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CONDITIONS OF INVERTIBILITY FOR FUNCTIONAL OPERATORS
WITH SHIFT IN WEIGHTED HOLDER SPACES

YMOBHU OBOPOTHOCTI JIsA ®YHKIHIOHAJIBHUX OITEPATOPIB
I3 3CYBOM Y INIPOCTOPAX I'EJIBJAEPA 3 BAI'OIO

We consider functional operators with shift in weighted Holder spaces. The main result of this work is the proof of the
conditions of invertibility for these operators. We also indicate the forms of the inverse operator. As an application, we
propose to use these results for solution of equations with shift which arise in the study of cyclic models for natural systems
with renewable resources.

Posrmsnarorecst QyHKIIOHANBHI OmEpaToOpH i3 3CyBOM y mpocTopax lempaepa 3 Baroro. OCHOBHHM pe3yJibTaToM podoTH €
BCTAHOBJICHHSI YMOB OOOPOTHOCTI /IS IIMX OMepaTopiB. Bka3aHo Buau 0OEpHEHOTO omeparopa. SIK 3acTOCYBaHHS 3ampo-
MIOHOBaHO BUKOPUCTOBYBATH OTPHMaHi pe3y/bTaTH Ul PO3B’s3aHHS PIBHSHb i3 3CyBOM, SIKi BHHHKAIOTH IPH JIOCIIDKCHHI
LUKITIYHUX MOJeNIel IPHUPOJHUX CHCTEM 3 PECypCaMu, 10 BiHOBIIIOIOTHCS.

1. Introduction. The interest towards the study of functional operators with shift was stipulated by
the development of the solvability theory and Fredholm theory for some classes of linear operators,
in particular, singular integral operators with Carleman and non-Carleman shift [1-3]. Conditions of
invertibility for functional operators with shift in weighted Lebesgue spaces were obtained in [1].

Our study of functional operators with shift in the weighted Holder spaces has an additional
motivation: on modeling systems with renewable resources, equations with shift arise in [4, 5], and
the theory of linear functional operators with shift is the adequate mathematical instrument for the
investigation of such systems.

In Section 2, the boundedness of functional operators with shift in the Holder spaces and in the
weighted Holder spaces is proved.

In Section 3, some auxiliary lemmas are proved. They will be used in the proof of invertibility
conditions.

In Section 4, forms of the inverse operator are given.

In Section 5, conditions of invertibility for functional operators with shift in the Holder spaces
with power wight are obtained. At the end of the article, an application to modeling systems with
renewable resources is given.

2. Boundedness of shift operators in the weighted Holder spaces. We introduce [6] the
weighted Holder spaces Hﬂ(J, p).

A function o(z) that satisfies the following condition on J = [0, 1],

lo(z1) — p(22)] < Clzr — 22", 1 €J, xza€J, pe(0,1),

is called a Holder’s function with exponent . and constant C' on J.
Let p be a power function which has zeros at the endpoints z =0, x = 1:

p(x) = (v —0)"(1 —z)", p<po<l4+pu p<p <l4p.

The functions that become Hdolder functions and valued zero at the points z = 0, z = 1, after being
multiplied by p(x), form a Banach space:
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H)(J,p), J=]0,1].
The norm in the space HY(J, p) is defined by
1 @910y = o) f (@) |1, 05
where
(@) f (@), = () f(@)lle + [lp(@) f ()],

and

lo(e)f () e = ma |p(a) £ ().

lp(@) f(@)llp = sup  |p(x)f (@),

x1,x2€J 21 #T2

|p(a1) f (1) — plaz) f(22)|

21 — 2|

() f (@)l =

Let 5(x) be a bijective orientation-preserving shift on J:
if 1 < x, then B(z1) < B(x2) for any z1 € J, x2 € J; and let §(x) have only two fixed points:

B(0) =0, B(1) =1, B(x) #x, when z#0, z#1.

d d
In addition, let 3(x) be a differentiable function with I B(z) # 0 and %B (x) € Hu(J).

