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ARE THE DEGREES OF BEST (CO)CONVEX
AND UNCONSTRAINED POLYNOMIAL APPROXIMATION
THE SAME? 11

4" OTHAKOBI MOPSIIKN HAMKPAILIOTO (KO)OMYKJIOIO
HABJIMKEHHSI TA TIOJITHOMIAJIBHOT'O HABJIW/KEHHS
BE3 OBMEKEHB? 11

In Part I of this paper, we proved that for every o > 0 and a continuous function f, which is either convex
(s = 0) or changes convexity at a finite collection Ys = {y;}?_, of points y; € (—1,1), one has

sup{n® B (f,Ys): n > N*} < c(a, s)sup{n®En(f): n > 1},

where Ep (f) and E,(?) (f, Ys) denote, respectively, the degrees of best unconstrained and (co)convex approxi-
mation, and c(a, s) is a constant depending only on o and s. Moreover, we showed that A'* may be chosen
tobelif s =0o0r s =1, a # 4, and that it has to depend on Ys and o if s =1, a =4 or s > 2.
In this Part II, we show that a more general inequality
sup{n®E{Y (f,Ys): n > N*} < c(a, N, s)sup{n®En(f): n >N},

is valid, where, depending on the triple (o, N, s), N* may or may not depend on o, N, Y5 and f.

VY yacrtuni I wiei crarri goBeneHo, o uis kKoxHoro o > 0 ta HenepepBHoi QyHKuii f, sika abo omykia
(s = 0) abo 3miHIOE OMyKIiCTB y cKinyenHOMY HaGopi Ys = {y;}5_; Touok y; € (—1,1),

sup«{n‘)‘Eg)(f7 Ys): n >N} < cla, s)sup{n®En(f): n>1},

ne En(f) Tta E,(«?)( f,Ys) 03HAQYAIOTH BIANOBIAHO MOPAJOK HAWKPALIOro HAONMKEHHS 0e3 OOMEXeHb Ta
(ko)omykioro HaGmmkeHHs, c(c, $) € CTajloo, L0 3aJEKHUTh JIHIIE Big o i s. Bt Toro, Gyino mokasa-
HO, w0 N* MOXHa BUOpaTH PiBHUM OuHMLI, AKINO s = 0 a60 s = 1, o # 4, 1 10 BOHO TIOBUHHO 3aJIEXKaTh
Bix Ys i, sakmo s =1, « = 4 abo s > 2.
V¥ gactuni Il nokaszaHo, [0 BUKOHY€THCS OLIBII 3aradbHa HEPiBHICTh
sup{n®ES) (f,Y2): n > N*} < ca, N, s)sup{n®En(f): n >N},

Jie B 3a5exKHOCTI Bix Tpiiiku (v, N, s) uneno N* moxe 3anexaru ado i Big a, N, Y 1a f.

1. Introduction and main results. Let C[—1, 1] be the space of continuous functions on
[—1, 1] equipped with the uniform norm ||-||, and let Y, s € N, be the set of all collections
Y, = {yi}j:1 of points y;, such that ysy; := -1 < ys < ... <y; <1 =:yp. For
Y, € Y, denote by A?(Yj) the set of all piecewise convex functions f € C[—1, 1], that
change convexity at the points Y, and are convex on [y;, 1]. In particular, Yy = {&},
and A? = A2?(Y;) denotes the set of all convex continuous functions. If f is twice
continuously differentiable in (-1, 1), then f € A%(Y;) if and only if f”(z)II(x;Ys) >
> 0,z € (—1,1), where (x;Yy) := Hjﬁl(m —vi), (I(z,Yy) :=1).
We also denote by

E.(f) =inf {||f = Pu||: P, €P,}
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and
EQ(f,Ys) ==inf {[|f — Pu|: P, €P,NA*Y)}

the degrees of best unconstrained and coconvex approximation of a function f by
polynomials from PP,,, the space of algebraic polynomials of degree < n. In particular,

EP(f) = EP(f,Yo) =t {|f = Pull: Pu€PynA?}

is the degree of best convex approximation of f.

While it is obvious that E, (f) < E7(12)( f), Lorentz and Zeller [1] showed that the
inverse inequality E,(f)( f) < cEL(f), is invalid even if a constant ¢ is allowed to
depend on the function f € AZ. There are many examples showing that the same is
true for piecewise convex functions from A?(Y). The existence of counterexamples
notwithstanding, we recently have proved the following result.

Theorem A [2]. For each a > 0 and integer s > O there is a constant ¢(«, s), such
that for every collection Yy € Y and a function f € A%(Y,) we have

sup {n®ED(f,Y,): n = N*} < ela, s)sup {n® B (f): n =1}, (LD)

where N* = 1, if either s = 0, 0or s = 1 and o # 4, and N* = N*(a, Ys) — a constant,
depending only on o and Yy, if either s > 2, or s = 1 and o = 4.

We also have shown that Theorem A cannot be improved, that is, if either s > 2, or
s =1 and o = 4, then the constant A'* cannot be made independent of Y.

