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ON THE BERNSTEIN -WALSH-TYPE LEMMAS
IN REGIONS OF THE COMPLEX PLANE

PO JIEMHW THITY BEPHIITEWHA - YOJIIIIA
B OBJIACTSAX KOMIIJIEKCHOI IMJIOIIUHA

Let G C C be a finite region bounded by a Jordan curve L := 9G, Q := ext G (respect to C), A :=

:={z: |z| > 1}; w = ®(z) be the univalent conformal mapping of €2 onto A normalized by ®(co0) = oo,
’

® (c0) > 0.
Let Ap(G), p > 0, denote the class of functions f which are analytic in G and satisfy the condition

111 @) = [[1£)IPdo < o0, *)

G

where o is a two-dimensional Lebesque measure.
Let Py (z) be arbitrary algebraic polynomial of degree at most n. The well-known Bernstein— Walsh
lemma says that

1Pa ()]l < 12" I Prllog)y 2 €2 (%)

Firstly, we study the estimation problem (xx) for the norm (x). Secondly, we continue studying the
estimation (+x) when we replace the norm || Py | @ by I Pl a5 (c) for some regions of complex plane.

Mpunyctumo, mo G C C — ckinyeHHa 06MacTh, mo obMexeHa kpusowo JKopnana L := 0G, Q := ext G
(innocno C), A := {z: |z| > 1} ; w = ®(z) — yniBanenTHe KOH(pOPMHE BinoGpaxkenHs ) Ha A, HopMoBaHe
3 BrkoprcTanHaM ®(00) = oo, & (00) > 0.

Hexait Ap(G), p > 0, nosnadae xiac GyHKuiit f, sxi € ananiTnaHuMe B G 1 3a10BOIBHSIOTE YMOBY

111 @) = [[15@)Pdo < o0, ®)
G

ne o — aBoBUMipHa Mipa JleGera.
Ipunyctumo, mwo Py, (z) — A0BinbHUIA anreOpaidHuil HONIHOM cTereHst He Oiiblie n. Y Bizomid iemi
Bepuireiina — Yonira cTBepaKy€eThCs, 10

1Pa(2)l < [ I Pallogy, 2 €0 (%)

Tlo-nepiie, po3mIsSHYTO 3a7ady OLIHIOBaHHS (*x) Uit HOpMHU (). Tlo-Apyre, IPOTOBKEHO JOCIHiIKEHHS
OIHIOBAHHS (%) Y BUTIA/IKY, KoMK HOpMA || Py, || (G) 3aMIHIOETBCS HOPMOIO 1 Prll 45 () M1 mesikux obmacTeit
KOMIUIEKCHO] IUIOIIUHH.

1. Introduction and main results. Let G C C be a finite region, with 0 € G,
bounded by a Jordan curve L := 0G, B := B(0,1) := {z: |2] < 1}, A := A(0,1) :=
= {w: |w| > 1}, Q := ext G (respect to C); w = ®(z) be the univalent conformal
mapping of Q onto the A normalized by ®(co) = oo, ® (c0) > 0, and ¥ := &1, Let
©n, denote the class of arbitrary algebraic polynomials P, (z) of degree at most n.

Let o be the two-dimensional Lebesque measure and let & (z) be a weight function
defined in G.

Let A,(h,G), p > 0 denote the class of functions f which are analytic in G and
satisfy the condition
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1/p

Iflla, ) == // h(z)|f(2)[Pdo, < o0
G

and A,(1,G) = A,(G).
In case of when L is rectifiable, let £,(L), p > 0, we denote the class of functions
f which are integrable on L and satisfy the condition

1/p

ey = | [ ] <o
L

Well known Bernstein — Walsh lemma [1] says that
|Pa(2)] < 12" Palle), 2 €D (1.1)

For R > 1,letus set Lp := {z: |®(2)| = R}, Gg :=int Ly, Qg := ext Ly. Then,
(1.1) can be written as following:

||Pn||c(6R) < RnHHPn”c(E)- (1.2)

For R=1+ C—l, according to (1.2), we see that the C-norm of polynomials P, (z)
n

in G and G is identical, i.e., the norm || P, llc(@) increases with at most a constant.
Similar estimation to (1.2) in space £,(L) was investigated in [2] and obtained as
following:
1Pall, Ly < R\ Pallgyny, P> 0. (13)

Here and throughout this paper, c, o c1,c2,. .. are positive constants (in general,
different in different relations), which are depended on G in general.

