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NEW INEQUALITIES FOR THE p-ANGULAR DISTANCE
IN NORMED SPACES WITH APPLICATIONS

HOBI HEPIBHOCTI JJISI p-KYTOBOI BICTAHI
B HOPMOBAHUX IMPOCTOPAX TA iX 3ACTOCYBAHHSI

For nonzero vectors x and y in the normed linear space (X, || - ||), we can define the p-angular distance by

aplz,y] = ||z — [lylP "y -

We show (among other results) that, for p > 2,

apl, ] < plly — 2l / 11— )+ ty[P~ dt <

p—1
E

—1
< plly — 2| [max {[lz||, lyl[}]"~,

for any =,y € X. This improves a result of Maligranda from [Simple norm inequalities / Amer. Math. Month. — 2006. —
113. — P. 256-260] who proved the inequality between the first and last terms in the estimation presented above. The
applications to functions f defined by power series in estimating a more general “distance” || f (||z||) = — f (||ly]]) || for
some x,y € X are also presented.

z|[P7L 4 ||y||P Tty
Sp\lyf:v\lw I 2H Il +H !

T p71_~_ y p—1
< ply ol b

Jlist HeHyJBOBHX BEKTODIB & Ta y B JiHiHOMY HOpMOBaHOMY TipocTopi (X, || - ||) MOXHa BH3HAIUTH p-KyTOBY BiICTaHb
TaKUM YHHOM:

aplz,y] = ||lz]" "z — lylI” " y]| -
VY pobori, 30kpeMa, TOKa3aHo, 1o

aple, ] < plly — all / 11— )+ ty[P " dt <

z|P~1L + p—1 T+ p—1
gpuy—xu[“ 2+ Il 2ty
[E +||y|| ! -1
< plly — = < plly — || [max {[|=[], [ly/[}}”

it p > 21 6ynp-sxkux x,y € X. lle mokpantye pesyasrar Manirpanau [Simple norm inequalities / Amer. Math. Month. —
2006. — 113. — P. 256-260], saxuii BCTAHOBUB HEPIBHICTh MIXX MEPIINM Ta OCTaHHIM WICHAMH BKa3aHOI OIiHKH. Takox
HABEZICHO 3aCTOCYBaHHS U QYHKIIN f, BU3HAUCHUX CTECIICHEBUMH PsIaMH TPH OIIHIOBAaHHI OLJbIN 3arajbHol ,,BimcTaHi”
I (lll) @ = f (lylD yll ms nesxnx z,y € X.

1. Introduction. Following [3, p. 403] or [12], for nonzero vectors x and y in the normed linear
space (X, || - ||) we define the angular distance o[z, y] between = and y by

alz,y] = ||— —
.y ‘rxu !yHH

© S. S. DRAGOMIR, 2015
ISSN 1027-3190.  Yxp. mam. orcypn., 2015, m. 67, Ne 1 19



20 S. S. DRAGOMIR

In 1958, Massera and Schéffer [12] (Lemma 5.1) showed that
2||z — y||

afz,y] < — = (1.1)
max {||z]], [[y[|}
which is better than the Dunkl— Williams inequality [7]
Af|z — yll
alz,y) < oYL (12)
]l + Nyl

We notice that the Massera—Schdffer inequality was rediscovered by Gurarii in [8] (see also [13,
p. 516]).
In [11], Maligranda obtained the double inequality

o =yl =l ~ il _ o D=l Dl = 3
min {|[z[], [[y]|} max {[||, [[y[|}
The second inequality in (1.3) is better than Massera— Schéffer’s inequality (1.1).
In the recent paper [11], L. Maligranda has also considered the p-angular distance

aplr,y] = ||l2lP~ e — [lylP~"y||
between the vectors x and y in the normed linear space (X, || - ||) over the real or complex number
field K and showed that
( p p
ooyl Y

max {[|z|[, [ly[l}

aplz,y] < llz =yl (2 — ! - (1.4)
' O o (e T PEOY e wv A0

1 .
(p [max {|z]], |y [l }}” if p e (1,00).
The constants 2 — p and p in (1.1) are best possible in the sense that they cannot be replaced by

smaller quantities.
As pointed out in [11], the inequality (1.1) for p € [1,00) is better than the Bourbaki inequality
obtained in 1965 [2, p. 257] (see also [13, p. 516]):

aple, y] < 3pllae —yll el + lyl*~, 2,y € X. (1.5)