Theorem B [2]. Let s > 2. Then for every @ > 0 and m € N, there exist a
collection Y, € Y, and a function f € A%(Y}), such that

mEP (f,Ys) > c(a, s)m T[T sup {n“E,, (f): n > 1}, (1.2)

where c(«, 8) is a positive constant and [ is the ceiling function (i.e., the smallest
integer not less than «).
Theorem C [2]. For every Y1 € Y there exists a function f € A%(Y1), satisfying

sup {n4En(f): n e N} =1,

such that for each m € N, we have

1EA)(1Y, >( 1 m—l), 13
m B (f Y1) 2 T m2o(n) (13
and
sup {n*EX) (f,Y1): n € N} > ¢|lng(y1)], (1.4)

where p(y) := /1 — y? and c is an absolute positive constant.

Everywhere below, we denote by ¢(...) positive real constants that depend only
on the parameters, sets, functions in the parentheses and which may vary from one
occurrence to another even when they appear in the same line. In particular, ¢ denote
absolute positive constants. Similarly, A/(...) denote natural numbers that depend only
on the quantities in the parentheses. For instance, A (a,Y;) denotes a natural number
that depends only on « and Y, and nothing else.

The main goal in this paper is to answer the following questions:
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What happens if we replace n > 1 in (1.1) by n > N, where N’ € N? Is
Theorem A still valid? What can be said about the dependence of N'* on a,
N, Y, and f?

Our first result is the following generalization of Theorem A.
Theorem 1.1. For each a > 0, N € N, s € Ny := NU {0}, Y; € Y, and
f € A%(Yy), there exists an N* € N, such that

sup {naE,(f)(f,Ys): n>N*} <cla,N,s)sup {n®E,(f): n > N}. (1.5)

Note that N* € N in the statement of Theorem 1.1 may or may not depend on «,
N, Y; and f. Our Theorem 1.2 below provides a complete answer to when and how this
dependence occurs.

It is rather easy to see that the assertion of Theorem 1.1 in the case N' = 2 immedi-
ately follows from Theorem A. Namely,

if V' = 2, then Theorem 1.1 is valid with N* = 2, if either s = 0, or s = 1
and a # 4, and N* = N*(«, Y;) if either s > 2, or s = 1 and o = 4.

Indeed, noting that the function g := f—pa, where py := arginf,cp, || f—p||, satisfies
En(9) = En(f), B (9,Y:) = EP(.Y,) forall n > 2, and Ei(9) < llg|| = Ea(f),
we have

sup {nO‘ET(LZ)(f,YS): n>N*} =sup {no‘E,(f)(g,Ys): n>N*} <
< c(a,s)sup {n®Ey(g9): n > 1} = c(a, s)sup {n*E,(f): n > 2}.
Moreover, Theorems B and C imply that

if N* = 2, then A'* cannot be made independent of Y; if either s > 2, or
s=1and o = 4.

We now emphasize that, except when 3 < A < s+2, N** cannot be smaller than \V.
Indeed, to see this it suffices to consider any function f; € A?(Y) which is a polynomial
of degree exactly N — 1, for instance, such that f/(z) := (z + 2)N~5=31I(z; Ys) if
N > s+ 3, and f,(x) := x if N' = 2. Then, E,(fs) = 0 for all n > N, and one
immediately gets a contradiction assuming that N'* in (1.5) is strictly smaller than N If
3 <N < s+2, then Py N A%(Y,) = Py N A%(Y;) (any polynomial of degree < s + 1
which has s convexity changes must be linear), and so E/(\?)( Y = E§2)( LY, =
= Es(f), i.e., if (1.5) is valid with N* = N/, then it is also valid with N* = 2.

Also, by Theorem B one may not expect, for s > 2, that N'* be independent of Y.

Given a triple (o, V, s), we want to determine the exact dependence of N* on all
the quantities appearing in the statement of Theorem 1.1 so that (1.5) is satisfied.

We will show that there are three different types of behavior of A'*, and in order to
describe them we introduce the following notations.

Definition. Let (o, NV, s) € Ry x N x Np.

1. We write (o, N, s) € “+”, if Theorem 1.1 holds with N* = N.

2. We write (a, N, s) € “@”, if

(a) Theorem 1.1 holds with N* = N*(a, N, Yy), and
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(b) Theorem 1.1 is not valid with N** which is independent of Y, that is, for each
A > 0and M € N there are a number m > M, a collection Yy € Y, and a function
f € A%(Yy), such that

mOEQ) (f,Y,) > Asup {n®E,(f): n > N} (1.6)

3. We write (a, N, s) € “&”, if
(a) Theorem 1.1 holds with N* = N*(a, N, Y5, f), and

(b) Theorem 1.1 is not valid with N** which is independent of f, that is, for each
A>0,M €N, andY; € Y, there arem > M and f € A*(Ys), such that (1.6) holds.

It turns out that N* depends on

a = [a/2] (1.7)

rather than on « itself with the only exception in the case @ = 2, N' < 2 and s = 1,
which has already been discussed above.
Theorem 1.2. Let (o, N,s) € Ry x N x Ny. Then

) (a,N,s)e“+7if
s=0,a<2and N < 3;
s=0,a>3and N € N;
s=1l,a=1and N < 2;
s=l,a=2,a#4and N <2;
s=1,a=3and N < 4;
s=1,a>4and N € N.

