x - x^{(m)}\|_{\ell_p^{\lambda}} = \left(\sum_{n=m+1}^{\infty} |\Lambda_n(x)|^p\right)^{1/p} \le \left(\sum_{n=m_0+1}^{\infty} |\Lambda_n(x)|^p\right)^{1/p} \le \frac{\varepsilon}{2} < \varepsilon.$$

Thus, we obtain that

$$\lim_{m} \|x - x^{(m)}\|_{\ell_{p}^{\lambda}} = 0$$

which shows that $x \in \ell_p^{\lambda}$ is represented as in (4.2).

Finally, let us show the uniqueness of the representation (4.2) of $x \in \ell_p^{\lambda}$. For this, suppose on the contrary that there exists another representation $x = \sum_k \beta_k(\lambda) e^{(k)}(\lambda)$. Since the linear transformation T defined from ℓ_p^{λ} to ℓ_p in the proof of Theorem 2.2 is continuous [19] (Theorem 4.2.8), we have that

$$\Lambda_n(x) = \sum_k \beta_k(\lambda) \Lambda_n(e^{(k)}(\lambda)) = \sum_k \beta_k(\lambda) e_n^{(k)} = \beta_n(\lambda), \quad n \in \mathbb{N},$$

which contradicts the fact that $\Lambda_n(x) = \alpha_n(\lambda)$ for all $n \in \mathbb{N}$. Hence, the representation (4.2) of $x \in \ell_n^{\lambda}$ is unique.

Theorem 4.1 is proved.

Now, it is known by Theorem 2.1 that ℓ_p^{λ} , $1 \le p < \infty$, is a Banach space with its natural norm. This leads us together with Theorem 4.1 to the following corollary:

Corollary 4.1. The sequence space ℓ_p^{λ} of non-absolute type is separable for $1 \leq \leq p < \infty$.

Finally, we conclude our work by expressing from now on that the aim of the next paper is to determine the α -, β - and γ -duals of the space ℓ_p^{λ} and is to characterize some matrix classes concerning the space ℓ_p^{λ} , where $1 \le p < \infty$.

- Altay B., Başar F. Some Euler sequence spaces of non-absolute type // Ukr. Math. J. 2005. 57, № 1. – P. 1–17.
- 2. Altay B., Başar F., Mursaleen M. On the Euler sequence spaces which include the spaces ℓ_p and ℓ_{∞} I // Inform. Sci. 2006. **176**, No 10. P. 1450–1462.
- Aydın C., Başar F. On the new sequence spaces which include the spaces c₀ and c // Hokkaido Math. J. - 2004. - 33, № 2. - P. 383-398.
- Aydın C., Başar F. Some new paranormed sequence spaces // Inform. Sci. 2004. 160, № 1–4. P. 27–40.
- Aydın C., Başar F. Some new difference sequence spaces // Appl. Math. and Comput. 2004. 157, № 3. – P. 677–693.
- Aydın C., Başar F. Some new sequence spaces which include the spaces l_p and l_∞ // Demonstr. math. - 2005. - 38, № 3. - P. 641-656.
- Başar F, Altay B. On the space of sequences of p-bounded variation and related matrix mappings // Ukr. Math. J. – 2003. – 55, № 1. – P. 136–147.
- 8. Hardy G. H., Littlewood J. E., Polya G. Inequalities. Cambridge Univ. Press, 1952.
- 9. Krein S. G., Petunin Ju. I., Semenov E. M. Interpolation of linear operators. Providence, Rhode Island: Amer. Math. Soc., 1982.
- 10. Maddox I. J. Elements of functional analysis. 2nd ed. Cambridge: Cambridge Univ. Press, 1988.
- Malkowsky E. Recent results in the theory of matrix transformations in sequence spaces // Mat. Vesnik. - 1997. - 49. - P. 187-196.
- Malkowsky E., Savaş E. Matrix transformations between sequence spaces of generalized weighted means // Appl. Math. and Comput. – 2004. – 147, № 2. – P. 333–345.
- Mursaleen M., Başar F., Altay B. On the Euler sequence spaces which include the spaces l_p and l_∞ II // Nonlinear Analysis: TMA. 2006. 65, № 3. P. 707–717.
- Mursaleen M., Noman A. K. On the spaces of λ-convergent and bounded sequences // Thai J. Math. 2010. – 8, № 2. – P. 311–329.
- 15. Mursaleen M., Noman A. K. On som new differnce sequence spaces of non-absolute type // Math. Comput. Mod. 2010. 52. P. 603-617.
- 16. Ng P.-N. On modular space of a nonabsolute type // Nanta Math. 1978. 2. P. 84–93.
- Ng P.-N., Lee P.-Y. Cesàro sequence spaces of non-absolute type // Comment. Math. Prace Mat. 1978.
 20, № 2. P. 429–433.
- 18. Wang C.-S. On Nörlund sequence spaces // Tamkang J. Math. 1978. 9. P. 269-274.
- Wilansky A. Summability through functional analysis // North-Holland Math. Stud. Amsterdam etc., 1984. – 85.

Received 10.08.09, after revision -18.06.10