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GENERALIZATIONS OF FOX HOMOTOPY GROUPS,
WHITEHEAD PRODUCTS AND GOTTLIEB GROUPS*

Y3AT'AJIBHEHHSA TOMOTOIIYHUX T'PYIT ®OKCA,
HJOBYTKH YAUTXE/JA I I'PYIIM I'OTTJIIGA

In this paper, we redefine the torus homotopy groups of Fox and give a proof of the split exact sequence
of these groups. Evaluation subgroups are defined and are related to the classical Gottlieb subgroups.
With our constructions, we recover the Abe groups and prove some results of Gottlieb for the evaluation
subgroups of Fox homotopy groups. We further generalize Fox groups and define a group © = [Z(V X
X WU *), X] in which the generalized Whitehead product of Arkowitz is again a commutator. Finally,
we show that the generalized Gottlieb group lies in the center of 7T, thereby improving a result of
Varadarajan.

Y TOYHEHO O3HAYEHHsI TOPOBUX TOMOTONIYHKX rpyn DoKca, T0BEEHO PO3ILEIJIeHHs] TOYHOI ITOCJTiJOB-
HocTi ux rpyn. HaBeneHo o3HaueHHs OIIHOYHUX MIATPYM i 3HANAEHO X 3B 30K i3 KJIACHYHUMU
nigrpynamu ['otTsi6a. Ha ocHOBI IIMX KOHCTPYKIIiii BCTAHOBJIEHO [1€5Ki BJIACTUBOCTI rpyn Abe Ta
JIOBE/ICHO JIesiKi pedysibTaT ['oTT1i6a A1t OliHOYHUX miArpyn romoronivyiux rpyn Mokca. Haseneno
nopasblIe y3araabHenns rpyn Mokca Ta osHaueHHs rpyma T = [Z(Vx WU #), X1, y sakiit y3a-
rajibHeHHs ApKOBHYa [NOOYTKY YaiiTXxega TakoXX € KoMmyTaTtopoMm. HacamkiHenb mokasaHo, IO
y3arajibHeHa rpymna ['oTTJ/1i6a MiCTUThCA y LEHTpi I'pynu T, IO MOKpaliye pe3yJbTraTr Bapagapasna.

Introduction. In 1941, J. H. C. Whitehead [1] introduced the notion of a product,
between elements of the higher homotopy groups of a space, now known as the
Whitehead product. It is well known that if o, B € w;(X) then the Whitehead product
oef of o and B is simply the commutator [o, B]. In an attempt to give a more
geometric description of the Whitehead product, R. Fox introduced in [2] the torus
homotopy groups. Given a path connected space X, the n-th torus homotopy group
n—1
7,(X) is isomorphic to the fundamental group of the function space X' , where
T"! denotes the (n — 1)-dimensional torus. In [2], an elegant and geometric
description of the elements of 7,(X) was given. Take for example when n =2, a

typical element of 7T, is the homotopy class of maps of the form f: F, = X where
F, is the pinched 2-torus, i.e., F, is the quotient of S'xs! by §'x {so} for some
basepoint s, € S, 1t follows that F, has the same homotopy type as the reduced
suspension of (S1 U *), the disjoint union of the circle with a distinguished point.
With this description of the F, as the pinched n-torus, we are led to extend the
definition of 7,. We reprove the main results of [2] using modern language of
homotopy theory. Our approach allows us to generalize many results concerning
Gottlieb groups or generalized evaluation subgroups. The insight from [2] sheds new
light into the generalized Whitehead product given by M. Arkowitz [3]. In particular,
we show, in the same spirit as in [2], another way so that the generalized Whitehead
product when embedded in a larger (and different) group is a commutator as well.

Although R. Fox introduced his so-called torus homotopy groups [2] (first
announced in 1945) in 1948 and made a connection with the Whitehead products, these
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homotopy groups seem to have been forgotten in the development of algebraic
topology. It is the purpose of this paper to show that Fox’s concept of the torus
homotopy groups can be used to generalize and to unify many other results such as
those in [3], and in [4].

This paper is organized as follows. In Section 1, we redefine the torus homotopy
groups of Fox and reprove the main results of [2]. In Section 2, we study the
evaluation subgroups of the Fox groups, following the work of D. Gottlieb [5]. In
Section 3, we extend the definition of the Fox groups and obtain a similar split exact
sequence (Theorem 3.1). In Section 4, we relate our generalized Fox groups of
Section 3 with the generalized Whitehead product of Arkowitz [3]. In particular, we
introduce a group 7T in which Arkowitz’s product is again a commutator
(Theorem 4.1). Moreover, we show that the generalized Gottlieb group lies in the
center of T (Theorem 4.2).