(i) (a,N,s)e“aif
s>0,a<2and N > s+ 4;
s>l a=1and N = s+ 3.

(i) (o, N,s) € “@®” in all other cases, except perhaps the case s > 3, a = 2 and
N =s+3.

We recall that the cases N = 1 and A = 2 in this theorem follow from Theorems A —
C and the discussion following the statement of Theorem 1.1.

In order to make it easier to see and remember what Theorem 1.2 establishes, and to
recognize the patterns of behavior of the triples (a, N, s), we summarize the results in
tables relating A and @, for the various values of s.

The symbol “1in the positions (@, ') = (2,1) and (2, 2) for s = 1 (the exceptional
case) means that (o, N, s) € “+” if a # 4 (i.e., 2 < a < 4), and (a, N, s) € “®” if
a=4.

We also write “?” in the position (&, ) = (2, s+ 3) for s > 3 since we do not know
exactly what happens in this case. We do know, however, that (o, V/, s) € “&” or “&”,
when s > 3,2 < o <4 and N = s + 3 (see Theorem B and case 11 in Section 4.2).
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a : : : :
4 + + + + +
3 + + + + +
2 + + + © ©
1 + + + © ©
1 2 3 4 5 N
s=0
a : : : : :
5 + + + + + +
4 + + + + + +
3 + + + + ® SY
2 + + @ ©® © ©
1 + + @ © S e
1 2 3 4 5 6 N
s=1
a : : : : : :
4 © @ ® S5, ® S S
3 © (&) ©® ©® ® @ ©®
2 D &5 D D D © ©
1 &5 @ &5 D O © ©
1 2 3 4 5 6 7T N
s=2
@ : : : : : :
4 @ D D D &5 ©® )
3 ® S5} D ® @ ©® ®
2 ) @ ©® ) ? © ©
1 ) S5 @ ©® © S ©
1 2 s+1 s+2 s+3 s+4 s+5 N
s>3

2. Proofs of the negative results. We first state the following well known result
(see, e.g., [3, p. 418], Theorem 7.5.2).
Lemma 2.1. Letr € Nand G.(z) = (x +1)"In(x + 1), G.(—1) := 0. Then

E.(G,) <c(r)n™, neN. 2.1

Next we prove the following lemma.

Lemma 2.2. For every A > 0 and m € N, there are points y; € (—1,1) and

h € (—1,1), and functions f € A?(Y1) and f € A2%(Y1), where Y1 := {y1} and
Y1 := {1}, such that

n'El(f) <1, n=3, and n°BE,(f)<1, n>5, (22)

while
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EX(f,Y1)>A and EP(f Y1) > A

Proof. Given A > 0 and m € N, in the proof of [4] (Theorem 2.4), we have
constructed functions g4 € A%(Y;) and g € A?%(Y;), for some —1 < y; < 1 and
—1 < 91 < 1, such that

EP (g, Y1) > A and EP (g, V1) > A. (2.3)

The functions had the representation go, = Po,—1 + ¢.G,, 7 = 2,3, where Ps,._1 €
€ Py,._; and ¢, is an absolute constant. By virtue of (2.1) we therefore conclude that

n* Ey(ger) <c, n>2r—1,

and the proof is complete.

Remark 2.1. Note that Lemma 2.2 readily implies that if s = 1, then for @ = 1,2
and all A > 3 as well as for @ = 3 and all ' > 5, there cannot be “+” in the position
(@, N).

Our next result is valid for arbitrary s € Ny.

Lemma 2.3. Lets € Ngand Y; € Y. For every A > 0 and m € N, there is a
function f € A2(Yy), such that

n'E,(f) <1, n>s+4,

while
ER(f,Ys) = A
Proof. Following [4], for each b € (—1,0), we denote

x i

fle) = [ —omiey.) | [

0 b

t—u

Clearly, f/(z)II(z;Ys) > 0, = € (—1,1), so that f, € A?(Y;). Straightforward
computations using the Taylor expansion of II(x;Y) about t = —1, yield,

* I (—1;Y5)
=P,y — — Y Gy,
o +4 ;:o T2 +2

where P; 4 € P, 4. Hence, by virtue of Lemma 2.1, we obtain,
n4En(fb) <c(s), m>s+4, 2.4)

since |‘H(7")(~;Y5)H <e(s),0<r<s.
The polynomial

t—u

Dsta(T) = /(x—t)H(t;Ys) /7du dt,
0 b

(u+1)2

. b+1
belongs to Py 4 and satisfies IT(—1;Y,)pZ, 4(—1) = II*(=1;Y;)In . Hence, for

each polynomial P, € P,,, N A%(Y;), m > s + 4, we have
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bt 1
(1Y) 2 —

*H(*15}/})p;,+4(*1) <
<I(—1LYs) (Ph(=1) = piia(-1)) <
< mAI(=1; Yo)[[| Py — pssall; 2.5)

where we used Markov’s inequality. Also
x

ps+4(x)—fb(x):/(m—t)H(t;Ys) /ﬁdu dt,
0 t

which is independent of b. Hence, by (2.5),

m~4I(~1;Yy)| In < 1P = foll + [1fo = pstall < 1P = foll + c(s).

b+1 —
Thus,

Eg)(fbvys) > m74|H(_1;Ys)| In b +1 - C(S)a

and taking f := cf, with suitable ¢ = ¢(s) and b concludes the proof of the lemma.

