UDC 517.5

S. S. Dragomir (College Eng. and Sci., Victoria Univ., Melbourne City, Australia; School Comput. and Appl. Math., Univ. Witwatersrand, Johannesburg, South Africa)

NEW INEQUALITIES FOR THE *p*-ANGULAR DISTANCE IN NORMED SPACES WITH APPLICATIONS

НОВІ НЕРІВНОСТІ ДЛЯ *p*-КУТОВОЇ ВІДСТАНІ В НОРМОВАНИХ ПРОСТОРАХ ТА ЇХ ЗАСТОСУВАННЯ

For nonzero vectors x and y in the normed linear space $(X, \|\cdot\|)$, we can define the p-angular distance by

$$\alpha_p[x,y] := \|\|x\|^{p-1}x - \|y\|^{p-1}y\|.$$

We show (among other results) that, for $p \ge 2$,

$$\alpha_p[x,y] \le p||y-x|| \int_0^1 ||(1-t)x+ty||^{p-1} dt \le$$

$$\leq p\|y-x\|\left\lceil\frac{\|x\|^{p-1}+\|y\|^{p-1}}{2}+\left\|\frac{x+y}{2}\right\|^{p-1}\right\rceil\leq$$

$$\leq p\|y-x\|\frac{\|x\|^{p-1}+\|y\|^{p-1}}{2} \leq p\|y-x\| \left[\max{\{\|x\|,\|y\|\}}\right]^{p-1},$$

for any $x,y \in X$. This improves a result of Maligranda from [Simple norm inequalities // Amer. Math. Month. -2006. -113. -P. 256-260] who proved the inequality between the first and last terms in the estimation presented above. The applications to functions f defined by power series in estimating a more general "distance" ||f(||x||)x - f(||y||)y|| for some $x,y \in X$ are also presented.

Для ненульових векторів x та y в лінійному нормованому просторі $(X, \|\cdot\|)$ можна визначити p-кутову відстань таким чином:

$$\alpha_p[x,y] := \|\|x\|^{p-1}x - \|y\|^{p-1}y\|.$$

У роботі, зокрема, показано, що

$$\alpha_p[x,y] \le p||y-x|| \int_{0}^{1} ||(1-t)x + ty||^{p-1} dt \le$$

$$\leq p\|y-x\|\left\lceil\frac{\|x\|^{p-1}+\|y\|^{p-1}}{2}+\left\|\frac{x+y}{2}\right\|^{p-1}\right\rceil\leq$$

$$\leq p\|y-x\|\frac{\|x\|^{p-1}+\|y\|^{p-1}}{2}\leq p\|y-x\|\left[\max{\{\|x\|,\|y\|\}}\right]^{p-1}$$

для $p \geq 2$ і будь-яких $x,y \in X$. Це покращує результат Малігранди [Simple norm inequalities // Amer. Math. Month. – 2006. – 113. – Р. 256–260], який встановив нерівність між першим та останнім членами вказаної оцінки. Також наведено застосування для функцій f, визначених степеневими рядами при оцінюванні більш загальної "відстані" $\|f\left(\|x\|\right)x - f\left(\|y\|\right)y\|$ для деяких $x,y \in X$.

1. Introduction. Following [3, p. 403] or [12], for nonzero vectors x and y in the normed linear space $(X, \|\cdot\|)$ we define the *angular distance* $\alpha[x, y]$ between x and y by

$$\alpha[x,y] := \left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\|.$$

In 1958, Massera and Schäffer [12] (Lemma 5.1) showed that

$$\alpha[x,y] \le \frac{2\|x-y\|}{\max\{\|x\|,\|y\|\}},\tag{1.1}$$

which is better than the *Dunkl-Williams inequality* [7]

$$\alpha[x,y] \le \frac{4\|x-y\|}{\|x\| + \|y\|}. (1.2)$$

We notice that the *Massera-Schäffer inequality* was rediscovered by Gurariĭ in [8] (see also [13, p. 516]).

In [11], Maligranda obtained the double inequality

$$\frac{\|x - y\| - \|x\| - \|y\|\|}{\min\{\|x\|, \|y\|\}} \le \alpha[x, y] \le \frac{\|x - y\| + \|x\| - \|y\|\|}{\max\{\|x\|, \|y\|\}}.$$
(1.3)

The second inequality in (1.3) is better than Massera – Schäffer's inequality (1.1).