x
Let us begin with the shift operator (Bgy)(x) = ¢[B(x)].
Theorem 1. Operator Bg is bounded on the space H,(J),

1Bslls(m, 1)) < 1811

Operator Bg is bounded on the space HB(J, ),

I Bslls(m, (1))
Hy(J)

P
B =1om
1Bl 511,00y = Hp[ﬁ]‘

Proof. Let p € H,(J),
IBsella, = Bpellc + |1 Bsellu =

|lB(@2)] — Bz )] [B(x2) — Bl _

=l¢llc+ sup <
Il o172 g — @1 |" |B(@2) — B(xr) "
B(x2) — B(z1)|"
<|lelle + sup | ———| ¢l
T1#T2 T2 — T

From here, it follows that
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).

B(w2) — B(r1)

1 Bsll(m, (1)) < max {17 sup

T1#T2 To — X1
= sup [PELZPEIE gy
T1#T2 To — X1
Let ¢ € H}(J, p); from
plr1) _ p(r2) -
‘PB (po)|| = sup plB(x1)] (Bs(pe)) (1) p[B(x2)] (Bs(pe)) (2) _
p[/@] B po T1FET2 (561 _ 1’2)”

ple1) — plea) p(z2)
(A=) Y B+ (Bolppar) — (Balp ) SEA20s )

ghvid @ n) -
| g HPH B
<|:5 Bstoplle+ || 1Bt
and
|l - Hﬂ‘
Hp[ﬁ] e o8,
it follows that
IBallnyan = IoBsili, o = | £ Batoe) + |6 Batow =
N N Ny
< Hp[m HC 1Bs(oo)lc + pr] IBstolc + Hp[m HC 1Bs(o0)ll <
B, o0+ e ], 1
SHp[m‘ steollo || imstea <[] 1Bl <
< Hp[ﬁ]‘ » ||B,3||B(HH(J))||p‘P||HH(J):Hp[pﬁ]' y )HB,BHB(HH(J))||‘PHHB(J,p)'
Since p[pﬁ(z)} = 5?33) " T 1__521;) " € H,(J), we complete the proof.

Thus the operator A = al — bBg, with coefficients a € H,(J), b € H,(J), is bounded on the
space H,)(J, p).

3. Auxiliary lemmas. We keep the conditions on the shift 3 given in Section 2. Without loss
of generality, we assume also that for any fixed x € (0,1),

lim S (z) =0, lim B_,(z) =1;

m——+00 m——+00
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which implies that 8'(0) < 1 and §'(1) > 1
We will use the following notation:

r=po—p  s=pm—p,  prs(@)=a"(1-2)"  puu(@)=pulz) =21 - 2)",

Blar) = Blas)

Prsii (€)= prs[B; ()], Pusi (T) = Pppsi (%), B(x1,2) = T1 — T2

Lemma 1. We have

(VB(x),x € J )(Ve > 0)(3ng € N)(Vz € J)(Ini,n2 € N,ny < ng,ng =mn2 —ny)

Bula) € [0, |11 = &, 1], n € N\ s, ma]|.

An essential point here is that ng = ng — n1 is independent of x.
Proof. Follows directly from the properties of 3(x).
Lemma 2. Under the conditions

b(0)
a(0)

b(1)
a(l)

the following inequalities hold in some one-sided c1-neighborhoods of the endpoints x = 0, x = 1:

a(z) #0;  |B(0)|

‘ < 1’ ‘/6/(1)‘—,&14-#

‘ <1, (M

u(:c) Pr,s (.%')

PT,S;l(fc)

<q <l z € [0,e1]U[1 —e1,1]. )

Proof. Follows from (1) and from the properties of 5(x), a(x), b(z).
Lemma 3. Under the condition (1), there is ex > 0 such that the following inequality holds:

Hﬂ Bx2)

L — 22

I

u(xs) ple2) < g <1, )

plB(z2)]

Sfor x1,x9 € [0,e2] or x1,x2 € [1 —e9,1], or x1 € [0,2], 2 € [1 — €9, 1].