Remark 2.2. Lemma 2.3 implies that if @ = 1 or 2, then for all s > 0 and
N > s+ 4, there cannot be “+” or “®” in the position (@, A/) (and so the best we can
hope for is that there is “©” in those positions which, as will be shown below, is indeed
the case).

Finally, for s > 1, we have the following lemma.

Lemma 24. Lets € Nand Y, € Y,. For each A > 0 and m € N, there is a
function f € A%(Yy), such that

n’En(f) <1, n>s+3,

and
EQ(f,Ys) > A.

Proof. Denote D;(z) := 27 In|z| (D;(0) := 0). It is well known (and is easy to
check) that for j > 1, D§J_1) belongs to the Zygmund class, i.e., wy (D;J_l), t) < c(4)t.
Thus, for j > 2, E,(D;) < c(j)n™7 < c(j)n=2, n > 1. Hence, for D; . (x) :=
= Dj(x+7), -1 <vy<1,j>2, it follows that

En(D;,) < % n>1. (2.6)

1
Take 0 < b < 3 min{y; — y2,1 — y1}, and let

Iy(2) = % —1+1Inb. 2.7)

(Note that y = l,(x) is the tangent to the function In |x| at the point 2 = b.) Further, let
b* be the other (clearly negative) root of the equation /;(x) = In|z|. Clearly,

b*| = —b* < b, 2.8)
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and (z — b*) (lp(z) — In|z|) >0, 2 # 0, so that for

ly(x) = ly(x +b7),

we have
x(lp(z) —In|z+0b*]) >0, = #£|b"|.

Denote
I () := (2 — ws)
(IT; :=1if s = 1), and let

/x—u Iy (u)lp (u — y1)du,
0

and

gp(x) = [ (x —w)Ili(u)In|u+b* — yi|du.

o\a

Finally, write
Jo =Ly — go.
Integration by parts yields

x

1
/(ac —u)In|u+b" —yi|du = §D2(IC + 0" —y1) +p3(x),
0

where ps € P3. Similarly,

s=1 r(r) *
1 (g1 — b .
(@) = ¥ T D a8 =) + pusao)
r=0

where ps12 € Psy9, and since Ly € P,y 3, (2.6) yields

At the same time, it follows by (2.10) that f, € A%(Y}).

2.9)

(2.10)

(2.11)

(2.12)

On the other hand, given P,, € P,,, N A%(Y;), we conclude by (2.7) through (2.9)

that

1 b*
0< Hl(yl)lng < Iy (y1) <1nb +1-— b) =

=—Ly(y1) = Py (y1) — Ly (y1) < c(s,51)m*|| Py — Ly |,

where we applied Bernstein’s inequality. Since

ol < 200 / | n|dz = 2|10 ]| < 2°,
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then
1
0<IL(y)lny < c(s,y)m?* (1P = foll + lgell) < c(Yo)m* (| P — foll +1).

Hence

c(Ys 1

5712) In 7 1,

and this combined with (2.12) implies the statement of the lemma for f := cf;, with
suitable ¢ = ¢(s) and b.

Remark 2.3. Lemma 2.4 implies that if @ = 1 and s > 1, then for all N > s + 3,
there cannot be “+” or “@” in the position (@, N') (and so the best we can hope for is
that there is “©” in those positions which is indeed the case, see below).

3. Auxiliary results. Recall that o(z) = /1 — 2, and let C},, r > 1, be the space
of functions f € C"(—1,1) N C[—1, 1] such that

Eg)(flhys) >

lim ¢"(2)f") () =0,

z—+1

and CY, := C[-1,1].

If
k
k - ké
Ak = —1)kt —— 4+
bo.0) =32 (7)o (2 5 +i0).
denotes the k-th symmetric difference of a function g with a step ¢, then the Ditzian—
Totik type modulus of smoothness of the rth derivative of a function f € C,, is

defined by

. [ kh )
wlf,r(f( )7t) = Ssup sup w <JI, 2) ‘AZ¢($)(f( ),J}> ) (31)
hel0,t] x:|z|+(kh)p(x)/2<1

with the weight

W (z, p) == o(Jz| + pp(x)),  |o]+ pe(z) < 1. (3.2)

If r = 0, then
wi(fot) = wlf,o(fa t)

is the (usual) Ditzian - Totik modulus of smoothness. Finally, let || f||c[q,) denote the
uniform norm of a function f € Cla, b] (in particular, || f||c[—1,1) = || f||) and recall that
the ordinary k-th modulus of smoothness of f € Cla, b] is

wi(f, 1, ]a,b]) = hsél[l(ft] ||Aﬁ(f, ')’|C[a+kh/27b7kh/2]’
and denote wy(f,t) := wr(f,t,[-1,1]).