In the recent paper [11], L. Maligranda has also considered the *p-angular distance*

$$\alpha_p[x,y] := \|\|x\|^{p-1}x - \|y\|^{p-1}y\|$$

between the vectors x and y in the normed linear space $(X, \|\cdot\|)$ over the real or complex number field $\mathbb K$ and showed that

$$\alpha_{p}[x,y] \leq \|x-y\| \begin{cases} (2-p) \frac{\max\{\|x\|^{p}, \|y\|^{p}\}}{\max\{\|x\|, \|y\|\}} & \text{if} \quad p \in (-\infty, 0) \quad \text{and} \quad x, y \neq 0, \\ (2-p) \frac{1}{\left[\max\{\|x\|, \|y\|\}\right]^{1-p}} & \text{if} \quad p \in [0, 1] \quad \text{and} \quad x, y \neq 0, \\ p \left[\max\{\|x\|, \|y\|\}\right]^{p-1} & \text{if} \quad p \in (1, \infty). \end{cases}$$
(1.4)

The constants 2 - p and p in (1.1) are best possible in the sense that they cannot be replaced by smaller quantities.

As pointed out in [11], the inequality (1.1) for $p \in [1, \infty)$ is better than the Bourbaki inequality obtained in 1965 [2, p. 257] (see also [13, p. 516]):

$$\alpha_p[x,y] \le 3p\|x-y\| [\|x\| + \|y\|]^{p-1}, \quad x,y \in X.$$
 (1.5)

The following results concerning upper bounds for the p-angular distance have been obtained by the author in [5]:

$$\alpha_p[x,y] \leq$$

$$\leq \begin{cases}
 \|x-y\| \left[\max\{\|x\|,\|y\|\} \right]^{p-1} + \left| \|x\|^{p-1} - \|y\|^{p-1} \right| \min\{\|x\|,\|y\|\} & \text{if } p \in (1,\infty), \\
 \frac{\|x-y\|}{\left[\min\{\|x\|,\|y\|\} \right]^{1-p}} + \left| \|x\|^{1-p} - \|y\|^{1-p} \right| \min\left\{ \frac{\|x\|^p}{\|y\|^{1-p}}, \frac{\|y\|^p}{\|x\|^{1-p}} \right\} & \text{if } p \in [0,1], \\
 \frac{\|x-y\|}{\left[\min\{\|x\|,\|y\|\} \right]^{1-p}} + \frac{\left\| \|x\|^{1-p} - \|y\|^{1-p} \right\|}{\max\left\{ \|x\|^{-p} \|y\|^{1-p}, \|y\|^{-p} \|x\|^{1-p} \right\}} & \text{if } p \in (-\infty,0), \\
 (1.6)
 \end{cases}$$

and

$$\alpha_{p}[x,y] \leq \begin{cases} \|x-y\| \left[\min\left\{\|x\|,\|y\|\right\}\right]^{p-1} + \left\|\|x\|^{p-1} - \|y\|^{p-1} \right| \max\left\{\|x\|,\|y\|\right\} & \text{if } p \in (1,\infty), \\ \frac{\|x-y\|}{\left[\max\left\{\|x\|,\|y\|\right\}\right]^{1-p}} + \left\|\|x\|^{1-p} - \|y\|^{1-p} \right| \max\left\{\frac{\|x\|^{p}}{\|y\|^{1-p}}, \frac{\|y\|^{p}}{\|x\|^{1-p}}\right\} & \text{if } p \in [0,1], \\ \frac{\|x-y\|}{\left[\max\left\{\|x\|,\|y\|\right\}\right]^{1-p}} + \frac{\|\|x\|^{1-p} - \|y\|^{1-p}}{\min\left\{\|x\|^{-p}\|y\|^{1-p}, \|y\|^{-p}\|x\|^{1-p}\right\}} & \text{if } p \in (-\infty,0), \end{cases}$$

$$(1.7)$$

for any two nonzero vectors x, y in the normed linear space $(X, \|\cdot\|)$.

The upper bounds for $\alpha_p[x,y]$ provided by (1.4), (1.6) and (1.7) have been compared in [5] to conclude that some of the later ones are better in certain cases. The details are omitted here.

The following result which provides a lower bound for the p-angular distance was stated without a proof by Gurarii in [8] (see also [13, p. 516]):

$$2^{-p}||x-y||^p \le \alpha_p[x,y],\tag{1.8}$$

where $p \in [1, \infty)$ and $x, y \in X$. The proof of the inequality (1.8) is still an open question for the author.

