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A NOTE ON THE RECURSIVE SEQUENCE
X4l = Pp¥n + PpXp—g + oo T D1 X g

PO PEKYPEHTHY IIOCJIIIOBHICTDbH
Xpt1 = Pp¥n t P Xp—g t oo T D1 X g

We present some comments on the behaviour of solutions of the difference equation

Xust = PpXy + P ey o TP X n=-L0 L,
where P; 20, i=l..,k, keN and x_,,...,x_; €R.
Posriiajaerscs moBejlilKa poss’ A3KiB pisNMUEBoro piBlANIA

Xpol = X, F Ppg¥py F oo TP, =1, 0L
ne pz0, i=L..k, keN 1a x_,...x €R.

1. Introduction. In [1] the authors considered the following linear homogeneous
difference equation '

Xppl = PrXy t Py Xy F oo F DI st n=-1,0,1..., (])

where p;>0, i =1,... ,k, ke N and x_,...,x_ €R. Equation (1) is very
important because it presents the linearized equation of a large class of mathematical
biology models. For example:

Discrete delay logistic difference equation:

= —%% 4 B>0 and keN, 2

1+ Bx”,,k
which was considered in books [2,3] by E. C. Pielou.

Xnl

Generalized Bedington — Holt stock recruitment model:

bx n—]

+ . Xg. x>0, n=12.3,..., 3
" 1+ex, | +dx, 9=d ®)

Xpy) = ax
) . n—
where ae(0,1), b € R, and ¢, d € R, U (0}, with c+d>0.

This equation was considered, for example in [4 — 6]. In [5] it was shown that
when a+b <1, or a+b=1 and ¢ > 0, then the zero equilibrium is a global
attractor of all positive solutions of equation (3).

Mosquito population equations:

X = (ax, + bx, &6 )™, %% >0, A=123,..., 4
where a€(0,1), b € [0,=) and
X = (ax, +PBx,_)e™, x0x >0, n=1273.., (5)
where o € [0,1), B e (0, ).
Equations (4) describes the growth of a mosquito population. Equations (5) is

derived from a two life stage model where the young mature into adults, and adults
produce young. The global stability of these equations is studied in [7].
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Perenial grass model:

bxﬂ-—l

e’

X4 = ax, + x,x >0, n=123,.., (6)
where ae(0,1), 6>0.

The stability, and the oscillatory character of solutions of somewhat generalized
equation have been studied in [5, 8].

Flour beetle population model:

Xp43 = @Xpyo + bx e Gm2td) 01,0 @)

with a, b,¢,d =20 and c+d > 0.
This equation was considered in [9, 10]. In [9] it was shown in particular that when
a+b <1 and a, b >0, then the origin is asymptotically stable relative to the nonne-

gative octant in R 3 (i.e., all nonnegative solutions are attracted to the origin and the
beetles became extinct). The same conclusion holds under the conditions

a+b<1 and b >0.

From the above we see that the most interesting case of these equations are when
the sum of the main coefficients of the equations is equal to 1, i.e., when a =1 for
Eq.(2), a+b =1 for Eq. (3), (4), (6) and (7) and o+ B =1 for Eq. (5). In these
cases linearized equations of this equations have the form just as in (1).

In [1] the following theorem was established.

Theorem A. The solutions of Eq. (1) are asymptotically stable if and only if Ry =

¥ ST

Their proof is not complete and too complicated. They omitted the case when z =
e®, 8 e (0, ®)U(m, 27), is a zero of the polynomial

1l

P.(z) = Zk ) szkul - Pk__,;zk_g = Py (8)
Also the formulation of Theorem A is rather awkward, because in the case Ry =1

the solutions of Eq. (1) are only stable and not asymptotically stable. The purpose of
this note is to complete proof of Theorem A and generalize the theorem to the case

when p; 20, i=1,..., k.
2. Main results. The case Ry=1.
Lemma 1. Let P.(z) = z* —pkzk"] —...—p, be a polynomial such that p; >0,
i=1,...,k, and p,+...+py = 1. Then all zeros of the polynomial P(z) lie in
Iz| <1, except z=1, which is a simple.
Proof. Since, for |z|>1,
" k-1 k
|Pk3k : +---+P1[ < pile[7 +o4 py < 2]
we obtain that all zeros of the polynomial P,(z) lie in lz| <, forevery r> 1.
Hence all zeros of Py(z) liein |z|<1.
It is easy to see that Pp(1) =0 and P;:(l) # 0, which implies that z=1 is a
simple zero of P.(z) (see, Lemma 2 below).
Let ¢, 0#2mn, m e Z, be a zero of P,(z). Then

ok8 pke.-'(k—l)ﬂ .+ pze"a +
ie,
coskB = p,cos(k—1)0 +...+ pycos® + p,
sink® = psin(k—1)0 +...+ p,sin 6.
From
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2

k 2 k
i3 (Ep;cos(f—l)ﬁ] + [Zp,-sin(i~l)8] =
i=l i=l

k
= > p} + 2, ppjcos(i—j)8

i=1 i<j

and

k
1= (p+..+p) = 2pi +22,pip;
i=1 i<j
we obtain cos(i—j)0=1 forall i<j, ie, (i—j)0 = 2nk;;, where k ;e Z. We
may assume 0 € (0,2m). For j=i+1 we obtain 6 = 2nk;;,, for some k;;, € Z,
arriving at a contradiction.