The following results concerning upper bounds for the p-angular distance have been obtained by the
author in [5]:

Oép[ﬂ’j7y] S
—1 _ _ . .
lz = yll [max{|lz|l, lyl3]" + )P~ = [lyllP~  min{llz[l, Iy} if e (1,00),

[ 7
ly[I*=>" [l =7

|z =y - |
+llz[*77 = Jly|*7?| min
. 1—
[oin {{J[], [[y13)"

R [zl = llyl) 7]
. 1— _
min {flel iy max {2 1y, Iyl e~}

} it pelo1],

IN

if pée(—,0),

(1.6)
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and
Oép[ﬂ’j7y] S
. —1 —1 _ .
I = gl [min {lall, Iy} 17+ el = e~ [max (2], lyl} it p € (1,00),
|2 -y - - [ 77 L
< — + [llz"7P = [yl 7| max —, o if pel0,1],
=) [max {[|2[|, [ly[1}]" 7 | | Iyl [Jz||t=P
lz -y i 1 .
— + — — - - — if p € (—00,0),
[max {||z[|, |y[[}]*"  min {77 (ly[*=, [yl =(*~*}
(1.7)
for any two nonzero vectors z, y in the normed linear space (X, || - ||).

The upper bounds for [z, y] provided by (1.4), (1.6) and (1.7) have been compared in [5] to
conclude that some of the later ones are better in certain cases. The details are omitted here.

The following result which provides a lower bound for the p-angular distance was stated without
a proof by Gurarii in [8] (see also [13, p. 516]):

271)”33 - pr S ap[xay]a (18)

where p € [1,00) and z,y € X. The proof of the inequality (1.8) is still an open question for the
author.
Finally, we recall the results of G. N. Hile from [4]:

]l” = llyll”

|z =yl (1.9)
2] =yl

ozp[x,y] S

forp € [1,00) and z,y € X with ||z|| # ||y||, and

[ ]lP = [lyl” llz -yl
el = Myl [l {1y [P

forp € [1,00) and z,y € X \ {0} with ||z| # |ly]|-

2. Integral bounds for p-angular distance. The following result holds.

ap1[z,y] < (1.10)

Theorem 2.1. Let (X;|| - ||) be a normed linear space and p > 1. Then for any z,y € X we

have the inequality
1

ol ] < plly — o] / 11— ) + ty|P L dt. @.1)
0

If the vectors x,y € X are linearly independent and p < 1, then we have the inequality

1
apl ] < 2 —p)lly — ] / 11— )+ tyP . 2.2)
0
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Proof. Assume that © # y. For p > 2, consider the function f,, : [0,1] — [0,00) given by
fo(t) = ||(1 = ) + ty||P’~" . The function f, is convex on the interval [0, 1] for all p > 2. Therefore
the lateral derivatives f;,, and f,_ exist on each point of the interval [0, 1) and (0, 1], respectively, and
they are equal except a countably number of points in the interval (0, 1). The function f, is absolutely
continuos on [0, 1], the derivative f;, exists almost everywhere on [0, 1] and (see, for instance, [14],
Chapter IV)

F#) = =Dl =t +ty|" ry ) (1 -t +ty,y — ) (2.3)

almost everywhere on [0, 1], where the tangent functional T, (_y is defined by

[[u + svf| = Jlull

limg_, 04— if u#0,
Ty (o) (w,v) := 5 2.4
+ (=) [|v]| if u=0.
Now, if we consider the vector valued function g, : [0,1] — X given by

gp(t) = fp(t) [(1 = D)z + ty]

then we observe that g, is strongly differentiable almost everywhere on [0, 1] and (see, for instance,
[1], Chapter 1)