The following results are so-called inverse theorems. They characterize the smoothness
(i.e., describe the class) of functions that have the prescribed order of polynomial approxi-
mation.

First we formulate a corollary of the classical Dzyadyk — Timan - Lebed — Brudnyi
inverse theorem (see, e.g., [3], Theorem 7.1.2).
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Theorem 3.1. Let2r < a <2k+ 2r, and f € C[-1,1]. If
n*E,(f) <1, n>k+r,
then f € C"[—1,1] and
wr(fT 1) < ea, e, r)te =2 (3.3)

For the Ditzian — Totik type moduli of smoothness we need the following result which
is a generalization of [5] (Theorem 7.2.4) in the case p = oco.
Denote by @ the set of nondecreasing functions ¢: [0,00) — [0, 00), satisfying

¢(0+) = 0.
Theorem 3.2. Given k € N,r € Ng, N € N, and ¢ € ® such that
[ ro(w)
r¢(u
/ e du < +00.
0
If

1
E.(f) <o (n)’ forall n> N,
then f € C,, and

 r(u)

1
wf,r (f(T‘), t) < C(k, T) / urtl du + C<k’ T)tk ukiqjil du+

0 t
tc(k,r, NP B (f), t€]0,1/2].

If, in addition, N < k + r, then the following Bari— Stechkin type estimate holds:

[ ro(u)

1
w,fyr(f(r),t) < c(km)/ e du + c(k,r)t* M-i(-i’l:lldu7 te0,1/2].

0 t

For readers’ sake, we provide a proof of this theorem in the appendix.
In fact, we only need the following theorem which is an immediate consequence of
Theorem 3.2 (¢(u) := u®), but is of special interest in the context of this paper.
Theorem 3.3. Letr € Ny, k € Nand a > 0, be such that r < a < k + r, and let
feCl-1,1.If
n*En(f) <1, forall n> N,

where N > k + r, then f € (C; and
w,f’T(f(T), t) < c(a, k, )t " 4+ (N, k, 7)t" By ().
In particular, if N = k +r, then
wf’r(f(’”),t) < cla, k,r)t* ",

Lemma 3.1 ([6], [4] (Theorems 2.7, 2.8 and 2.11), [2] (Lemma 2.8), [7] (Theo-
rem 3.1)).
I. Let f € A% If f € C[-1,1], then
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1
ER() <ot (£3) eIl w3

Moreover, if f € (Ci N CY[—1,1], then

B ) < e 2y (11 1) +ein e (1) w2

Furthermore, if f € Ci N C2%[—1,1], and k,l € N, then, for n > | + 2, we have

E@(f) < c(/<:,l)n*2w,f’2 < " 711) + c(k,1)n"tw, (f”, 7112>

IL Let f € A%2(Y1). If f € C[—1,1], then
EQ (V) < cw? 1 1 >2
n (fa 1)_CCU3 fvﬁ +C(“J2 fvﬁ ) n =z z.
If, in addition, f € C2 N C'[—1,1], then
E@(f, Y1) <en 2w, [ 1" 1 +en 2wy [ f 1 n>2
n y 41) = 3,2 n 1 "n2 )’ = 4
and
(2) -2 @ w1 -2 ;1
En (fa}/i) S cn w372 f 75 +cn [0%) f 9 ﬁ ) n@(yl) > 1.

Iff e (Ci, then

1
EﬁLZ)(fa Yl) < Cn72w§2 ( //7 ’I’L) + Cn74w;2 < Na n>7 n > N(Yl)v

and )
ER(T) < en iy (£1), nz N

Moreover, if we actually have | € (Cf’o N C%[—1,1], then for any k € N,

1 1
EO(£,Y1) < e(k)n~2uf (f(?’), ) + elk)n—ws ( ) >4
’ n n

Furthermore, if f € C3[—1,1], then

379

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

_ 5 1 ~ 1
EP(f.Y1) < e(k)n 3wl , <f<3>,n) +c(k)yn 5wy, (f<3>, n2) n>k+3. (3.13)

L. Let f € A%*(Y;), s € N. If f € C[-1,1], then

EX(1,Ys) < es)wf (f, :L), n > N(Yy).

(3.14)

Moreover, if € (Ci’, NC?[-1,1], s € N, and k,l € N, then there exists N (Y, k,1) such

that, for all n > N(Ys, k, 1),
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1 1
BR(Y:) < elb b=y (19,0 ) ettt (£, ). G19)
Also, if s > 2 and f € (Ci, then

ER(f,Ys) < c(s)n~ 2w, ( " i) n > N(Yy). (3.16)

Remark 3.1. Estimate (3.13) was not proved in [2]. However, its proof is very
similar to those in [2], and it is based upon the fact that if f € C3[a, b] is such that f is
concave on [a,y1] and convex on [y1,b] (i.e., f(x)(x —y1) > 0, a < x <b), and py, is
such that p,, > £ on [a,b] and || f®) — pi|| < c(k)wr(f®),b—a,[a,b]) (for example,
pi := arginfpep, [|f3) = pllopap + infpep, |F® = pllciay), then

P(x) t=jjjpk(v)dvdsdt+f(a)+f’(a)(x—a)

a a y

is a polynomial from Py 5 that is coconvex with f on [a,b] and satisfies P(a) = f(a)
and
||f - PHC[a,b] < C(k)(b - a)ka (f(3)7 b— a, [Cl, bD (317)

We omit the details.