Finally, we recall the results of G. N. Hile from [4]:

$$\alpha_p[x,y] \le \frac{\|x\|^p - \|y\|^p}{\|x\| - \|y\|} \|x - y\|,\tag{1.9}$$

for $p \in [1, \infty)$ and $x, y \in X$ with $||x|| \neq ||y||$, and

$$\alpha_{-p-1}[x,y] \le \frac{\|x\|^p - \|y\|^p}{\|x\| - \|y\|} \frac{\|x - y\|}{\|x\|^p \|y\|^p},\tag{1.10}$$

for $p \in [1, \infty)$ and $x, y \in X \setminus \{0\}$ with $||x|| \neq ||y||$.

2. Integral bounds for p-angular distance. The following result holds.

Theorem 2.1. Let $(X; \|\cdot\|)$ be a normed linear space and $p \ge 1$. Then for any $x, y \in X$ we have the inequality

$$\alpha_p[x,y] \le p||y-x|| \int_0^1 ||(1-t)x+ty||^{p-1} dt.$$
 (2.1)

If the vectors $x, y \in X$ are linearly independent and p < 1, then we have the inequality

$$\alpha_p[x,y] \le (2-p) \|y-x\| \int_0^1 \|(1-t)x + ty\|^{p-1} dt.$$
 (2.2)

Proof. Assume that $x \neq y$. For $p \geq 2$, consider the function $f_p: [0,1] \to [0,\infty)$ given by $f_p(t) = \|(1-t)x + ty\|^{p-1}$. The function f_p is convex on the interval [0,1] for all $p \geq 2$. Therefore the lateral derivatives f'_{p+} and f'_{p-} exist on each point of the interval [0,1) and (0,1], respectively, and they are equal except a countably number of points in the interval (0,1). The function f_p is absolutely continuos on [0,1], the derivative f'_p exists almost everywhere on [0,1] and (see, for instance, [14], Chapter IV)

$$f_p'(t) = (p-1) \| (1-t)x + ty \|^{p-2} \tau_{+(-)} ((1-t)x + ty, y - x)$$
(2.3)

almost everywhere on [0,1], where the tangent functional $\tau_{+(-)}$ is defined by

$$\tau_{+(-)}(u,v) := \begin{cases} \lim_{s \to 0+(-)} \frac{\|u+sv\| - \|u\|}{s} & \text{if } u \neq 0, \\ +(-)\|v\| & \text{if } u = 0. \end{cases}$$
 (2.4)

Now, if we consider the vector valued function $g_p:[0,1]\to X$ given by

$$g_p(t) := f_p(t) [(1-t)x + ty]$$

then we observe that g_p is strongly differentiable almost everywhere on [0,1] and (see, for instance, [1], Chapter 1)

$$g'_{p}(t) = f'_{p}(t) \left[(1-t)x + ty \right] + f_{p}(t) \left(y - x \right) =$$

$$= (p-1) \left\| (1-t)x + ty \right\|^{p-2} \tau_{+(-)} \left((1-t)x + ty, y - x \right) \times$$

$$\times \left[(1-t)x + ty \right] + \left\| (1-t)x + ty \right\|^{p-1} \left(y - x \right)$$

for almost every $t \in [0, 1]$.

Since for any $u, v \in H$ with $u \neq 0$ we have

$$|\tau_{+(-)}(u,v)| \le ||v||,$$

then

$$||g_p'(t)|| \le (p-1) ||(1-t)x + ty||^{p-1} |\tau_{+(-)}((1-t)x + ty, y - x)| + + ||(1-t)x + ty||^{p-1} ||y - x|| \le \le (p-1) ||(1-t)x + ty||^{p-1} ||y - x|| + ||(1-t)x + ty||^{p-1} ||y - x|| = = p ||(1-t)x + ty||^{p-1} ||y - x||$$

for almost every $t \in [0, 1]$.

By the norm inequality for the vector-valued integral we have (see, for instance, [1], Chapter 1)

$$|||y||^{p-1}y - ||x||^{p-1}x|| = ||g_p(1) - g_p(0)|| =$$

$$= \left\| \int_{0}^{1} g'_{p}(t)dt \right\| \le \int_{0}^{1} \left\| g'_{p}(t) \right\| dt \le$$

$$\leq p||y-x||\int_{0}^{1}||(1-t)x+ty||^{p-1}dt$$

and the proof of (2.1) is complete.