9p(®) = fr0) (1 = )z +ty] + fp(t) (y — ) =
= (p = DI =)z + tyl" 7y (1 = t)a + 1y, y — 2) ¥
< [(1 =tz +ty] + (1~ )+ tyl"~ (y — )

for almost every ¢ € [0, 1].
Since for any u,v € H with u # 0 we have

740y (w0)] < ol
then
gy < (P = V)11 = )z + ty|"~" |74y (1 = Dz + ty,y — 2)| +
HA =tz +ty|P ly — )| <
<=V =tz + Py =zl + (1= )z + tyP~ |y — 2] =
=pl(1 =tz +tylP~" |y — =]

for almost every ¢ € [0, 1].
By the norm inequality for the vector-valued integral we have (see, for instance, [1], Chapter 1)

lylP =ty = lzlP~ ]| = llgp (1) — g, (0)] =
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1
/ t)dt </ng )| dt <
0

1
<plly - 2 / 11— ) + ty|P L dt

and the proof of (2.1) is complete.

Let p € (1,2). The function f,: [0,1] — [0,00) given by f,(t) = ||(1 —t)z +ty|"~" is
absolutely continuous on [0, 1] and the equality (2.3) also holds almost everywhere on [0, 1]. The
above argument can then be extended to this case as well and the inequality (2.1) also holds.

If the vectors x,y € X are linearly independent and p < 1, then [|(1 — ¢)z + ty|| > 0 for any

€ [0,1] and the function A, : [0,1] — [0,00) given by hy(t) = (1 — t)z + ty||’* is absolutely
continuous on [0, 1] and

hy() = (p = D11 = D)z + ty|P > 7 (1= t)a + ty,y — ) 2.5)

almost everywhere on [0, 1].
If we consider the vector valued function m,: [0,1] — X given by

my(t) == hy(t) [(1 — t)x + ty],
then we observe that m,, is strongly differentiable almost everywhere on [0, 1] and
my(t) = by (1) [(1 = )z + ty] + hy(t) (y — 2) =
= (= DA =tz +ty|" ) (L=t +ty,y — o) x
X [(1 =)z +ty] + |1 =)o + ty|P~ (y — o)

for almost every ¢ € [0, 1].
As above we have

[ml @) < (1 —p) 11— )z + tylP~ "y — 2| + /(1 — t)z + ty|[P~" |y — || =

-1
=@2-p X -z +ty|" [ly — 2|

for almost every t € [0, 1], which implies the desired inequality (2.2).

Theorem 2.1 is proved.

Remark 2.1. If the vectors x and y are linearly dependent and y = Ax with A € K, then the
p-angular distance between z and y reduces to

aple,y] = all” [L = IXPTEA| = flall”By [1,A].

The study of 3, [1,A] = [1—[A|” _1)\| with A € K may be done in a similar way, however the details
are omitted.
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Remark 2.2. 1fp > 2, then the function f, : [0,1] — [0, 00) given by f,(t) = ||(1 — t)x + ty||"~*
is convex and by the Hermite — Hadamard type inequality for the convex function g: [a,b] — R

it from s [ ()]

<max{g(a),g(b)} (2.6)

we have the following chain of inequalities:

1
aplz, ] < plly — | / 11— e + ty|P " dt <
0

lallP + P (|2 + g
< — <
< plly | : : <
JallP~ + iyl L
< plly | < plly = al fmasx (ol 31" )

2

which provides a refinement of Maligranda’s inequality (1.4).
If p > 1 and since, by the triangle inequality we have

11—tz +tyl| < @ =t)|=| + ]yl

then
11—tz + ty P < [(1 = )] + tlly] P

for any ¢ € [0, 1]. Integrating on [0, 1] we get

1 1
B 1l =
0/ 11—t + tyP b < O/ (=Dl + P e = ST
if ||ly|| # ||=||, and by (2.1) we obtain the chain of inequalities
1
apleg) < plly =l 10— 00+ e < Wuy —al, 28)
0

which provides a refinement of Hile’s inequality (1.9).
For p > 2, by the Hermite — Hadamard’s type inequalities (2.6) we also have

1

L[yl = [P / -1

- = [ [A =)zl + tllyl[]" dt <
Pyl ==l
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p—1 p—1 p—1
§1[<ch\|+HyH> o el + ]<

2 2 2 -

B e ]
- 2
which implies the following sequence of inequalities:

< fmax {1z, lly[ 317~

1
aple,y] < plly — | / 11— e + ty|P " dt <
0

Hpr — HprHy _ 37” <
— lyll =l -
1 lzll + g\ Dl fyle !
< Z _ kel LRI 1415
< 2lly—al [( ! L <
et 7]

-1
< plly — x|l max {{[z, [ly/[}]”

R
< plly - 2

for ||yl # ||=[| and p > 2.