Throughout, all spaces are assumed to be compactly generated as in [6]. This
assumption is made solely for the fact that the two definitions of the Gottlieb groups,
namely, the one defined using associated maps, and the one using the evaluation map,
are indeed isomorphic in the category of compactly generated spaces.

1. Fox torus homotopy groups. Using modern language of homotopy theory, we
redefine in this section Fox’s torus homotopy groups and we improve upon Fox’s
results.

Definition 1.1. Let X be a space and xy € X a basepoint. For n 21, the n-

th Fox group of X is defined to be
T,(X, xg) = [E(T"7 U ), x],

where T* denotes the k-dimensional torus, X denotes the reduced suspension,
and [, ] denotes the set of homotopy classes of based point preserving maps.

When defining homotopy groups, one considers basepoint homotopy classes of
maps from spheres to a space. In a similar fashion, one can interpret the Fox torus
homotopy groups as basepoint homotopy classes of maps from the suspension of tori
with an extra basepoint to a given space. Thus, we call an (n-dimensional) pinched

torus (7" U*) a Fox space, denoted by F,.

Proposition 1.1. The suspension of a Fox space has the homotopy type of a
bouquet of spheres. More precisely,

k (k—Z)
(T T?) = V(sTe2).
(=2
Proof. Let us consider the following Barratt — Puppe sequence (see e.g. [7] or [8]
YA L AT AR ) L RS 3 AL Z(Tk_l /Tk_z) - ..
associated with the cofibration 772 <, T, Using the formula
2(XxXY) = ZXVIYVI(XAY) 1.1)
we obtain that Z(Tk_2 xS 1) has the same homotopy type as
IT%2 v St v E(TH2 A S
where Z(Tk_2 A Sl) = 22(Tk_2). Since the projection X X Y — X is a left inverse of
the inclusion X — X x Y, it follows that E(Tk*1 /T* 72) has the same homotopy type

as TS'v Ez(kaz). On the other hand, the suspension of the torus 7™ = (Sl)m, by

using the formula (1.1) for the suspension of a product, has the homotopy type of a
wedge of spheres where the number of spheres in dimension /¢ is given by the

binomial coefficient ( /112). By taking the suspension again, it is straightforward to

deduce the desired formula.
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Theorem 1.1. Let X be a path connected space. Then

0 - 1,,QX) - 1,X) S 1,,X) > 1 (1.2)

is split exact. Moreover,

Tn—l(gz X)

n

n
[Tm0%,
i=2

n-2
where o; is the binomial coefficient (i— 2 )

Proof. Consider the Barratt — Puppe sequence
T"rUx — 17U - T T
- X(r"?UH) - (U)o (T S
associated with 7572 U * <y T U * and the long exact sequence
oo [T X] - [2(1 U X] o [E(1P U)X >

of groups by taking basepoint homotopy classes of maps into a space X. The
projection "' = T"2 onto the first (n — 2) coordinates induces a basepoint
preserving map (T”_1 U*) - (T”_2 U*), and hence a homomorphism 1,_;(Y) —
— 1,(Y) which is a right inverse of the homomorphism 71,(Y) = t,_(Y) for any
space Y. Consequently, the exactness and the splitting of the short exact sequence
(1.2) follow. The second part follows from Proposition 1.1 in a straightforward manner.

Not only does Theorem 1.1 contain the following result of Fox, it also expresses the

kernel of the short exact sequence (1.2) in terms of torus homotopy groups. In [2], Fox
proved the following theorem.

Theorem 1.2. Let X be a space. Then

)i
0 - [[mx0% - 1,0 S 1, - 1 (1.3)
i=2
n—2
is split exact where o; =| . .
oli-2
As indicated in [2], Theorem 1.2 asserts, in particular, that we have
X)) € (X)) € X)) C ..., (1.4)

where the inclusions are the sections as in (1.3).
To conclude this section, we ask how the torus homotopy groups are related with
respect to fibrations. We obtain the following theorem.

Theorem 1.3. Let F —y E — B be a fibration. For any positive integer k,
there is a long exact sequence
d, —
.o Tk(Q”F) - rk(Q”E) - tk(Q"B) - rk(Q” 1F) = ...
Proof. Consider the long sequence
d, —
.o QF 5 QE > Q"B S QU'F 5 .

associated to a fibration (see e.g. [8] F <y E — B. By taking homotopy classes of
maps from a space X into the spaces of this sequence, we obtain a long exact
sequence. When X is the Fox space Fj, we obtain the desired sequence.
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2. Gottlieb — Fox groups. In [5], D. Gottlieb introduced the so-called (classical)
Gottlieb groups G,(X) of a space X as the set of maps S" v X — X that can be
extended to §" X X — X. He showed that, when X has the homotopy type of a CW
complex, G,(X) is the image of the homomorphism induced by the evaluation map
ev: (XX, IX) — (X,x9) on m,(X,xy). In the category of compactly generated
spaces, these two notions are equivalent.