Proof. 1t is easy to see that the following identity:

Bla x2) " plza) |
u(z2) =
T1 — T2 p[B(x2)]
_ p I _ I
T1 — T2 B(x2)| [1— B(x2) Pr,s:1(x2)
_ I B I
holds. We estimate then the expression Blan) = Blxs) 2 2
T — T2 Blx2)| |1—B(z2)
. Bx1) — B(x2) || 22 M : zo—1 |F
By (2) of L 2 and lim,, , =1, lim, =1,
y (2) of Lemma 2 and limg, 4,0 oy acg 5(@) ;m 20 5(%2) —3
1—
we can choose €3 > 0 such that the inequality ‘5 Blas) || s 2 ‘ a1 <g<l
T1 = 22 (@2)| [1—=B(x2)

holds for 1,z € [0, £3].
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. Blx1) — Bx2) || 1—a2 |" . zy M
By (2) of L 2 and 1 =1,1 =1
Y( )0 cmma 2 an Mgy z0—1 I — $2 1 —5(I2) ) y Mgy 51 f(x2) )
1
we can choose €4 > 0 such that the inequality ‘6 Blz2) 2 2 g <qu<l1
T — T Blz2)| |1 - B(z2)
holds for 1, z2 € [1 — €4, 1].
As
) x1) — Blxs) | ) xo [P
hm:l?1—>0,a:2—>1 /8( 1) B( 2) = 1, hmz2_>1 2 = 17
X1 — T2 (xQ)
1-— €T 'LL —
li — = | =) "<
we can choose €5 > 0 such that the inequality
2 Iz _ 2
LOERESI ST R
Ty — T Blxa)| |1 — Blx2)

holds for z; € [0,¢e5], x2 € [1 — €5, 1].

To prove inequality (3), it is sufficient to choose €5 = min (g3, £4, €5), take g2 = max (g3, g4, g5)
and apply the obtained estimates to expression (4).

By Lemma 1, for ¢ = min(ey, £2) there exists a positive integer ng such that for each x € [0, 1]
at most ng values of 5, (z) is outside of [0, <] J[1 — €, 1]. Let ¢ = max(q1, ¢2).
|w(z)

Lemma 4. [If {w(x)}|s=0 = 0, then ||w(z)|| g, (1) > SUPg<zear oy

If {w(z)}e=1 =0, then |w(z)||m, (1) = sUPo<z<1 M '

If {w(@)}o=o = {w(@)}o=1 = 0, then ||w(2)|| 1) > (;) SUP<act m

For ¢ € HS(J, p), the inequality
4%

‘ p bl

Lot

< 2*[lell o) (5)
c

holds.
Proof. The proof follows from the inequalities

w(z1) = w(zs)|

|w(z)le)+ sup

z1,x9€J |ml - ‘TQ,M
z]#TQ
lw(z1) — 0 [w(@)]
> [|w + sup ——— >
[w(z)llcer) O<zi<1 |x1—O0J# 0<w<1 ah

[w(zy) —w(za)|

lw(@) e+ sup

w1, w0 €J |x1 - $2’y
T FT
|0 — w(zs)| jw(z)|
> |w(@)llcw)+ sup >

0czacl |L— 22t = olger (1 —z)H
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1
2

Z;(Sup M—l— sup |w($)|ﬂ>2

o<z<1 M o<e<1 (1 — )

lw(@) g, = 5 (lw@) a0y + lw@) o) >

(L —z)" +a#) jw(z)| (1>” |w(z)|

sup ————.

1
> — su
o b 0<z<1 TH(1 — z)H

0<z<1 (1 — z)H

It remains to prove (5):

a4 (1 —z)H
(1 —x)H

pY
P

< or—l

C

+

IN

< gn-1 [ H p(Dp(1) — pwa) () p(x1)e(r1) — p(0)(0)
- (1 —zo)H c (21— 0)"

.

