S. Stević (Reograd, Serbia, Yugoslavia)

A NOTE ON THE RECURSIVE SEQUENCE

$$x_{n+1} = p_k x_n + p_{k-1} x_{n-1} + \dots + p_1 x_{n-k+1}$$

про рекурентну послідовність

$$x_{n+1} = p_k x_n + p_{k-1} x_{n-1} + \dots + p_1 x_{n-k+1}$$

We present some comments on the behaviour of solutions of the difference equation

$$x_{n+1} = p_k x_n + p_{k-1} x_{n-1} + \dots + p_1 x_{n-k+1}, \quad n = -1, 0, 1, \dots,$$

where $p_i \ge 0$, i = 1, ..., k, $k \in \mathbb{N}$ and $x_{-k}, ..., x_{-1} \in \mathbb{R}$.

Розглядається поведінка розв'язків різницевого рівняння

$$x_{n+1} = p_k x_n + p_{k-1} x_{n-1} + \dots + p_1 x_{n-k+1}, \quad n = -1, 0, 1, \dots,$$

де $p_i \ge 0$, i = 1, ..., k, $k \in \mathbb{N}$ та $x_{-k}, ..., x_{-1} \in \mathbb{R}$.

1. Introduction. In [1] the authors considered the following linear homogeneous difference equation

$$x_{n+1} = p_k x_n + p_{k-1} x_{n-1} + \dots + p_1 x_{n-k+1}, \quad n = -1, 0, 1 \dots,$$
 (1)

where $p_i > 0$, i = 1, ..., k, $k \in \mathbb{N}$ and $x_{-k}, ..., x_{-l} \in \mathbb{R}$. Equation (1) is very important because it presents the linearized equation of a large class of mathematical biology models. For example:

Discrete delay logistic difference equation:

$$x_{n+1} = \frac{\alpha x_n}{1 + \beta x_{n-k}}, \quad \alpha, \beta > 0, \quad \text{and} \quad k \in \mathbb{N},$$
 (2)

which was considered in books [2,3] by E. C. Pielou.

Generalized Bedington - Holt stock recruitment model:

$$x_{n+1} = ax_n + \frac{bx_{n-1}}{1 + cx_{n-1} + dx_n}, \quad x_0, x_1 > 0, \quad n = 1, 2, 3, ...,$$
 (3)

where $a \in (0,1)$, $b \in \mathbb{R}_+$ and $c, d \in \mathbb{R}_+ \cup \{0\}$, with c+d>0.

This equation was considered, for example in [4-6]. In [5] it was shown that when a+b<1, or a+b=1 and c>0, then the zero equilibrium is a global attractor of all positive solutions of equation (3).

Mosquito population equations:

$$x_{n+1} = (ax_n + bx_{n-1}e^{-x_{n-1}})e^{-x_n}, \quad x_0, x_1 > 0, \quad n = 1, 2, 3, ...,$$
 (4)

where $a \in (0,1), b \in [0,\infty)$ and

$$x_{n+1} = (\alpha x_n + \beta x_{n-1})e^{-x_n}, \quad x_0, x_1 > 0, \quad n = 1, 2, 3, ...,$$
 (5)

where $\alpha \in [0, 1), \beta \in (0, \infty)$.

Equations (4) describes the growth of a mosquito population. Equations (5) is derived from a two life stage model where the young mature into adults, and adults produce young. The global stability of these equations is studied in [7].

© S. STEVIĆ, 2003

Perenial grass model:

$$x_{n+1} = ax_n + \frac{bx_{n-1}}{e^{x_n}}, \quad x_0, x_1 > 0, \quad n = 1, 2, 3, ...,$$
 (6)

where $a \in (0, 1), b > 0$.

The stability, and the oscillatory character of solutions of somewhat generalized equation have been studied in [5, 8].

Flour beetle population model:

$$x_{n+3} = ax_{n+2} + bx_n e^{-(cx_{n+2} + dx_n)}, \quad n = 0, 1, 2, ...,$$
 (7)

with $a, b, c, d \ge 0$ and c + d > 0.

This equation was considered in [9, 10]. In [9] it was shown in particular that when $a+b \le 1$ and a, b > 0, then the origin is asymptotically stable relative to the nonnegative octant in \mathbb{R}^3 (i.e., all nonnegative solutions are attracted to the origin and the beetles became extinct). The same conclusion holds under the conditions

$$a+b \le 1$$
 and $b > 0$.

From the above we see that the most interesting case of these equations are when the sum of the main coefficients of the equations is equal to 1, i.e., when $\alpha = 1$ for Eq. (2), a + b = 1 for Eq. (3), (4), (6) and (7) and $\alpha + \beta = 1$ for Eq. (5). In these cases linearized equations of this equations have the form just as in (1).