Definition 1.1 [3, p. 97; 4]. The Jordan arc (or curve) L is called K-quasiconformal
(K > 1), if there is a K-quasiconformal mapping f of the region D D L such that
f(L) is a line segment (or circle).

F(L) denotes the set of all sense preserving plane homeomorphisms f of the region
D D L such that f(L) is a line segment (or circle) and defines

Ky :=inf{K(f): fe F(L)},

where K (f) is the maximal dilatation of a such mapping f. L is a quasiconformal
curve, if K1, < 00, and L is a K-quasiconformal curve, if K;, < K.

We well know that there exists quasiconformal curve which is not rectifiable [3,
p. 104].

Let L be a K-quasiconformal and y(-) be a regular quasiconformal reflection across
L (for detail see Section 2). For R > 1, let L* := y(Lg), G* := int L*, Q* := ext L*;
w = ®PR(z) be the conformal mapping of Q* onto the A normalized by ®z(c0) = oo,
Pp(00) > 0,and Ug := &' d(T, L) :=inf {|C — 2|: z€ [, € L}.

The Bernstein— Walsh-type estimation in the space A,(h,G), p > 0 is contained in
[5]. In particular,

n+1/p

1Pnllayery Sc2 BT 1Pallayeyr >0, (1.4)
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where R* := 1+ ¢3(R — 1). Therefore, if we choose R = 1 + o , then (1.4) can be
shown that A,-norm of polynomials P,(z) in G and G is identical.

N. Stylianopoulos in [9] obtained the following result by changing the norm || P, || )
in (1.1) with the norm || P, || 4,(c)-

Lemma 1.1 [9]. Assume that L is quasiconformal and rectifiable. Then, for any
P, € pn

c(L)

d(z,L)

In this work, we study the similar problems to (1.5) for domains with K -quasiconformal
(non-rectifiable!) boundary. Now, we give the main results.

Theorem 1.1. Assume that L is K-quasiconformal. Then, for any P, € @, and
R > 1 we have

[Pa(2)] <

Vil Pallay@)|®(2)["F, 2z € Q. (1.5)

|Pa(2)] < mHP ol asem | @(2)"T, 2z € Q. (1.6)

Theorem 1.2. Assume that L is K-quasiconformal. Then, for any P, € p, we

have
cs

R < g T Pl l®@I T 0 (7

Remark 1.1. If z € él+c/n N Q for some ¢ > 1, then (1.7) is better than (1.5).
Theorem 1.3. Assume that L is K-quasiconformal. Then, for any P, € @, we
have

-1
NPl ase)| @1 (2T, 2 €Q, (1.8)

P < gy
where | = min{2,K4} .

[14+ V17
Remark 1.2. For K < { +T and for z € € such that far away from L, (1.8)

is better than (1.5).
Theorem 1.4. Assume that L is K-quasiconformal. Then, for any P, € @, we
have

|Pa(2)] < con || Pallay(e) | @rarym ()", 2€Q, (1.9)

where p := min {2, K4} .
Theorem 1.5. Assume that L is K-quasiconformal. Then, for any P, € @, we
have

c v—v~1 n re)
P < g™ P la@I @I 2 €D, (110)

where v := min {2, KQ} .
1 _
Remark 1.3. For any K < 5\/1 + V17 and the points z € Q,1/,, (1.10) is
better than (1.5).

Theorem 1.6. Assume that L is K-quasiconformal. Then, for any P, € @, we
have

|Pa(2)] < con”||Pull aye)| ()", 2 € Quyasm, (1.11)

where v := min {2, K2} .
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2. Some auxiliary results. Let G C C be a finite region bounded by Jordan curve
L and let w = ¢(z) be the univalent conformal mapping of G onto the B normalized
by ©(0) =0, ¢ (0) > 0 and ¢ := ¢~ 1.