< gp1 [ H p(z1)p(x1) — pa2)p(r2) p(x1)p(x1) — p(a2)p(r2)

+
(z1 — 22K c (z1 — x2)"

-

= 2lpelln < 2% pellm. o = 2%l o)

In the above, we use that 1 < 2¢7 1|z + (1 — z)*|, p(0)(0) = p(1)p(1) = 0.
We will use these lemmas in the proof of invertibility conditions in Section 5.
4. Structure of the inverse operator. The operators

A=al —bBg,

where a € H,,, b € Hy,, a # 0, and
U=1-uBg,

where u = b/a, are invertible simultaneously on the weighted Holder space HB(J, ).
If there exists a natural number n such that

n—1
H uj(x) | Bj <1,
§=0 B(HY(J.p))

where
uj(z) = u[B;(2)],
then the operator U is invertible on HE(J, p) and
-1

n—2 n—1
Ul =|(T+uBsg+...+ | [Jw@ |By " |{T—| [Jwi(=)|Bs
Jj=0 J=0
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This statement was proved in [1] for weighted Lebesgue spaces. The proof for the weighted Holder
spaces literally follows the above one as an application of algebraic operations does not depend on
the specific properties of the spaces.

We note that the inverse operator U ~! can be written in the form

-1

m—2 m—1
Ut =|T+uBs+...+ | [[w@ B3 |{1-| [[w@|Bs| .
=0 j=0

m—1
with any another m, m # n, subject to the condition H u;(x BmH < 1.
y # ] HFO i(2)Bj BHI )
Analogously, if b # 0 and there exists a natural number n such that
n—1
H vj(z) | Bs" <1,
=0 B(H(J,p)
where [ 1 )]
a|lf™ (x 1
v(@) = oy vile) = v (z)],
b [Bfl (ZE)] J [ ] }
then the operator
V=TI-uvBj'

is invertible on the space l’)’(lﬁfg(J7 p)) and its inverse operator is given by
~1

n—2 n—1
V= |(T+vBy' +...+ | [[vi@ | By" ™ || T— | [[vi=) | B5"
j=0 §=0

. . _ —10 -1 -1 _ 11 (1
It is obvious that A = —bBg [I — (B,B E) By }, A7 =-V7'B; <b> 1.
5. Invertibility conditions for the operator A on the weighted Holder spaces. We will use

the following notation:
o

Br+i1(x1) — B (x2)
5n(xl)'_'6n(x2)

Theorem 2. Conditions (1) implies that there exists a natural number n_for which

() = 20 @),

folw) = (B3S) (@), Bi(wr,a2) = " (@)

n—1
=0 HY(J.p)
Proof. To prove that
n—1 n—1
p | [T w |Bael| +|p| []w |Bse < ellagerp) - (©)
j=0 C J=0 M

we estimate each summand separately. For the first one we have
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n—1
p 9
p| [T w|Bse| =|p== Huj ——Bj(prs)|| <
0 Pr,s Pr,s;n
J c c
n—1 p n—1 p
< e TT w52 Nprstlle < ||oun [T w2 2" Il 102, - (7)
j=0 r,s;7+1 =0 7,87 +1
c c
We took into account
P n—1 Drsii
.S 7,87 n
— = Pup =1] — Bg(pr, = ||(pr,
Pr,s or Pr,s;n jl_IO Pr,s;j+1 H 6( TSSO)HC It TSQO)HC

and inequality (5) from Lemma 4.
By (2) of Lemma 2, it follows that the first factor on the right-hand side of inequality (7)

n— 1

P H Presi ‘ tends to zero when n — oco.
J= 0 pr sii+1 o

Now, we estimate the second summand of (6). We use the following notation:

Bri1(z1) — Bry1(z2) g ~

o) —Bal) | T @Y

ful@) = (Bgf) (), Bh(x1,2) =

We obtain

n—1 n—1
H Uy BZSO = H Ujpnpn|| <
7=0

s
po 17 1

n—1 _ n—1 _
T, @@npa@ente) =TT, (@2)on(@2)pn(2)
< sup =0 J=0 =
B xr1<T2 ‘xl - $2|'u

o) o) (T, o)~y ) +TT ) () (upn) @)= (pugn) 2))