4. Proofs of the positive results. Since the cases N/ = 1 and A/ = 2 have already
been discussed we assume that A > 3. Given a > 0, integers N' > 3, s > 0, a collection
Y, € Y,, and a function f € A%(Y}), assume without loss of generality that

n“E,(f) <1, forall n>N. 4.1
Then we have to prove the inequality
n*EP(f,Ys) < e(a,N,ys), n> N7, (4.2)

with a proper N/*.
4.1. Convex approximation: s = 0.

1. N=3,0<a<3 ().

Theorem 3.3 (with » = 0 and k = 3), inequality (4.1), and the estimate g (f) <
< a§(f,1/n), n > 3, proved in [8], yield E,(LZ)(f) < «wi(f,1/n) < en™®, for
n>3=: N*.

2. N =3,3<a<4(+)

Theorem 3.3 (with » = 2 and k& = 3), Theorem 3.1 (with » = 1 and k& = 2),
and inequality (4.1), imply that f € CZ2 N C'[-1,1], wf,(f",t) < c(a)t* 2, and
wa(f',12) < c(a)t*=2. Inequality (3.5) now yields ES2 (f) < ¢(a)n= for n > 3 =
= N™.

3. a >4, N >a ().

Theorem 3.3 (with 7 = 2 and k = N —2), Theorem 3.1 (withr = 2and k = N —2),
and inequality (4.1), imply that f € C2NC?[-1,1], WRr_go(f"51) < c(a, N2 and
wr—2(f", 1) < c(a, N')t*~*. Therefore, (3.6) (with k = [ = N/ — 2) yields (4.2) with
N*=N.
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4. a>4,4 <N <a ().

Let N7 := |«o) + 1 and note that A7 > « > N. Since (4.1) is satisfied with
N instead of A, it follows from case 3 that n®E\? (f) < c(a), n > Ni. Now, let
ay := N /2+2 and note that 4 < a; < . It follows from (4.1) that n®* E,,(f) < 1, for
all n > N, and using case 3 again we get nor B2 (f) < e(N), n > N. Therefore, for
N < n < N, we have n®E{? (f) < e(N)ne—o1 < c(NINTT < e(a, N), which
verifies (4.2) with N* = N

5. N =3, a>4(4).

It follows from cases 3 and 4 that (4.2) is valid for n > 5. We note that the
polynomial of best approximation of degree < 2 to a convex function f has to be
convex (this follows, for example, from the Chebyshev Equioscillation Theorem), and
S0 E?(,z)(f) = E3(f). Hence, for n = 3 and 4, we have

ED(f) < B () = Bs(f) <1< 4%n7°,

and so (4.2) with N* = 3 follows.

6. N=4,a>4(+H).

As in case 5, it follows from cases 3 and 4 that (4.2) is valid for n > 5 and so
we only need to show that Ef)(f) < ¢(a). Since (4.1) implies that n* E,,(f) < 1,
n > 4, where o := min{a, 5}, it follows from Theorem 3.1 (with r = 2 and k = 2)
that f € C?[—1,1] and wa(f",t?) < c(a)t*>~* and, in particular, wo(f”,1) < c(a).
Therefore, Eo(f") < cwa(f",1) < ¢(a). Now, since the inequality Ef)(f) < 2E5(f")
holds for each f € C2[—1,1] N A2, we conclude that E{* (f) < ¢(a) as needed.

7. N>4,0<a<4 o).

Theorem 3.3 (with ¥ = 4 and N = N), and inequalities (4.1) and (3.4), yield

ED(f) < elayn™ + eN)nIf]| < e(a)n™,

for all n > max {3, c(a, V)| f[|'/ 4=} = N™.

8. N >4 a=4(“e").

Theorem 3.3 (with 7 = 2 and k = 3), Theorem 3.3 (with » = 1 and k = 3), and
inequality (4.1), imply that f € CZNC'[—1,1], w§,(f",t) < ct?, and ws(f, %) < ct?.
By the Marchaud classical inequality (see, e.g., [5], (4.3.1)) the latter estimate implies
wo(f',t) < ct + ct?| f'||. Inequality (3.5) (with & = 3) now yields E,(f)(f) <en ™t +
+ cn~9|#'|l, n > 3, and hence (4.2) follows with N'* := max {3, c[| f'||*/2}.

4.2. Coconvex approximation: the case s > 1. For some cases below we need
the fact (see [9]), that for any f € A%(Y;), s > 1,

E5(f) < e(Ys) Esya(f)- (4.3)

Remark 4.1. For the reader’s convenience, we list in each case below, the full
range of «’s for which that particular proof is suitable. Hence, the same triple (a, N, s)
may be covered by more than one case.

. s=1L,4<a<8 N =4(+).