The level curve (interior or exterior) can be defined for ¢ > 0 as

Ly ={z:|p(z)|=t, if t<1, |®(z)]=t, if t>1}, L1 =1L,

and let G; := int Ly, € := ext L;.

We note that, the region D in Definition 1.1 may be taken as D C C or D = C. Case
D = C gives the global definition of a K-quasiconformal arc or curve consequently. At
the same time, we can consider the domain D D L as the neighborhood of the curve
L. In this case, Definition 1.1 will be called local definition. This local definition has an
advantage in determining the coefficients of quasiconformality for some simple arcs or
curves.

Let us denote natural representation of L by z = z(s), s € [0, mes L].

Definition 2.1 [12]. We say that G € Cy if L := 0G has a continuous tangent
0(z) := 6(z(s)) for every points z(s).

According to [4], we have the following facts:

Corollary 2.1. If G € Cy, then K =1+ ¢, for all € > 0.

Corollary 2.2. If L is an analytic curve or arc, then K = 1.

For a > 0 and b > 0, we shall use the notations “a < b” (order inequality), if a < cb
and “a =< b” are equivalent to c;a < b < cya for some constants ¢, ¢, co (independent of
a and b) respectively. Throughout this paper €, 1, €9, . . . are sufficiently small positive
constants (in general, different in different relations), which depend on G in general.

Let L be a K-quasiconformal curve and D = C. Then [8] there exists a quasicon-
formal reflection y(-) across L such that y(G) = , y(Q) = G and y(+) fixes the points
of L. The quasiconformal reflection y(-) is such that it satisfied the following condition
[8, 7; p. 26]:

1
WO -2=IC—2l, 2€L e<ldl<:,

1
‘yf‘ = ‘yd =1, €< |<| < ga (21)

. 1
el = 19(QP%, Icl <& lyel =< I¢I7% 1Kl > <

and for the Jacobian .J, = |y.|? — |yz|* of y(-) the relation .J,, < 1 is hold.

On the other hand, let L be a K-quasiconformal curve and D C C. Then the
region D in the Definition 1.1 can be chosen to be the region D := Gg,\G,, for a
certain number 1 < Ry < 2, depending on ¢, ®, f, and ro = R, ! In this case, it

is known that the function a(-) = f~! { [m}

} is a K2-quasiconformal reflection

across L as shown in [11, p. 28] by analogously in [8, p. 75], that is, () is a K2-
quasiconformal mapping leaving the points on L fixed and satisfying the conditions
a(Gz\G) € G\Gyy, a(G\Gr) C Gg,\G for some 1 < R < Ry, 19 < 7 < 1.
Therefore, by means of the extension theorem of a quasiconformal mapping [3, p. 98],
without loss of generality, we may assume that
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y(z) =al(z), zeD.

Then, taking y(z) that satisfies (2.1) and denoting the restriction of y(z) in D as a*(-),
we see that the following conditions are also satisfied for a*(-):

1
|21 —a®(2)| =< |z1—2], z1€L, e<]z|< =
* * 1
‘a2| = |az| = 17 €< |Z| < ga (22)

_ 1
ozl <o ()%, Jel <&, faZl < [217% |2] > 2,

and for the Jacobian J,« = |a}|? — |a%]? of o*(-) the relation J,~ =< 1 is hold.

For simplicity of notation, we denote the o*(-) also as «(-). Throughout this paper
we assume that D C C.

For R > 1, we denote L* := y(Lg), G* :=int L*, Q* := ext L*; w = ®r(z) be
the conformal mapping of Q* onto the A normalized by ® (c0) = oo, ®x(c0) > 0;
Up=®g". Fort>1,let L} := {z: |Pr(z)| = t}, G} :=int L}, Qf := ext L}.

According to [10], for all z € L* and ¢ € L such that |z — t| = d(z, L) we have

d(z,L) = d(t, L) = d(z,L%).
(2.3)
[Pr(2)| < [Pr(H)| <1+ c(R-1).