= su <
1’1<1::B)2 |$1 - x2|/J o
_ _ n—2 _ _ _ n—2 _
(npn) @) () = a(e2) [T 1 (00) + (in (@1) = in-a(w2)) [T iy (02)|
< sup J= B Jj= +
1< w1 — @2

J

‘(pnson)(m) ZZ:S ((ﬂjﬂ (1) —Uj41(22)) H:jg diva(en) [T, QNuc(962)> ’

+ sup m -
21<@3 |1 — 22
|<pn90n)(x1> - (pn@n)($2)‘ T ‘Bn(xl) 5n(952)|”
+ sup m up ug( 2) m :
m<as  |Pa(@1) = Bal@2)" wri<a |5y |21 — 2]
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Here, we used the identities
n—1 n—1
[T = JJa() =
j=0 J=0

n—2

= ((x1) — U(x) Hu]+1 1) + (fin—1(21) = @1 (22)) [ ] @(22)+
7=0

n—2 n—2
+ia(wo) [ [ @1 (1) = dno1 () [] (22)
§=0 §=0
and

n—2 n—2
a(z2) H Ujy1(71) — Un—1(21)) H uj(x2) =
j=0 Jj=0

n—3 n—3 j
= (Ug+1($1) - U;+1 x2) H Uiy2(1 H g, (2)
j=0 1=J k=0
Finally, taking into account the identities
Pun(21) H Pusi+3(x Bit1(w1) — Bjt1(z2) Hﬁk 21, 22),
Pw+2 1) ,0;m+2 T1 — X2
we get
o (T | o <l sup |PC02n) ) (o 20
Uy ¥ ufl, SUp |/~ Pw;1\71 Uj+1(T1)
320 ! A 1<12 pu;n(xl) . i=0 / p,u;l(xl)

m

(p—1(71) —Tp— 1332 1:[& (Bn-1(21) = Bn-1(2))" n

T pn(ml)gpn(m)(ﬁnq(ﬂcl) Bn—1(x2)) |1 — @a |t

r1<x2

X

+ sup
r1<T2 Pun (71) =0

Pn(21)on (1) nzza ( (Uj41(21) = Ujr1(22)) (Bno1(w1) = Br1(x2))"
I

(Bj+1(z1) — Bjt1(22)) |21 — 22"

n—3

XPM ]+2 .7}1 H UH_Q 1’1)pun(m1)) H ﬁk(l'Q)) +

X
i pusj+2(T1) -2

(pp) (1) —(pp) (22

Bn 1'1) Bn(x?))u
Bu(@1)—Ba(@2)F || H“ﬂ =

C x1<T2 j=0 1’1—332)“

3
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n—2

ol || Pn¥n Pusj+2(T1)
< lall sup | ppu;1(r1 Uji1 961)7 +
a Pun || z1<z2 . ;l_% ! pu]—i—l( 1)
n—2
+lall, lonenlle sup | [T j(w2)BY (21, 22)| +
r1<T2 j ~0
n—3 n—3
PnPn

+llall,

J
P,u,z+3 ~
sup | pugiz | [ [ ira(z1) ||u x2) Bl (21, 32) ||+
k‘=0

win ||o 1<z =0 = ,O,u,z—i-2

n—1

+[loell, Sup T ij(22) B (21, 22)] -
=0

By (2) of Lemma 2, the inequality

P (1)

<q<1 @®)
Ppsi+1 (z1)

41 (71)
holds for every fixed 1 with a possible exception of ng values of .
From Lemma 1 it follows that only ng values of 3;(z1) may be outside of the set [0, ] |J [1 —¢, 1],
where inequality (8) holds. Here the number ng is from Lemma 1.
By (3) of Lemma 3, the inequality

|t (2) B (21, 2)| < g <1 (©)]

holds for all fixed x1,xz9, x1 < 2 with a possible exception of 2ngy values of [. In fact, under
x1 < w2, we have only two failures of the condition 5;(z1), B;(z2) € [0,e]U[1 — €, 1], and G;(z1) €
€ [0,¢], Bi(x2) € [1 — ¢,1], where inequality (9) holds. It means that the failures may occur when
Bi(z1) € (e,1—¢), or Bi(z2) € (6,1 —€). According to Lemma 1, there are no more than ng values
of Bi(z1) in (g,1 — ¢) and there are no more than ng values of 5;(x2) in (¢,1 — ¢€).