Lemma 2. Let P(z) = zkup,,zk‘ln—...upl be a polynomial such that p;z0,
i=1,...,k, and p|+...+py = 1. Then all zeros of the polynomial Py(z) which
belong to the set {z| |z|=1} aresimple.

Proof. Assume that z = e is a zero of the polynomial P,(z). If €® is not
simple zero, then

k= |kd®D8| = |(k=1)pe® D +.. .+ 2pse”® + py| <

k
(k=Dpg +..+2p3 + py < k=D, p < k-1
i=2

IA

Hence, P'(¢/®)#0, as desired.
By Lemmas 1 and 2 we obtain the following result.
Corollary 1. Assume Ry=1 and p;20, i=1,...,k. Then the solutions of

Eq. (1) are stable.
‘We present here some comments about convergence of the solutions of Eq. (1).
In [11] the following theorem was established.

Theorem B. Let @(y, ¥5,...,Y,) be a continuous real function on R* where

(a) o(x, x,...,x) <x, forevery xe R;

(b) @ € C(R¥,R) is nondecreasing in each of its arguments;

©) @, Yau-.-, W) is strictly increasing in at least two of its arguments y; and
Yj» where i and j are relatively prime.
If (x,) is a bounded sequence which satisfies the inequality

Xtk = "p(xn+k—lr Xptk—=23 2 xn) for neN U { 0}'

then it must be convergent.

Corollary 2. Consider Eg. (1). Let Ry =1, p;>0 and p;_;>0 where
i+1 and j+1 are relatively prime. Then every solution of Eq. (1) converges.

Proof. From (1) we obtain:

|xn+l| < max{lxri |“"!|xn-—k+l |}! n= —1' 0! L

from which the boundedness of (x,) follows. By Theorem B we obtain the result.
On the other hand, consider the equation

Xpipoet X +0-x
Xpap = n+k—s n;—k | n (9)
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where 1<s<[<k, s and [ are not relatively prime and xg, x;, ..., x._; € R.
The characteristic polynomial for Eq. (9) is

otk _ ntk—s k=l _ ru-!-k-—!(zt! o 1) == 0

Since s and [ are not relatively prime there exist g € N\ {1}, suchthat s = gs; and
=gl forsome s, [} € N. Hence

2~ =] = oIl = AR o) g 2, (10)

From (10) we see that the polynomial t?— 1 is a factor of characteristic polynomial of
Eq. (9). Since g2 2, this characteristic polynomial has a zero in the set {z | |z|=1,
z#1}. By the well known theorem we obtain that difference equation (2) has a boun-
ded divergent solution, for example x,=cos (2nn/g), ne N.

Hence the condition, i+ 1 and j+ 1 are relatively prime, in Corollary 2 is neces-
sary for convergence of all solutions.

The case Ry<1. The following lemma is a natural generalization of the Theorem
A when Ry<1. '

Lemma 3. Let (x,) be a sequence of positive numbers which satisfies the
inequality

Ropp B WARER e R skl JOF HEN,; (11)
where A € (0,1) and ke N arefixed. Then there exist L € Ry such that
Xemar S LA™ for all m € NU{0} and 1<r<k. 12)

Proof. Let L= max {x,x,,...,x;}. We will prove the lemma by induction. For
m=0 and 1<r<k the result is trivial. Suppose that the result holds for some
me N and 1 <r<k. By (11) and the induction hypothesis we have

1
Zpgnatyrl S A DX ity Xpgumat-tr - Fims1 ] S ALA™) = LA™,
From that and by the induction hypothesis we get

e +1
Egemeiyer S A MAX {Xggnityerts X(nslyer=2s -+ s Xtmer] S ALA™) = LA™,

for 2<r<k, as desired.
Remark. Note that L depends of (x,).

Corollary 3. Let (x,) be the sequence of positive numbers in Lemma. 3. Then
there exists M >0 such that

x, < M(YA)".
Corollary 4. Assume 0< Ry <1 and p; 20, i=1,..., k. Then the solutions
of Eq. (1) are asymptotically stable.
The case Ry> 1. First, we prove an auxiliary result.
Lemma 4. Let Ry>1 then the polynomial (2) has a real root { e (1, Ry].
Proof. Itis clear that
On the other hand "

Py(Ro) = R§—piRg™' —..=py 2 Rg—Rg "' (pp+...+p) = 0. (14)
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From (13) and (14) the result follows.

By Lemma 4 we obtain the following result.
Corollary 5. Assume Ry >1 and p;20, i=1,..., k. Then the solutions of

Eg. (1) are not stable.

From the above we obtain the following theorem.
Theorem. Consider Eq. (1), where p; 2 0, i=1,...,k, keN, and x_,...

., x_je€R. Let Ry= Zf___lp,-. Then

i 310

1.

(a) if Ry=1 the solutions of Eq. (1) are stable;
(b) if 0<Ry<1 thesolutions of Eq. (1) are asymptotically stable;
(c) if Ry>1 the solutions of Eq. (1) are not stable.
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