Definition 2.1. Let X be a space and xy,€X. For n =1, the n-th Gottli-
eb — Fox group of X is defined to be the evaluation subgroup, denoted by G7,(X),
i.e., the image of the evaluation homomorphism. Thus,

GT,(X) = Im(ev,: 1,(X¥, 1x) > 1,(X. x0)).

In general, t,(X) is not abelian so it is not clear whether Gt,(X) would be. As
it turns out, the Gottlieb — Fox groups are indeed abelian and can be expressed in terms
of the classical Gottlieb groups. Moreover, we will show that G7,(X) is central
in 1,(X).

Theorem 2.1. The Gottlieb — Fox group is a direct product of ordinary Gottlieb
groups. In fact, we have

G1,(%) = [[GX".
i=l

where v, is the binomial coefficient (7__]1)

Proof. First note that (QX )X = Q(X X). Consider the commutative diagram

1,.(QXY) —5 Gr, QX)) —=>  1,,(QX)

l 2 2
T,(x¥) Gt,(X) —=—> 7,(X)
proj. |, proj. |, proj. |,

oY) —E () —S5 1,4,

where the vertical columns arc short split-exact sequences as in Theorem 1.1. The fact
that Gt,_;(QX) is the kernel of the middle vertical sequence follows from a diagram
chasing argument. Moreover, GT1,_;(QX) = l_L,:2 G;(X)% so that

G1,(X) = (HGi(X)“i) X Gt (X).
i=2

By induction and the fact that the action becomes conjugation in 7,(X), the semi-
direct product is in fact a direct product. Finally, an easy combinatorial argument

shows that
n—k+2 .
n—jy _
) (k—Z) - W
i=2

and the formula for Gt,(X) follows.

In [5], it was proved that the Whitehead product of the elements of the Gottlieb
group with any other element in the higher homotopy groups is zero. This together
with the interpretation of the Whitehead product given by Fox in [2] yields the
following corollary.
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Corollary 2.1. Denote by Z(G) the center of a group G. Then,
G1,(X) c Z(t,(X)),

i.e., Gt,X) iscentralin T,(X).

In general, there is no relationship among the classical Gottlieb groups {G,}. On
the other hand, the nested property of the torus homotopy groups (1.4) also holds for
the Gottlieb — Fox groups, i.e., Gt,_; < G7T,,.

In [5] the elements of the Gottlieb group were shown to contain the image of the
boundary homomorphism in the long exact sequence of homotopy groups of a
fibration. We will show a similar result for the torus homotopy groups.

Theorem 2.2. Let F s E — B be a fibration, then

di(t,(QB) c Gr,(F),
where d, is induced by the action of QB on F. Furthermore, the group Gt,(F)
is the union of the images of the homomorphism d.: T,(Q B) > T,(F) where the
union is taken over all fibration F c E— B having the some fiber F.
Proof. The action of QB on F determines a map D : QB —» F r up to
homotopy. The map d then factors through F F and d=eveD up to homotopy,
where ev is the evaluation map. For the second part, consider the universal fibration

over the base B = B Aut(F), the classifying space for the group Aut(F). The image
of the boundary homomorphism is exactly the image of the evaluation given in
Definition 2.1 and the result follows.

3. Generalization of the functor T,. One can define a generalization of the Fox
torus group as follows.

Definition 3.1. Let X be a space and x,€ X a basepoint. For any space W,
the W-Fox group of X is defined to be

Tw(X, xp) = [E(WU#), X],

where X denotes the reduced suspension, and [ , | denotes the set of homotopy
classes of basepoint preserving maps.

First of all, we have the following useful description of Ty, (X, xq).

Lemma 3.1. Forany X and W, we have

(X x) = (XY, co) = [EW. X] X (X, xp),

where co: W— X is the constant map at x.
Proof. Forany X and W, we have a fibration

xV -5 xV 5 x,

where X is the function space of basepoint preserving maps. This fibration admits a

section and the based pointin X "' is the constant map. We then obtain a long exact
sequence similar to that of Theorem 1.3. The last three terms of the resulting long exact
sequence together with the splitting gives the result.