Let $p \in (1,2)$. The function $f_p: [0,1] \to [0,\infty)$ given by $f_p(t) = \|(1-t)x + ty\|^{p-1}$ is absolutely continuous on [0,1] and the equality (2.3) also holds almost everywhere on [0,1]. The above argument can then be extended to this case as well and the inequality (2.1) also holds.

If the vectors $x, y \in X$ are linearly independent and p < 1, then $\|(1-t)x + ty\| > 0$ for any $t \in [0,1]$ and the function $h_p \colon [0,1] \to [0,\infty)$ given by $h_p(t) = \|(1-t)x + ty\|^{p-1}$ is absolutely continuous on [0,1] and

$$h_p'(t) = (p-1) \| (1-t)x + ty \|^{p-2} \tau_{+(-)} ((1-t)x + ty, y - x)$$
(2.5)

almost everywhere on [0, 1].

If we consider the vector valued function $m_p: [0,1] \to X$ given by

$$m_p(t) := h_p(t) [(1-t)x + ty],$$

then we observe that m_p is strongly differentiable almost everywhere on [0,1] and

$$m'_{p}(t) = h'_{p}(t) \left[(1-t)x + ty \right] + h_{p}(t) \left(y - x \right) =$$

$$= (p-1) \left\| (1-t)x + ty \right\|^{p-2} \tau_{+(-)} \left((1-t)x + ty, y - x \right) \times$$

$$\times \left[(1-t)x + ty \right] + \left\| (1-t)x + ty \right\|^{p-1} \left(y - x \right)$$

for almost every $t \in [0, 1]$.

As above we have

$$||m'_p(t)|| \le (1-p) ||(1-t)x + ty||^{p-1} ||y - x|| + ||(1-t)x + ty||^{p-1} ||y - x|| =$$

$$= (2-p) ||(1-t)x + ty||^{p-1} ||y - x||$$

for almost every $t \in [0, 1]$, which implies the desired inequality (2.2).

Theorem 2.1 is proved.

Remark 2.1. If the vectors x and y are linearly dependent and $y = \lambda x$ with $\lambda \in \mathbb{K}$, then the p-angular distance between x and y reduces to

$$\alpha_p[x, y] = ||x||^p |1 - |\lambda|^{p-1} \lambda| = ||x||^p \beta_p[1, \lambda].$$

The study of $\beta_p[1,\lambda] = |1-|\lambda|^{p-1}\lambda|$ with $\lambda \in \mathbb{K}$ may be done in a similar way, however the details are omitted.

Remark 2.2. If $p \ge 2$, then the function $f_p : [0,1] \to [0,\infty)$ given by $f_p(t) = \|(1-t)x + ty\|^{p-1}$ is convex and by the Hermite-Hadamard type inequality for the convex function $g : [a,b] \to \mathbb{R}$

$$\frac{1}{b-a} \int_{a}^{b} g(s) ds \leq \frac{1}{2} \left[\frac{g(a) + g(b)}{2} + g\left(\frac{a+b}{2}\right) \right] \leq$$

$$\leq \frac{g(a) + g(b)}{2} \leq \max \left\{ g(a), g(b) \right\} \tag{2.6}$$

we have the following chain of inequalities:

$$\alpha_{p}[x,y] \leq p\|y-x\| \int_{0}^{1} \|(1-t)x+ty\|^{p-1} dt \leq$$

$$\leq p\|y-x\| \left[\frac{\|x\|^{p-1}+\|y\|^{p-1}}{2} + \left\| \frac{x+y}{2} \right\|^{p-1} \right] \leq$$

$$\leq p\|y-x\| \frac{\|x\|^{p-1}+\|y\|^{p-1}}{2} \leq p\|y-x\| \left[\max\left\{ \|x\|,\|y\|\right\} \right]^{p-1}, \tag{2.7}$$

which provides a refinement of Maligranda's inequality (1.4).