We have

[T w |Bie| < S lall, 2" loppllca™ """ M™ + ||, g" ' 2" M?me +

n—3
H|all w2 ol D g2 M@ AP g2 MONPTOR (0] oy, (10)
§=0

where the constant M is given by

il Pus1 (2)
( )Puu(x)

Here, inequalities (5), (8) and (9) were used. The factor in the brackets of (10) tends to zero when
n — 0.

Mzmax(

, |a<x2>ﬂﬂ<x1,x2>no)-

c
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Thus, there exists n such that

n—1
H uj |Bse < ||80’|H2(J,p) )
=0 HY(J,p)

which means that the operator U = I — uBjg is invertible on the space HS(J, ).

Theorem 2 is proved.

Theorem 3. The operator A acting on Banach space HS(J, p), is invertible if the following
condition holds:

ogla(x),b(z)] #0, =€ J,

where the function og is defined by

a(z), when |a(i)| > [8'(0)] " [b(0)l, i=0,1,
osla(z).b(x)] = { b(x), when |a(i)] < [B(i)] " |b(i)|, i=0,1,
0, otherwise.
Proof. We consider only the case

a(x) #0, x€J,

(11)
la(@)] > [8'(0)] 7 b(i)],  i=0,1.

The case
b(x) #0, z€J,
la(i)] < |8'(@)|7*FH(b(i)], i=0,1,

can be considered analogously.

Recall that the operators al —bBg and U = I —uBpg, where u = b/a, are invertible simultaneously
on HS(J, 0).

Thus, there exists n such that

n—1
[ |Bse <llellg sy
7=0 HY(J,p)

which means that operator U = I — uBg is invertible in space HB(J, p).

Theorem 3 is proved.

Now, we will focus on the application of the above results to a modeling of systems with renewable
resources. For the study of such systems, cyclic models based on functional operators with shift were
elaborated in [4]. The Balance relation describing the state of cyclic equilibrium is the equation
alv — bBgv = g for the unknown distribution function v € HE(J, p).

In [5], a reproductive summand has been added for a more accurate description of the process of
reproduction; this term has been expressed by integrals with degenerate kernels.
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If we model the behavior of a system with two resources, taking into account the interaction

between them, by integrals with degenerate kernels and follow the principles of modeling from [4],
we will obtain two equations with two unknowns, v, and vs:

ar(z)v1(z) — bi(z)n[B1(@)] + E1(2) + T'i(x) = g1(2), (12)

az(z)ve(x) — ba(w)v2[B2(z)] + B2(z) + a(x) = g2(2), (13)

where 11 and vy are the densities of the distributions of the first and second resources by their
respective individual parameters (such as weight or length), and

i(z) = Z/C17i(x)§1,i(t)V1(t)dt7 I'y(z) = Z/Q1,i($)51,i(t)l/2(t)dt7

i=1"7 =17
Yo(r) = Z/{Q,i(x)£2,i(t)y2(t)dt> Dy(z) = Z/QQ,i(x)52,i(t)V1(t)dta
=1 7 =1 7

are the terms of reproduction and interaction process respectively.
We consider our model on the space HS(J, p). Suppose that for

Ay = a1(@)ni(z) — bi(z)n[Bi(@)], A2 = as(z)ra(z) — ba(2)r2[B2(2)]

on HS(J, p) the invertibility conditions of Theorem 3 hold. Thus, the inverse operators Afl and A, !
for A; and As exist. We apply these inverse operators to the left-hand side of equations (12), (13)
and obtain Fredholm equations of the second type with degenerate kernels. Using a known method
of solving such equations, we can find densities 11 and v of the cyclic equilibrium of the system.
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