25

2.9)

In particular, the inequality (2.9) shows that in the case p > 2, Hile’s inequality (1.9) is better

than Maligranda’s inequality (1.4).

Remark 2.3. The case p = 0 is of interest, since by (2.2) we have the following upper bound

for the angular distance o[z, y]:

1
ale,y] < 2y — 2] / 11— t)e + ty) "L dt,
0

provided the vectors x and y are linearly independent.
Since for any ¢ € [0, 1]
1A=tz +tyl = llz =t (=)l =zl = tllz =yl = [l=]] - tllz =yl = =]
and similarly
11 =t)z +tyll = [lyl,

then we have
11— )z + tyl| = max {[lz], ly}

which implies that

1
1—t)a+tyl|tdt < .
0/ 1=z +ty] max (], T}

Therefore, we have the following refinement of the Massera— Schiffer’s inequality (1.1):
1

_ 2ly —x
ale,y] < 2y — 2 / 10 = )+ gt < —2Iv =2l
0

max {||z[|, [ly[l}
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26 S. S. DRAGOMIR

Remark 2.4. In [9], the authors introduced the concept of p-HH-norm on the Cartesian product
of two copies of a normed space, namely

1/p

1
TCR] —— / 10— e+ Pt
0

where (z,y) € X x X := X% and p > 1. They showed that || - ||,—z# is a norm on X? equivalent
with the usual p-norms

@)l = (=l + g 7)Y

They also showed that completeness, reflexivity, smoothness, strict convexity etc. is inherited by X2
with this norm.

In [10] the authors proved the following interesting lower bound for ||(z, y)|l,—rA:

<lelp+ lyll”

1/p
DY < e ) s (2.12)

for any (z,y) € X2 and p > 1.

Now, we observe that, by (2.1) we also have
apyifr,y] < (0 + 1) ly — 2l (@ I}y (2.13)

for any (z,y) € X2 and p > 1.

For x # y this is equivalent with

(IIH%’H”«’U — llyl”yll

1/p
(p+1)lly — | ) < @l - (2.14)

where p > 1.
It is natural to ask which lower bound from (2.12) and (2.14) for the p-HH-norm is better?

If we take X = C, || - || = |-| and p = 2, then by plotting the difference d given by

1/2
’x‘Qx_ ’y‘Qy z|? + |y|? 1/2
d(z,y) == ) . |z |y

3|y — = 6

for x,y € R and = # y, we observe that d is nonnegative, showing that the new bound (2.14) is
better than (2.12). The plot is depicted in Figure as follows:

ISSN 1027-3190.  Vxp. mam. orcypu., 2015, m. 67, Ne 1
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The variation of d in the box (z,y) € [—4,4] x [—4,4].
Problem 2.1. Is the inequality

lzlP + [yl _ [P = llylPy|]

< 2.15)
2 ly — |

true for any (z,y) € X? with x # y and p > 1?

3. Applications for power series. For power series f(z) = Zzo_o anz" with complex
coefficients we can naturally construct another power series which have as coefficients the absolute
values of the coefficient of the original series, namely, f,(z) := Zzoio lan| 2". It is obvious that
this new power series have the same radius of convergence as the original series, and that if all
coefficients a,, > 0, then f, = f.

As some natural examples that are useful for applications, we can point out that, if

z € D(0,1),

_Oo(il)nn_
f(z)—; =

3

g9(z) = Z (=1) 2" =cosz, z€C,

= (2n)!
3.1
h()_OO (1) 2n+1:' C
z Z)(Qn—i—l)! sinz, ze€C,
> 1
I(z) = (=1)"2" = , 2€D(0,1),
nz::o 142

then the corresponding functions constructed by the use of the absolute values of the coefficients are
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28 S. S. DRAGOMIR