If $p \ge 1$ and since, by the triangle inequality we have

$$||(1-t)x + ty|| \le (1-t)||x|| + t||y||,$$

then

$$||(1-t)x + ty||^{p-1} \le [(1-t)||x|| + t||y||]^{p-1}$$

for any $t \in [0, 1]$. Integrating on [0, 1] we get

$$\int_{0}^{1} \left\| (1-t)x + ty \right\|^{p-1} dt \le \int_{0}^{1} \left[(1-t) \|x\| + t \|y\| \right]^{p-1} dt = \frac{1}{p} \frac{\|y\|^{p} - \|x\|^{p}}{\|y\| - \|x\|}$$

if $||y|| \neq ||x||$, and by (2.1) we obtain the chain of inequalities

$$\alpha_p[x,y] \le p\|y-x\| \int_0^1 \|(1-t)x + ty\|^{p-1} dt \le \frac{\|y\|^p - \|x\|^p}{\|y\| - \|x\|} \|y - x\|, \tag{2.8}$$

which provides a refinement of Hile's inequality (1.9).

For $p \ge 2$, by the Hermite-Hadamard's type inequalities (2.6) we also have

$$\frac{1}{p} \frac{\|y\|^p - \|x\|^p}{\|y\| - \|x\|} = \int_0^1 \left[(1 - t)\|x\| + t\|y\| \right]^{p-1} dt \le$$

$$\leq \frac{1}{2} \left[\left(\frac{\|x\| + \|y\|}{2} \right)^{p-1} + \frac{\|x\|^{p-1} + \|y\|^{p-1}}{2} \right] \leq$$

$$\leq \frac{\|x\|^{p-1} + \|y\|^{p-1}}{2} \leq \left[\max\left\{\|x\|, \|y\|\right\}\right]^{p-1}$$

which implies the following sequence of inequalities:

$$\alpha_{p}[x,y] \leq p\|y-x\| \int_{0}^{1} \|(1-t)x+ty\|^{p-1} dt \leq$$

$$\leq \frac{\|y\|^{p}-\|x\|^{p}}{\|y\|-\|x\|} \|y-x\| \leq$$

$$\leq \frac{1}{2}p\|y-x\| \left[\left(\frac{\|x\|+\|y\|}{2} \right)^{p-1} + \frac{\|x\|^{p-1}+\|y\|^{p-1}}{2} \right] \leq$$

$$\leq p\|y-x\| \frac{\|x\|^{p-1}+\|y\|^{p-1}}{2} \leq p\|y-x\| [\max\{\|x\|,\|y\|\}]^{p-1}$$

$$(2.9)$$

for $||y|| \neq ||x||$ and $p \geq 2$.

In particular, the inequality (2.9) shows that in the case $p \ge 2$, Hile's inequality (1.9) is better than Maligranda's inequality (1.4).

Remark 2.3. The case p=0 is of interest, since by (2.2) we have the following upper bound for the angular distance $\alpha[x,y]$:

$$\alpha[x,y] \le 2\|y-x\| \int_{0}^{1} \|(1-t)x + ty\|^{-1} dt, \tag{2.10}$$

provided the vectors x and y are linearly independent.

Since for any $t \in [0, 1]$

$$||(1-t)x + ty|| = ||x - t(x - y)|| \ge |||x|| - t||x - y||| \ge ||x|| - t||x - y|| \ge ||x||$$

and similarly

$$||(1-t)x + ty|| \ge ||y||,$$

then we have

$$||(1-t)x+ty|| \ge \max\{||x||, ||y||\},$$

which implies that

$$\int_{0}^{1} \|(1-t)x + ty\|^{-1} dt \le \frac{1}{\max\{\|x\|, \|y\|\}}.$$
 (2.11)

Therefore, we have the following refinement of the Massera – Schäffer's inequality (1.1):

$$\alpha[x,y] \le 2\|y-x\| \int_{0}^{1} \|(1-t)x + ty\|^{-1} dt \le \frac{2\|y-x\|}{\max\{\|x\|,\|y\|\}}.$$

Remark 2.4. In [9], the authors introduced the concept of p-HH-norm on the Cartesian product of two copies of a normed space, namely

$$\|(x,y)\|_{p-HH} := \left(\int_{0}^{1} \|(1-t)x + ty\|^{p} dt\right)^{1/p},$$

where $(x,y) \in X \times X := X^2$ and $p \ge 1$. They showed that $\|\cdot\|_{p-HH}$ is a norm on X^2 equivalent with the usual p-norms

$$\|(x,y)\|_p := (\|x\|^p + \|y\|^p)^{1/p}.$$

They also showed that completeness, reflexivity, smoothness, strict convexity etc. is inherited by X^2 with this norm.