Theorem 3.3 (with r = 3 and k = 5), Theorem 3.3 (with r = k = 2), and inequality
(4.1), imply that f e C3 N C?*[-1,1], wg”s(f(g),t) < c(a)t*=3, and wo(f" %) <
< c(a)t**. Therefore (3.12) (with k = 5), yields (4.2) with N'** = 4.
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2. s=1L4<a<8 N =3(+).

It follows from case 1 that (4.2) is satisfied for n > 4. Thus, in order to show
that N* = 3 we only need to verify that E§2)( f, Y1) < ¢(«). Indeed, since (4.1) is
satisfied with a; := min{«, 5}, it follows from Theorem 3.2 (with r = 2 and k = 1),
that f € C?[—1,1] (so that f”(y1) = 0) and w; (f”, %) < c¢(a)t**~* and, in particular,
w1 (,1) < c(a). Now take pa(z) i= f(yn) + f'(31)(x — 1), and we have

EP(£,7) = EP(£,Y1) = Bs(f) < |f — pall =

- / / (F"(s) = £"(31)) ds du|| < cwn(f",1) < c(a).

Y1 Y1

3. s=1,a>6,N>a(+).

Theorems 3.3 and 3.1 (with 7 = 3 and k¥ = A — 3), and inequality (4.1), imply
that f € C* and w_5 5(f®),t) < c(a, N)t*73 and wnr—5(f@),12) < c(o, N)t*5.
Estimate (3.13) (with K = N — 3) now yields (4.2) with N* = N.

4. s=1,0>6,6<N <a ().

Let NV := |a] + 1 and note that A7 > o > N. Since (4.1) is satisfied with ]
instead of N, it follows from case 3 that n®E(? (f,Y1) < c(a), n > Ni. Now, let
a1 := (N +6)/2 and note that 6 < oy < N It follows from (4.1) that n®* E,,(f) < 1,
for all n > N, and using case 3 again we get nalE,(f)(f, Y1) <c(N),n>N.

Therefore, for N' < n < Ni, we have no‘Eff) (f,Y1) < c(N)no <
< (NN < ¢(a, N), which verifies (4.2) with N* = N.

5. 5=1,a>6 N =3 ().

It follows from cases 3 and 4, that (4.2) is valid with n > 7. Now, since (4.1) is
obviously valid with, say, « = 5, it follows from case 2 that E:E)Q)( f.Y1) < ¢, and so,
for 3 <n <6,

n"EP(£,11) < 6° B (£,11) < ela),

and so (4.2) is valid with N'* = 3.

6. s=1,a>6, N =4 ().

The proof is completely analogous to the one in case 5 except that the fact that
Ef)(f, Y1) < ¢ follows from case 1.

7. s=1,a>6, N =6 (+").

It follows from cases 3 and 4, that (4.2) is valid with n > 7. Hence, as in case
5, we only need to show that EéQ)(f, Y1) < c¢(a@). If a3 := min{a, 7}, it follows from
(4.1) that n® E,,(f) < 1, for all n > 6, so that applying Theorem 3.2 (with » = 3 and
k = 3), we conclude that f € C3[—1, 1] and w3(f®),#?) < ¢(a)t**~5 and, in particular,
w3(f®),1) < ¢(a). The inequality Eéz)(f, Y1) < ¢(a) now follows from (3.17) (with
k =3 and [a,b] = [-1,1]).

8. s=1,a>6,N=5(+).

The argument is exactly the same as in the previous case with the only difference
that £ = 2 is used instead of k = 3.

9. s>1,0<a<3,3<N<s+2ED).

Theorem 3.189 (with £ = 3 and f — p3 in place of f where p3 := arg piélﬂ)fg. IIf=»l),

implies w¥ (f,t) < c(a)t* + c(s)t3E3(f). Now, by (4.3) and (4.1),
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E3(f) < Ex(f) < e(Ys)Espa(f) < cla, Ys).

Therefore, wf (f,1/n) < cla)n™ + c(a, Yi)n™3 < c(a)n™, for n > N(a,Ys).
Inequality (4.2) now follows from (3.14).

10. s>2,2<a<53<N<s+2E @),

Theorem 3.3 (with r = 2, k = 3), implies that f € C2 and wi,(f",t) <
< c(a)t* 2 + ¢(s)t*E5(f), and by (4.3) and (4.1) we have

E5(f) < Ex(f) < e(Ys) Espa(f) < cla, Ys).

Hence, wi,(f",1/n) < c(a)n™*2 + c(a, Yi)n =2 < ¢(a)n™ 2, for n > N(a,Y;).
Inequality (4.2) now follows from (3.16).

1. s>1,2<a <5, N >s+3(“O”) (except all “®” cases in these regions).

As in case 10, we can prove that w§,(f",1/n) < c(a)n™*2 + c(s)n?| ||, so
that wf,(f”,1/n) < c(a)n=**?, for n > N(a, f). Hence, (4.2) with N* = N*(a, f)
follows from (3.16) for s > 2, and from (3.11) for s = 1.

12. s=2,2<a <5, N =5("®).

Theorem 3.3 (with 7 = 2 and k = 3) and (4.1), imply that f € CZ and wf,(f",t) <
< c(a)t*2. Now, (3.16) implies (4.2) with N* = N*(a, Y).