Lemma 2.1 [11]. Let L be a K-quasiconformal curve, zy € L, 29, z3 € QN
N{z: |z — 21| < d(z1,Lry)}; w; = ®(25), j = 1,2,3. Then:

a) the statements |z1 — zo| < |21 — 23| and |wy — wo| < |wy — w3| are equivalent,
so are |z1 — zo| < |21 — 23] and |w1 — wa| < |w1 — w3l;

b) if |21 — 22| < |21 — 23|, then

—2 K2
21 — 23 w1 — w3
_< ’

‘wl—wg

wyp — w2 21 — 22 w1 — W2

where 0 < ro < 1 a constant, depending on G.
In particular, for arbitrary zy € L, 1 < R < Ry and fixed z3 € Lr, we have

(R—1)X* < d(z1,Lg) < (R— 1)K, (2.4)

Remark 2.1. The left part of (2.4) for arbitrary continuum can be replaced by (see,
for instance, [7])
(R—1)? < d(z1,LR). (2.5)

Let {z; };nzl be a fixed system of the points on L and the weight function h (z) is
defined as the following:

h(z) = ho () H |z — 277, (2.6)
j=1

where y; > —2 for j = 1, m and hq (2) is uniformly separated from zero in G:

ho(2) >¢co >0 Vzed.
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Lemma 2.2 [6]. Let L be a K-quasiconformal curve; h(z) is defined in (2.6). Then,
Jor arbitrary P, (z) € pp, any R>1andn=1,2,..., we have

IPall Ay (G oinsy) < AR™VP(Palla,hcys P >0, (2.7

where ¢, ¢y are independent of n and R.
3. Proof of theorems. 3.1. Proof of Theorem 1.1. First of all, we note the estimation

1 _
|P7l(z)| = )||Pn||A2(GR)> z€G. (3.1

d(Z,LR

Since L is a K-quasiconformal, we conclude that any Lr, R > 1, is also quasiconfor-
mal. Therefore, we can construct a ¢ (K')-quasiconformal reflection yr (2) , yr (0) = oo,
across L such that yg (Gr) = Qg, yr (2r) = Gr and yg(-) fixes the points of Ly
that satisfies conditions (2.1) described for y (2) . By using this constructed yg (2) , we
can write the following integral representations for P, (z) [7, p. 105]:

:—7// Cng sdo¢, z € Gp. (3.2)
(yr (C) —

For e > 0, let us set U.(z) := {(: |¢ — 2| < €} and without loss of generality we may
take U, := U.(0) C G*. For arbitrary fixed point z € L we have

120 (O llyr.cl 1P (O lymel
o / lyr (€) — 2[? doc+ 2 / mdgc = Ji+J2. (33)
GR\US

To estimate the integral J;, applying the Holder inequality we get

Yr,cl? gl
J2§//Pn Qda//i’do—<Pn2 //77610
1 g | (<)| ¢ y ‘yR (C) — Z|4 ¢ || ||A2(G) g |yR (C) — Z|4 ¢

According to (2.1), |yp 7| < lyr(¢)|?, for all ¢ € U., because of |{ — z| > ¢, |yr(¢) —
— 2| < |yr(¢)| for 2 € L and ¢ € U.. On the other hand, if J, ,, := [yrc|* — vz ¢l* is
Jacobian of the reflection yr(¢), we can obtain

|Jy;R| - ‘ny‘Q

as in [12]. Then, we can find

|yR |
= 1Pl // Tl oo <

yr(Ue)
< 1Bnll, ) // < 1Pall? ) (3.4)
[(—z|>c1
For the J;, we get
|Yr,cl*do
// lyr e _ZC|4 / [P (C) [Pdoc =: Jo1Jas. (3.5)
Gr\Ue
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For the integral J,1, we get

m [l s [ et 0o

y(GR\U.) |¢—21>d(2,Lr)
and for Jos :
Ja= [[ 1Pa0) Po < //|P ) o = I1Palfiy iy
GR\UE
Then,
J3 = JnJas < d7? (2, Lr) [|Pull, G ) (3.7)