In [10] the authors proved the following interesting lower bound for $||(x,y)||_{p-HH}$:

$$\left(\frac{\|x\|^p + \|y\|^p}{2(p+1)}\right)^{1/p} \le \|(x,y)\|_{p-HH}$$
(2.12)

for any $(x,y) \in X^2$ and $p \ge 1$.

Now, we observe that, by (2.1) we also have

$$\alpha_{p+1}[x,y] \le (p+1) \|y-x\| \|(x,y)\|_{p-HH}^p$$
 (2.13)

for any $(x,y) \in X^2$ and $p \ge 1$.

For $x \neq y$ this is equivalent with

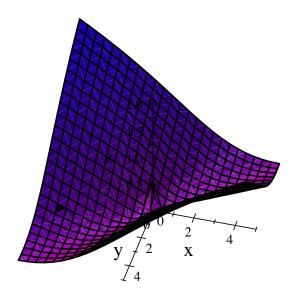
$$\left(\frac{\|\|x\|^p x - \|y\|^p y\|}{(p+1)\|y - x\|}\right)^{1/p} \le \|(x,y)\|_{p-HH},$$
(2.14)

where $p \ge 1$.

It is natural to ask which lower bound from (2.12) and (2.14) for the p-HH-norm is better? If we take $X = \mathbb{C}$, $\|\cdot\| = |\cdot|$ and p = 2, then by plotting the difference d given by

$$d(x,y) := \left(\frac{\left||x|^2 \, x - |y|^2 \, y\right|}{3 \, |y - x|}\right)^{1/2} - \left(\frac{|x|^2 + |y|^2}{6}\right)^{1/2}$$

for $x, y \in \mathbb{R}$ and $x \neq y$, we observe that d is nonnegative, showing that the new bound (2.14) is better than (2.12). The plot is depicted in Figure as follows:



The variation of d in the box $(x, y) \in [-4, 4] \times [-4, 4]$.

Problem 2.1. Is the inequality

$$\frac{\|x\|^p + \|y\|^p}{2} \le \frac{\|\|x\|^p x - \|y\|^p y\|}{\|y - x\|}$$
 (2.15)

true for any $(x,y) \in X^2$ with $x \neq y$ and $p \geq 1$?

3. Applications for power series. For power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ with complex coefficients we can naturally construct another power series which have as coefficients the absolute values of the coefficient of the original series, namely, $f_a(z) := \sum_{n=0}^{\infty} |a_n| z^n$. It is obvious that this new power series have the same radius of convergence as the original series, and that if all coefficients $a_n \ge 0$, then $f_a = f$.

As some natural examples that are useful for applications, we can point out that, if

$$f(z) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} z^n = \ln \frac{1}{1+z}, \quad z \in D(0,1),$$

$$g(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n} = \cos z, \quad z \in \mathbb{C},$$

$$h(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1} = \sin z, \quad z \in \mathbb{C},$$

$$l(z) = \sum_{n=0}^{\infty} (-1)^n z^n = \frac{1}{1+z}, \quad z \in D(0,1),$$
(3.1)

then the corresponding functions constructed by the use of the absolute values of the coefficients are

$$f_a(z) = \sum_{n=1}^{\infty} \frac{1}{n} z^n = \ln \frac{1}{1-z}, \quad z \in D(0,1),$$

$$g_a(z) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} z^{2n} = \cosh z, \quad z \in \mathbb{C},$$

$$h_a(z) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} z^{2n+1} = \sinh z, \quad z \in \mathbb{C},$$

$$l_a(z) = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}, \quad z \in D(0,1).$$
(3.2)

Other important examples of functions as power series representations with nonnegative coefficients are:

$$\exp(z) = \sum_{n=0}^{\infty} \frac{1}{n!} z^n, \quad z \in \mathbb{C},$$

$$\frac{1}{2} \ln\left(\frac{1+z}{1-z}\right) = \sum_{n=1}^{\infty} \frac{1}{2n-1} z^{2n-1}, \quad z \in D(0,1),$$

$$\sin^{-1}(z) = \sum_{n=0}^{\infty} \frac{\Gamma\left(n+\frac{1}{2}\right)}{\sqrt{\pi}(2n+1)n!} z^{2n+1}, \quad z \in D(0,1),$$

$$\tanh^{-1}(z) = \sum_{n=1}^{\infty} \frac{1}{2n-1} z^{2n-1}, \quad z \in D(0,1),$$

$${}_{2}F_{1}(\alpha,\beta,\gamma,z) = \sum_{n=1}^{\infty} \frac{\Gamma\left(n+\alpha\right)\Gamma(n+\beta)\Gamma(\gamma)}{n!\Gamma(\alpha)\Gamma(\beta)\Gamma(n+\gamma)} z^{n}, \qquad \alpha,\beta,\gamma > 0, \quad z \in D(0,1),$$

$$(3.3)$$

where Γ is Gamma function.