In [1] the following theorem was established.

Theorem A. The solutions of Eq. (1) are asymptotically stable if and only if $R_0 = \sum_{i=1}^k p_i \le 1$.

Their proof is not complete and too complicated. They omitted the case when $z = e^{i\theta}$, $\theta \in (0, \pi) \cup (\pi, 2\pi)$, is a zero of the polynomial

$$P_k(z) = z^k - p_k z^{k-1} - p_{k-1} z^{k-2} - \dots - p_1.$$
 (8)

Also the formulation of Theorem A is rather awkward, because in the case $R_0 = 1$ the solutions of Eq. (1) are only stable and not asymptotically stable. The purpose of this note is to complete proof of Theorem A and generalize the theorem to the case when $p_i \ge 0$, i = 1, ..., k.

2. Main results. The case $R_0 = 1$.

Lemma 1. Let $P_k(z) = z^k - p_k z^{k-1} - ... - p_1$ be a polynomial such that $p_i > 0$, i = 1, ..., k, and $p_1 + ... + p_k = 1$. Then all zeros of the polynomial $P_k(z)$ lie in |z| < 1, except z = 1, which is a simple.

Proof. Since, for |z| > 1,

$$|p_k z^{k-1} + ... + p_1| \le p_k |z|^{k-1} + ... + p_1 < |z|^k$$

we obtain that all zeros of the polynomial $P_k(z)$ lie in |z| < r, for every r > 1. Hence all zeros of $P_k(z)$ lie in $|z| \le 1$.

It is easy to see that $P_k(1) = 0$ and $P'_k(1) \neq 0$, which implies that z = 1 is a simple zero of $P_k(z)$ (see, Lemma 2 below).

Let $e^{i\theta}$, $\theta \neq 2m\pi$, $m \in \mathbb{Z}$, be a zero of $P_k(z)$. Then

$$e^{ik\theta} = p_k e^{i(k-1)\theta} + ... + p_2 e^{i\theta} + p_1$$

i.e.

$$\cos k\theta = p_k \cos (k-1)\theta + \dots + p_2 \cos \theta + p_1,$$

$$\sin k\theta = p_k \sin (k-1)\theta + \dots + p_2 \sin \theta.$$

From

$$1 = \left(\sum_{i=1}^{k} p_i \cos(i-1)\theta\right)^2 + \left(\sum_{i=1}^{k} p_i \sin(i-1)\theta\right)^2 =$$
$$= \sum_{i=1}^{k} p_i^2 + 2\sum_{i < j} p_i p_j \cos(i-j)\theta$$

and

$$1 = (p_1 + ... + p_m)^2 = \sum_{i=1}^{k} p_i^2 + 2 \sum_{i < i} p_i p_j$$

we obtain $\cos{(i-j)}\theta=1$ for all i < j, i.e., $(i-j)\theta=2\pi k_{i,j}$, where $k_{i,j} \in \mathbf{Z}$. We may assume $\theta \in (0, 2\pi)$. For j=i+1 we obtain $\theta=2\pi k_{i,i+1}$ for some $k_{i,i+1} \in \mathbf{Z}$, arriving at a contradiction.

Lemma 2. Let $P_k(z) = z^k - p_k z^{k-1} - ... - p_1$ be a polynomial such that $p_i \ge 0$, i = 1, ..., k, and $p_1 + ... + p_k = 1$. Then all zeros of the polynomial $P_k(z)$ which belong to the set $\{z \mid |z|=1\}$ are simple.

Proof. Assume that $z=e^{i\theta}$ is a zero of the polynomial $P_k(z)$. If $e^{i\theta}$ is not simple zero, then

$$\begin{split} k &= \, \left| k e^{i(k-1)\theta} \, \right| \, = \, \left| (k-1) \, p_k e^{i(k-2)\theta} \, + \ldots + \, 2 \, p_3 e^{i\theta} \, + \, p_2 \, \right| \, \leq \\ &\leq \, (k-1) \, p_k \, + \ldots + \, 2 \, p_3 \, + \, p_2 \, \leq \, (k-1) \sum_{i=2}^k \, p_i \, \leq \, k-1. \end{split}$$

Hence, $P'(e^{i\theta}) \neq 0$, as desired.

By Lemmas 1 and 2 we obtain the following result.

Corollary 1. Assume $R_0 = 1$ and $p_i \ge 0$, i = 1, ..., k. Then the solutions of Eq. (1) are stable.

We present here some comments about convergence of the solutions of Eq. (1). In [11] the following theorem was established.