Combining (3.3), (3.4), (3.5) and (3.7), we prove the estimation (3.1). To complete the
proof of Theorem 1.1, according the maximum modulus principle, for any z € Q we
have

P,(z) P,(z) 1
) < max | — | = max|P, —||P, :
‘@n%) R trel A ey S
or 1
P, —|| Py ()|
IPa) = gy Pellaaton |9(2)

Taking R = 1+ 1/n, according to Lemma 2.2, we obtain the proof of Theorem 1.2.
3.2. Proof of Theorem 1.3. For the arbitrary fixed R > 1, let us set L* := y(LRg).
According to (2.3), the number £; (consuquently p; := 1+ &1(R — 1)) can be chosen

For z € Q and w = ®r(z) let us get

Po (¥h (@)

hR (’LU) = wn+1
Cauchy integral representation for unbounded region gives

() =~ [ ha () 2

[t|=R1

Forall [t| = Ry > 1, [t|"*" = R > 1, then

1 dt
Ay = 1Pa(Er ) <l [P0 ()] g
27 [t —w|
[t|=R1
Applying the Holder inequality, we get
1/2
Ay < Ju / Py (U5 (£) Wl (1) [21dE] |
[t|=R1
1/2
1
dt 1’L+1 Al 1/2 39
| | et | = s G

[t|=R1
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Let us set

fu (t) == P (TR (1) Vg (1)

Now, we separate the circle |t| = R; to n equal partd,, with mesd,, =

2
i and by
n

applying the mean value theorem to the integral AL we get

/Ifn ||dt|—Z

klék

2
fn(tk)‘ mes oy, t € 0.

On the other hand, by applying mean value estimation,

S ()] € = T | . ] ©Pa

IS AES!

we obtain

- 6
A:L < Z 8 Ok // | fn (€ | dog, tk € Ok-

Ilfl—1
(It et <[t} 1

Taking into account that discs with origin at the points ¢}, at most two may be crossing,

we have
0
A}L = tInleS i // |fn | dU{ =n // |fn | dO’g
=

1<|€[<p1 1<|él<p
According to (2.2), for AL, we get
Al <n / 1P (2) [Pdo. < nl|Pall%, - (3.10)
G5 \G*

To estimate the integral B, taking into account the estimation for the W', (see, for
instance, [7], Theorem 2.8) and Lemma 2.1 written for ®z(z), from (2.4) and (2.5) we
get

po [ oDt
" (g (t),L*) [t —w|?
[t|=R1

/ M—l i .
d> (R (), L*) |t — w|> & |t — w|

[t|=R1

- 1 / (|t - 1)° dt|
d?(z,Ly,) (It] = 1) |t —w|* &
[t|=R1

! / 1 jatl
L O e e e
[t|=R4
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1 2p—p~ -1 1 n2(n—pn~ -1

=< 7652(2@*31) 2D , (3.11)

where 1 := min {2, K*} . Relations (3.8), (3.9), (3.10), and (3.11) yield

n 1 -1y
|P77,(Z)| < |’LU‘ +1\/ﬁ||Pn||A2(G)mn(# no) 1/2:

nle=rh o nil | p q
—W\ R Pallase), 2z €
Theorem 1.3 is proved.
3.3. Proof of Theorem 1.4. Proof of the Theorem 1.4 will be similar to proof of

Theorem 1.3. The term in (3.11) will be treated as the following:

-1%  |d

5l ( .

n /d2<mR<t>7L*>|t—w|2
[t|=R1

1 |dt| |dt] 2u—1
/ (|t| _ 1)2”—2 |t _ w|2 < / (|t| - 1)2N <n s . (3.12)

[t|=R1 [t|=R1

And, consequently,

|Pa(2)] < [w[ " Val|Pallay@yn ™ = 0| Pall ag)| ()", 2 € .