Theorem 3.1. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a function defined by power series with complex coefficients and convergent on the open disk $D(0,R) \subset \mathbb{C}$, R > 0. If $(X; \|\cdot\|)$ is a normed linear space and $x, y \in X$ with ||x||, ||y|| < R, then

$$||f(||x||)x - f(||y||)y|| \le$$

$$\leq \|y - x\| \int_{0}^{1} \left[f_a \left(\|(1 - t)x + ty\| \right) + \|(1 - t)x + ty\| f_a' \left(\|(1 - t)x + ty\| \right) \right] dt. \tag{3.4}$$

Proof. From the inequality (2.1) for p = n + 1, n a natural number with $n \ge 1$, we have

$$|||x||^n x - ||y||^n y|| \le (n+1)||y-x|| \int_0^1 ||(1-t)x + ty||^n dt.$$
 (3.5)

We notice that the above inequality also holds for n = 0, reducing to an equality. Let $m \ge 1$. Then we have, by the generalized triangle inequality and by (3.5), that

$$\left\| \left(\sum_{n=0}^{m} a_n \|x\|^n \right) x - \left(\sum_{n=0}^{m} a_n \|y\|^n \right) y \right\| \le$$

$$\le \sum_{n=0}^{m} |a_n| \|\|x\|^n x - \|y\|^n y\| \le$$

$$\le \|y - x\| \sum_{n=0}^{m} (n+1) |a_n| \int_{0}^{1} \|(1-t)x + ty\|^n dt =$$

$$= \|y - x\| \int_{0}^{1} \left(\sum_{n=0}^{m} (n+1) |a_n| \|(1-t)x + ty\|^n \right) dt. \tag{3.6}$$

Since ||x||, ||y|| < R the series

$$\sum_{n=0}^{\infty} a_n ||x||^n, \qquad \sum_{n=0}^{\infty} a_n ||y||^n$$

and

$$\sum_{n=0}^{\infty} (n+1) |a_n| ||(1-t)x + ty||^n$$

are convergent.

Moreover, we obtain

$$\sum_{n=0}^{\infty} a_n ||x||^n = f(||x||), \qquad \sum_{n=0}^{\infty} a_n ||y||^n = f(||y||)$$

and

$$\sum_{n=0}^{\infty} (n+1) |a_n| ||(1-t)x + ty||^n =$$

$$= \sum_{n=0}^{\infty} |a_n| ||(1-t)x + ty||^n + \sum_{n=0}^{\infty} n |a_n| ||(1-t)x + ty||^n =$$

$$= f_a (||(1-t)x + ty||) + ||(1-t)x + ty|| f'_a (||(1-t)x + ty||)$$

for any ||x||, ||y|| < R.

Taking the limit over $m \to \infty$ in (3.6) we get the desired result (3.4).

Theorem 3.1 is proved.

Remark 3.1. If we take $f(z) := \exp(z) = \sum_{n=0}^{\infty} \frac{1}{n!} z^n$ then we have from (3.4) the following inequality:

$$\left\|\exp\left(\left\|x\right\|\right)x - \exp\left(\left\|y\right\|\right)y\right\| \le$$

$$\leq \|y - x\| \int_{0}^{1} \exp\left(\|(1 - t)x + ty\|\right) (1 + \|(1 - t)x + ty\|) dt \tag{3.7}$$

for any $x, y \in X$.

If we apply the inequality (3.4) for the functions $f(z):=\frac{1}{1-z}=\sum_{n=0}^{\infty}z^n$ and $f(z):=\frac{1}{1+z}=\sum_{n=0}^{\infty}(-1)^nz^n$, then we have

$$\left\| \frac{x}{1 \pm \|x\|} - \frac{y}{1 \pm \|y\|} \right\| \le \|y - x\| \int_{0}^{1} \frac{dt}{(1 - \|(1 - t)x + ty\|)^{2}}$$
 (3.8)

for any $x, y \in X$ with ||x||, ||y|| < 1.