1
fa(z) = Z Ez” =Ih—— 2€D(0,1),
n=1
- 1 2n
ga(2) = Z (2n)‘z =coshz, z€C,
n=0 ’
(3.2)
1
he(2) = Z ont 1>'22"+1 =sinhz, z¢€C,
[ee]
la(2) =) 2" = T 2€D(0,1)
n=0

arc:

1 1 =1
2ln( +Z>— 2n—122n71’ z € D(0,1),

oo 1
sin”!(z) = Mz%“, ze D(0,1), (3.3)

Dt o)+ AI() ,
5000 = 2 SN

a,f,v>0, ze€D(0,1),

where I" is Gamma function. -
Theorem 3.1. Let f(z) = Z 0 anz" be a function defined by power series with complex

coefficients and convergent on the 0?9;11 disk D(0,R) C C, R > 0. If (X; || - ||) is a normed linear
space and x,y € X with ||z||, ||y|| < R, then

I1f (D) = = ((lyl) yll <

1
= !yivll/[fa(\l(lt)1?+ty||)+||(1t)iv+ty!ffz(||(1t)$+ty||)] at. (34
0

Proof. From the inequality (2.1) for p = n 4 1, n a natural number with n > 1, we have
1
="z = llylI*yll < (n+ Dy — ]| / (1 = t)a + ty[" dt. (3.5
0
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We notice that the above inequality also holds for n = 0, reducing to an equality.
Let m > 1. Then we have, by the generalized triangle inequality and by (3.5), that

(é aﬂ%ll") T = (é an\ylln) y

m
<Y lan] )™ & = [lyl™y] <
n=0

<Hy—a:HZ n+1) \an\/H (1—t)x+ty||" dt =
n=0

—Hy—xll/( S (04 1) an] (1 = )z + ty)]" ) (3.6)

Since ||z||, ||y|| < R the series

) [eS)
Sanllt D anlyll”
n=0 n=0
and
)
> (n+1) lanl [|(1 =t + ty|"
n=0

are convergent.
Moreover, we obtain

> anlll™ = f (Il ZanllyH” =/ (llyll)
n=0

and

o

Y (o Dan] (1 - )z +ty||" =

n=0

(o.9) o
= lanl (1= )z +tyl" + D nlan| [|(1 - t)a +ty|" =

= fa (11 = O +tyll) + 11 = ) + tyl fo (1(1 = ) + tyl))

for any |[z]], [ly| < R.
Taking the limit over m — oo in (3.6) we get the desired result (3.4).

Theorem 3.1 is proved.
1
Remark 3.1. If we take f(z) := exp(z) = ZOO . —'z then we have from (3.4) the following
=0 n!
inequality:
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30 S. S. DRAGOMIR

llexp ([l]) 2 — exp ([ly|)yll <

<y —«| /exp(\(l — Oz +tyl)) L+ (1= t)z + ty]) dt (3.7

for any z,y € X.
If we apply the inequality (3.4) for the functions f(z) :=

—Z zandf)

= = Z )"z", then we have

H <t
> Y —
TE 2R a0+ 1yl

(3.8)

for any z,y € X with ||z|], ||yl < 1.
Utilising the Hile’s inequality, we can also prove the following divided difference inequality:

Proposition 3.1. Let f(z) = ZOO 0 anz" be a function defined by power series with complex
e

coefficients and convergent on the open disk D(0,R) € C, R > 0. If (X; || - ||) is a normed linear
space and x,y € X with ||z||, ||y|| < R and ||z|| # ||yl|, then

If Qlzl) z = f QgD yll _ fa UzD 11zl = fa (lylD vl
ly — || ]l =yl

(3.9)

Proof. The proof goes along the line of the one from Theorem 3.1 by utilizing Hile’s inequal-

ity (1.9)
1
1 7 o 7

ly — || =l =l

for any n a natural number.
Remark 3.2. If we write the inequality (3.9) for the exponential function, then we get

llexp ([[2[))  — exp (lylD yll _ exp (I=]) [l=]l = exp (lyl) ]

ly — || ]l =yl
for any =,y € X with ||z|| # ||y .
1
If we apply the inequality (3.9) for the functions f(z) := . and f(z) := 115 then we get
—z z

H vy H< Iy — =
T el Tl = T el (= T

for any z,y € X with [lz]| # [ly[| and [l [[y]| <1.
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