Remark 3.1. We should point out that several authors have studied the track
groups in W-topology (see e.g. [9] and subsequent works such as [10 — 12]). In these

works, the identification [Zk W, X] = Ttk(X W) is used, where X W is understood to

be the set of based-point preserving maps from W to X whereas the notation X W
used in this paper denotes the set Map(W, X) of all maps from W to X. For

1
example, X s is the free loop space AX here but X 5 =QX in[9].
As an immediate consequence of Lemma 3.1, we show that the Abe groups of [13]
are semi-direct products. More precisely, the n-th Abe group «,(X), which is defined
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n—1
to be the fundamental group of the function space x5 , 1s the split extension of
T, (X) by m(X).
Corollary 3.1. The Abe groups are semi-direct products, i.e.,

Kn(X) = TSn—l(X) = nn(X) >4 nl(X)

Remark 3.2. Note that there is a canonical map "' #*— 5! by collapsing
the (n — 2)-th skeleton of 7" U *. This induces a monomorphism 7T S,H(X) -

T,(X). This fact that 7,(X) contains an isomorphic copy of x,(X) was already
established in [2]|.

Next, we give a generalization of Fox’s theorem (1.2) as follows.

Theorem 3.1. For any path connected X,V and W, the following sequence:

1= [(VXW)/V,QX] = Tyew(X) S 1p(X) = 1 (3.1)

is split exact. If W = XA is a suspension, then [(VxW)/V,QX] is abelian and is
isomorphic to [V AW, QX]|x [W, QX].
Proof. From the following Barratt — Puppe sequence

VU* - (VxW)U* - (VxW)/V - E(VU*) >
- Z(VxW)Ux) > Z(VxW)/V) > ..

and the fact that the map V — (V x W) admits a left inverse, by taking homotopy
classes of maps into X, we obtain the following split exact sequence of groups:

1= [Z(VxW)/V),X] = [Z(Vx W)U, X] S [Z(VU=), X] - 1.
Now we study the group [Z((V x W)/ V), X].

Consider the Barratt — Puppe sequence

W = (VXW)IV 5 VAW = ZW = Z(VXW)/V) - Z(VAW) > ...

and its associated sequence of groups by taking homotopy classes of maps into X.

Since the map W — (VX W)/V admits a left inverse we obtain the following
sequence which is split exact:

1 = [VAW,QX] = [(VXxW)/V,QX] S [W,QX] — 1. (3.2)
It follows that

n

[Z(VXW)/V).X] = [VAW,QX] X [W,QX].

Since
S(VXW) = SVVEWVEWV AW),
it follows that
SWv(VAW) = Z(VxW)/V.
Now, if W=2XA for some A, then
SWv(VAW) = Z(VXW)/V

is a double suspension and thus [Z(W v (V A W)), X] is abelian with the group
structure given by the double suspension loop structure. There are canonical
projections

o: (VxW)/V > W and B: (VXW)/V > VAW,

The co-multiplication on W= XA gives rise to a co-multiplication
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Vi (VXW)IV = (VW) V)v((VXW)/V).
Together with o and B, we have a suspension map
E(VxW)V = Z(Wv(VAW))

which induces an isomorphism on homology and hence on homotopy classes since the
spaces are simply connected. Also the suspension map induces a group
homomorphism

[EWV(VAW),X] - [E(VXW)/V,X].
Therefore, we have an isomorphism and this implies that the semi-direct product (3.2)
is indeed a direct product.

Remark 3.3. If W= S', V.= T"2, then (3.1) becomes (1.2) since (VX W)V =
= T"'/T"? s the Fox space F, ; (pinched torus) so that (VxW)/V =
~ (1" Ux).

4. Generalized Whitehead products and Gottlieb groups. In [3], a generalized
Whitehead product was defined between elements of [ZA, X] and of [ZB, X]. Here,
we give further information concerning Arkowitz’s product with the insight gained
from the Fox torus homotopy groups. We also consider the generalized Gottlieb group
with respect the functor Ty,.

We start by recalling the definition of the generalized Whitehead product given in
[3]. Let f: XA > X, g: ZB —>X be two maps,

py: Z(AXB) > XA, ZXpp:Z(AXB) > XB

the suspension of the corresponding projections and

f = feZps, & = g°Ips,

the composites respectively. Using the co-multiplication of X(A x B), we have a
well-defined map

(f,_l Og'_l)O(f,Og'): S(AxXB) - X.
This map, when restricted to XA v £B, is homotopic to the constant map. Now we let
K: (A X B) > X be a map homotopic to (f'_1 ° g'_l) ° (f’ ° g') whose restriction
to ZA v XB is the constant map.
Definition 4.1. The map K : X(AX B) —> X, as above, defines a map K’
(A X B) > X and the homotopy class [K'] is a well-defined class called the

generalized Whitehead product of [f] and |[g], and is denoted by [f]° [g]
(see [3)).