Utilising the Hile's inequality, we can also prove the following divided difference inequality:

Proposition 3.1. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a function defined by power series with complex coefficients and convergent on the open disk $D(0,R) \subset \mathbb{C}$, R > 0. If $(X; \|\cdot\|)$ is a normed linear space and $x, y \in X$ with $\|x\|, \|y\| < R$ and $\|x\| \neq \|y\|$, then

$$\frac{\|f(\|x\|)x - f(\|y\|)y\|}{\|y - x\|} \le \frac{f_a(\|x\|)\|x\| - f_a(\|y\|)\|y\|}{\|x\| - \|y\|}.$$
(3.9)

Proof. The proof goes along the line of the one from Theorem 3.1 by utilizing Hile's inequality (1.9)

$$\frac{\|\|x\|^n x - \|y\|^n y\|}{\|y - x\|} \le \frac{\|x\|^{n+1} - \|y\|^{n+1}}{\|x\| - \|y\|}$$

for any n a natural number.

Remark 3.2. If we write the inequality (3.9) for the exponential function, then we get

$$\frac{\|\exp(\|x\|) \, x - \exp(\|y\|) \, y\|}{\|y - x\|} \le \frac{\exp(\|x\|) \, \|x\| - \exp(\|y\|) \, \|y\|}{\|x\| - \|y\|}$$

for any $x, y \in X$ with $||x|| \neq ||y||$.

If we apply the inequality (3.9) for the functions $f(z):=\frac{1}{1-z}$ and $f(z):=\frac{1}{1+z}$, then we get

$$\left\| \frac{x}{1 \pm \|x\|} - \frac{y}{1 \pm \|y\|} \right\| \le \frac{\|y - x\|}{(1 - \|x\|)(1 - \|y\|)}$$

for any $x, y \in X$ with $||x|| \neq ||y||$ and ||x||, ||y|| < 1.

- 1. Arendt W., Batty C. J. K., Hieber M., Neubrander F. Vector-valued Laplace transforms and Cauchy problems. Second ed. // Monogr. Math. Basel: Birkhäuser / Springer Basel AG, 2011. 96. xii+539 p.
- 2. Bourbaki N. Integration. Paris: Herman, 1965.
- 3. Clarkson J. A. Uniform convex spaces // Trans. Amer. Math. Soc. 1936. 40. P. 396-414.
- 4. *Hile G. N.* Entire solutions of linear elliptic equations with Laplacian principal part // Pacif. J. Math. 1976. **62**. P. 124–140.

- Dragomir S. S. Inequalities for the p-angular distance in normed linear spaces // Math. Inequal. Appl. 2009. 12, № 2. – P. 391 – 401.
- 6. *Dragomir S. S., Pearce C. E. M.* Selected topics on Hermite–Hadamard inequalities and applications // RGMIA Monogr. 2000. [Online http://rgmia.org/monographs/hermite_hadamard.html].
- 7. Dunkl C. F., Williams K. S. A simple norm inequality // Amer. Math. Month. 1964. 71. P. 53 54.
- 8. *Gurarii V. I.* Strengthening the Dunkl Williams inequality on the norms of elements of Banach spaces (in Ukrainian) // Dop. Akad. Nauk Ukrain. RSR. 1966. P. 35 38.
- 9. *Kikianty E., Dragomir S. S.* Hermite Hadamard's inequality and the *p*-HH-norm on the Cartesian product of two copies of a normed space // Math. Inequal. Appl. 2010. 13, № 1. P. 1–32.
- 10. *Kikianty E., Sinnamon G.* The *p*-HH norms on Cartesian powers and sequence spaces // J. Math. Anal. and Appl. 2009. 359, No 2. P. 765 779.
- 11. Maligranda L. Simple norm inequalities // Amer. Math. Month. 2006. 113. P. 256 260.
- 12. *Massera J. L., Schäffer J. J.* Linear differential equations and functional analysis. I // Ann. Math. 1958. 67. P. 517 573.
- 13. Mitrinović D. S., Pečarić J. E., Fink A. M. Classical and new inequalities in analysis. Dordrecht: Kluwer, 1993.
- 14. Roberts A. W., Varberg D. E. Convex functions // Pure and Appl. Math. 1973. 57. xx+300 p.

Received 20.11.13