13. s=1,4<a<6,N>5ands>2 a>4,N >3 ).

If M1 := max{|«a] + 1, N}, then Theorem 3.3 (with r = 3 and k = N; — 3),
Theorem 3.3 (with » = 2 and k = N7 — 2), and (4.1), imply that f € (Ci, NnC?[-1,1],
Wi _5.3(f@,1) < c(a, N)t*=3 and wy, —2(f”,1%) < c(a, N)t*~*. Therefore, (3.15)
(with k = N7 — 3 and | = N7 — 2), yields (4.2) with N* = N*(a, N, Yy).

4. s=1,2<a<5 N =3or4 (“d").

Theorem 3.3 (with r = 2 and k = 3) and (4.1), imply that f € (Ci and wy ,(f",t) <
c(a)t*2. Setting a7 := min{«,3}, Theorem 3.3 (with r = k = 2) implies that
wy o (f",t) < e(a)t* 2. Therefore, it follows from (3.10) that

EQ(f7)<en™®+en 2 <en™®, n>N(Y),

as required.

15. s> 1,0<a<3, N>s+3Ed).

Theorem 3.3 (with &k = 3 and N = N), and inequalities (4.1) and (3.14), yield
E,(Zz)(f) < cla)n™ + e(N)n73||f|| < c(a)n™, for all sufficiently large n, n >
N*(a, N, Y5, f).

5. Appendix: proof of Theorem 3.2. We first give the proof for the case r > 1.
Without any loss of generality assume that N > k + r. Set m; := N2/ and ¢; :=
= qﬁ(m;l). We expand f into the telescopic series

f = PkJrr + (PN - PkJrr) +Z(Pm]‘+1 - ij) = PkJrr +Q+ZQ]’; (51)

§=0 §=0

where P, € P, are the polynomials of best approximation of f, that is ||f — P,| =
= E,(f). Hence, the polynomials ); are of degree < m ;1 and satisfy ||Q;|| < ¢j41+
+ ¢; <2¢; .Forafixed z € (—1,1) and h € [0, t], satisfying kho(x)/2 < 1 —|z|, set
T« = |x|+khp(z)/2 and note that if u € [—x., ] D [x—kho(x)/2, z+khp(z)/2] =:
=: A, then p(u) > ¢(z.). Hence, for v € A and [ € N, the Markov-Bermnstein
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inequality implies,

1

mMj+1

v o <em (v pw) 0 62)

J

which in turn yields for | = r,

Al (@57, 2)| < 28 max |Q7 (u)] < e(r)2" <.

Therefore, if we denote J := min{j : 1/m; < h}, then we have

@) ‘Ahm Qa)| < (2t 3 mis; =
j=J+1 j=J+1
m=t m=l
= SO
j —
= c(k,r) Z / Srdu < c(k,T) Z ur+1du_
j=J+1 j=J+1 ",
M
T ot [ o)
u u
= c(k,7) gy du < c(k,r)/ ) du. (5.3)
0 0

We also note that

so that
o(x) < kh + @(z4).

Hence, for 0 < j < J, taking into account that 1/m; > h/2, we obtain by (5.2) with
l=r+k,

Al (@7, 2)| < (hip())F max |QF " (w)| <

- k h k-‘r?"(pk(x) hkm?’-l-?“ B
<) g glar s < A T S
L Iy
< ek L __du <
—C( ’T)@r(m*) /1 wk+r+1 U=
BT e
<
c(k,r)wr(x*) / uk+r+1du’
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where m_1 := N/2. Hence, we get

" 2} k P(u) _
¢ ( ’A (=) Q ‘ < c(k,m)h Z / k+r+1d
J=0 j=0m71
2/N 1
_ k ¢ (u) )
= c(k,m)h / k+r+1du<c(/€,r)h / v <
mjl h/2
1
k p(u)
< c(k,m)h . uk+r+1du’ 5.4)
and note that
/(b /(b /(b(u)d,hgt.
Finally, we have the estimate
| A o) QM) < BF([QUH7 || < 2N AR B (f), (5.5)

which follows by Markov’s inequality. Note that if N = k + r, then @ = 0, so that the
left-hand side of (5.5) vanishes and no estimate is needed

Now, the observation that Ahw w)(P,E?T, x) = 0, combined with (5.3), (5.4), and
(5.5), completes the proof of the theorem for r > 1.

For r = 0, we write

f= Pk+Q+ZQJ — Poyi)s

7=0

where ) := Py — P and Q; := Py, , — Py, (see (5.1)), and complete the proof as

above, just applying (5.4), (5.5) and the inequality
. 1

% d < 3tk

N | =

. uk+1

-

Theorem 3.2 is proved.

Remark 5.1. In the definition of the modulus W/f,r in this paper, we have used the
weight W (x, 1) from (3.2) where p = kh/2. Note that we could also use the weights
(see [4, 10])

Wi(z, 1) = (1 = pp())? — %)%,
or (see [2])
Wala, 1) = (¢2(x) = pp(@)(1 + [2]) "7,
which would yield equivalent definitions of the modulus w,w since, for p € (0,1) and
vt Jo] + () < 1,

W<W1<W2<W
1+u
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