In the spirit of [2], we reinterpret Arkowitz’s generalized Whitehead product as
follows.

Theorem 4.1. Given o €[XA, X] and PBe[XB, X], then the image of (o.°f)
in Toxp(X) is the commutator of the image of o' and the image of B_l in
Taxp(X).

Proof. The image of [f]° [g] in 7T,4xp(X) is the homotopy class of the
composite

S(AxB)U* - Z(AxB) - 2(4~B) 2L x.

Call [f] [g] the images of [f], [g] in T4 p5(X), respectively, which are the
homotopy classes of the composites
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S(AxB)U*) — S(AxB) —» 34 5 x

and

S(AxB)U%) — Z(AxB) - B > X,
respectively. The definition of the operationin T4, z(X) uses the fact that the domain
Z((Ax B)U#) is asuspension. The commutator of the images of o' and [3_] in
[2(A x B), X], by the definition of the operation when the domain is a suspension, has
the map ( f o g'_l) ° ( f "o g') as a representative. But the homotopy class of this

map is also from (see [3]) the image of the generalized Whitehead product in
[E(Ax B), X]. Now by composing with the suspension of the projection
Y((Ax B)U#*) - X(A X B), the result follows.

Extending the definition of the classical Gottlieb group, we can define the
generalized Gottlieb group G (XV, X) as follows.

Definition 4.2. For any connected spaces A and X, with a basepoint xy€ X,
we define

G (XA X) := Im(ev.:[Z4, (X%, 1x)] = [Z4.(X. x,)])

to be the generalized Gottlieb group.
Similarly, we let
é(ZA,X) = {o: ZA—> X|Foj=avly forsome F:XAXX— X},

where j: XA v X<y ZA XX is the inclusion.
The following result follows from [14].
Proposition 4.1. Suppose A and X are compactly generated

G(ZA X) = G(ZA, X).

We now analyze the question “Is G central in some group?”. In [14], it was

shown that for a co-H-space A, the Gottlieb group é (A, X) is central in [A, X].
(See also [15] for related results.) In our case, as a result of the projection VX W — V,
we can regard [V, X] as a subgroup of [Z(V x W), X]. Under this identification, we
have the following theorem.

Theorem 4.2. The generalized Gottlieb group G (ZV,X), regarded as a
subgroup of Ty.w(X), is central in Tyyw(X) for any W. In particular, it is
central in [ZV, X].

Proof. Let us consider the image of an element of [XV, X] in [Z(V X W), X]

under the composite
svxw) B sv L ox.
Since we assume that f belongsto G (XV, X), the map
fvly:ZVvX = X
has an extension H: 2V XX — X, and hence the map
(feZp)viy: Z(VXW)vX > X

has an extension to the product (VX W)x X.

Now, consider the composite

1_
SVXWXE(VXW) o S(VxW)xx 5 x,
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where g is an arbitrary map from Z(V x W) to X. We use the fact that

Tyxw(X XY) = Ty (X)X Ty (V)
as groups so that an arbitrary element from 7Ty, (X) commutes with an arbitrary
element of Ty, (Y), when they are regarded as elements of Ty, (X XY). If we

apply the above observation for our case, we obtain that the images of [g] and of
[foZp] in Ty,w(X) commute and the result follows.

As a consequence of Theorem 4.1, which says that in the group Ty, (X) the

generalized Whitehead product becomes a commutator, and of the Theorem above, we
obtain that the Whitehead product of an element with any element of the Gottlieb group
vanishes.

By combining Theorem 4.1 and Theorem 4.2, we deduce the following result first
obtained by K. Varadarajan [4].

Theorem 4.3. Given o.€G(XZA, X), forany B€[ZB, X], we have

aof =0.

When the target space X is a suspension, an immediate consequence of the result
above gives the following description of the generalized Gottlieb groups.
Corollary 4.1. Let

P(EV,2X) = Ker(w: [TV, ZX] > [Z(V A X), ZX]),
where ® is given by the generalized Whitehead product. Then,
GZV,ZX) = P(ZV,ZX).

Remark 4.1. The equality of Theorem 4.3 was also shown by C. Hoo [15] and
later generalized by H. Marcum [16].

Remark 4.2. Given a fibration F —y E — B, there is an associated Eckmann —
Hilton exact sequence with a boundary map 0 : [A, QB] — [A, F] for any locally
finite CW complex A. In [4], it was shown that J([A, QB]) € G(A, F). Thus, when

A= Z(T”_l U *), Theorem 2.2 is in fact a special case of Varadarajan’s result.
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