-1
3.4. Proof of Theorem 1.5. Let R > 1 be arbitrary fixed and let R; := 1 + RT
For z € Qr and w = ®(z) let us get
P (¥ (w))

Cauchy integral representation for unbounded region gives

1 dt
[t|=Ry

Following the method used in proof of Theorem 1.3, similar terms are treated as
below:

N i 1 |dt|
A= 1P ) < o [P o)
[t|=R1

1/2

< ]+ /|Pn<w>w<t>|2|dt| x

[t|=R1
1/2

1 e =
| weme]| =@ e
[t|=R1
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Let us set .
fo () = P (W (1)) ' (1)
. 27TR1

Now, we separate the circle |t| = R; to n equal part §,, with mesd,, =

and by
applying the mean value theorem to the integral Xl we get

= > [T Plan = z o (6) Prmessi 1 € 55

k=1%,
On the other hand, applying mean value estimation, we obtain

1)
Aoy mesde I[ 1m©pae tea

T t —1
k=1 |k| le—tl 116 -1

~ 1)
At < ;‘fsi // 17 (€) [2doe < m // 17 (6) Pdoe.

1<¢|<R 1<|¢|<R

According to (2.2), for /T}l, we get
i n/ 1Py (2) Pdo. < Pl (3.14)

Gr\G

To estimate the integral E}L, taking into account that the estimation for the U’ (see, for
instance, [7], Theorem 2.8) and Lemma 2.1, we get

- 1% |d
Bl (‘ _
n /d2<W<t>,L>|t—w|2

[t|=R1

/ (It - 1)? | )
P (0). 1) [t — wP 2|t = wPl”

[t|=R1

P ED S N
d?(z,Lg,) (Jt] — 1) [t — w[>=2/v
[t|=R1

- / 1 |dt] )
(2, Lg,) (|| — 1)2(1171) |t —w[2(0-1/v)

[t|=R1

1 2yt
e 3.15
S B Ia) ’ (3.15)

where v := min {2, K2} .

Let us denote ¢ = ¥(7) € L, {(; = ¥(m) € Lg, such that d(z,L) = |z —
— (|, d(z,Lr,) = |z — (1], and denote this image from 7 = ®((), 71 = ®({1). Also
we denote points |7*| = 1, |w — 7*| = |w| — 1, |77| = R1, |w — 75| = |w| — Ry.
According to R; =1+ % we have |w — 7| < |w — 7f| = |w — 7] < |w — 7.
Then, by Lemma 2.1 we get d(z, Lr,) > d(z, L). Therefore, we obtain
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B! < 2v—v=h-1, 3.16
"SRG (3.16)

Relations (3.13), (3.14), (3.16) and Lemma 2.2 yield

n 1
|P(2)] < |wl] +1\/ﬁ||pn||A2(GR)mn( —1/2 _

(w—vh
n _
=———|®(x)""||P, Q .
d(Z,L) | (Z)| || ||A2(G)7 S 1+1/n

Theorem 1.5 is proved.

3.5. Proof of Theorem 1.6. Analogous to proof of the Theorem 1.4, the proof of the
Theorem 1.6 is identical to proof of the proof Theorem 1.5. In this case, the following
the method used in the proof of Theorem 1.5 and (3.15) will be treated as the following:

1 (t-1° |t
B = /d2<w<t>,L>|t—w|2

[t|=R1

LR .
= —— <n .
/ (1t = 7 1t = wl? (1t - 1
|=R R

And, consequently,
1Pa(2)] < [w]™ Vil Pall agiaryn” ™2 < | Pall ay () [R(2)" T, 2 € Quyayme

Theorem 1.6 is proved.
We note that the Theorems 1.2—-1.6 are sharp. This can be clearly seen by the

example P, (z) = Zn O(j +1)z7, G = B. In this case,
=

(n+1)(n+2) m(n+1)(n+ 2)
1Palley = " EEL P4y = TR

Then, for all z € L1441/, such that [P, (2)| = || Pu|| ¢G5, we have

1
1Pa(2)| 2 1 Pallo) 2 —7=nlPullaxe) =

Ver

| (2)"

1 d(L,Liy1/n) -
D@(z)[n T =

= n|| P,
V2r d(L, Liy1/n) 1Pl

> cio 1Pl 4z ()@ ()"

1
d(L, L1s1/n)
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