Theorem B. Let $\varphi(y_1, y_2, ..., y_k)$ be a continuous real function on \mathbb{R}^k where

- (a) $\varphi(x, x, ..., x) \le x$, for every $x \in \mathbb{R}$;
- (b) $\phi \in C(\mathbf{R}^k, \mathbf{R})$ is nondecreasing in each of its arguments;
- (c) $\varphi(y_1, y_2, ..., y_k)$ is strictly increasing in at least two of its arguments y_i and y_j , where i and j are relatively prime.

If (x_n) is a bounded sequence which satisfies the inequality

$$x_{n+k} \leq \varphi(x_{n+k-1}, x_{n+k-2}, \dots, x_n) \quad for \quad n \in \mathbf{N} \bigcup \left\{0\right\},$$

then it must be convergent.

Corollary 2. Consider Eq. (1). Let $R_0 = 1$, $p_{k-i} > 0$ and $p_{k-j} > 0$ where i+1 and j+1 are relatively prime. Then every solution of Eq. (1) converges. **Proof.** From (1) we obtain:

$$|x_{n+1}| \le \max\{|x_n|, \dots, |x_{n-k+1}|\}, \quad n = -1, 0, \dots,$$

from which the boundedness of (x_n) follows. By Theorem B we obtain the result. On the other hand, consider the equation

$$x_{n+k} = \frac{x_{n+k-s} + x_{n+k-l} + 0 \cdot x_n}{2},$$
(9)

where $1 \le s < l \le k$, s and l are not relatively prime and $x_0, x_1, \ldots, x_{k-1} \in \mathbf{R}$. The characteristic polynomial for Eq. (9) is

$$2t^{n+k} - t^{n+k-s} - t^{n+k-l} = t^{n+k-l}(2t^l - t^{l-s} - 1) = 0.$$

Since s and l are not relatively prime there exist $q \in \mathbb{N} \setminus \{1\}$, such that $s = qs_1$ and $l = ql_1$ for some s_1 , $l_1 \in \mathbb{N}$. Hence

$$2t^{l} - t^{l-s} - 1 = 2t^{ql_1} - t^{q(l_1 - s_1)} - 1 = t^{q(l_1 - s_1)}(t^{qs_1} - 1) + t^{ql_1} - 1.$$
 (10)

From (10) we see that the polynomial $t^q - 1$ is a factor of characteristic polynomial of Eq. (9). Since $q \ge 2$, this characteristic polynomial has a zero in the set $\{z \mid |z| = 1, z \ne 1\}$. By the well known theorem we obtain that difference equation (2) has a bounded divergent solution, for example $x_n = \cos(2\pi n/q)$, $n \in \mathbb{N}$.

Hence the condition, i+1 and j+1 are relatively prime, in Corollary 2 is necessary for convergence of all solutions.

The case $R_0 < 1$. The following lemma is a natural generalization of the Theorem A when $R_0 < 1$.

Lemma 3. Let (x_n) be a sequence of positive numbers which satisfies the inequality

$$x_{n+k} \le A \max\{x_{n+k-1}, x_{n+k-2}, \dots, x_n\} \text{ for } n \in \mathbb{N},$$
 (11)

where $A \in (0, 1)$ and $k \in \mathbb{N}$ are fixed. Then there exist $L \in \mathbb{R}_+$ such that

$$x_{km+r} \le LA^m \text{ for all } m \in \mathbb{N} \cup \{0\} \text{ and } 1 \le r \le k.$$
 (12)

Proof. Let $L = \max\{x_1, x_2, \dots, x_k\}$. We will prove the lemma by induction. For m = 0 and $1 \le r \le k$ the result is trivial. Suppose that the result holds for some $m \in \mathbb{N}$ and $1 \le r \le k$. By (11) and the induction hypothesis we have

$$x_{k(m+1)+1} \le A \max \{x_{k(m+1)}, x_{k(m+1)-1}, \dots, x_{km+1}\} \le A(LA^m) = LA^{m+1}.$$

From that and by the induction hypothesis we get

$$x_{k(m+1)+r} \le A \max \{x_{k(m+1)+r-1}, x_{k(m+1)+r-2}, \dots, x_{km+r}\} \le A(LA^m) = LA^{m+1},$$
 for $2 \le r \le k$, as desired.

Remark. Note that L depends of (x_n) .

Corollary 3. Let (x_n) be the sequence of positive numbers in Lemma 3. Then there exists M > 0 such that

$$x_n \leq M \left(\sqrt[k]{A} \right)^n$$
.

Corollary 4. Assume $0 \le R_0 < 1$ and $p_i \ge 0$, i = 1, ..., k. Then the solutions of Eq. (1) are asymptotically stable.

The case $R_0 > 1$. First, we prove an auxiliary result.

Lemma 4. Let $R_0 > 1$ then the polynomial (2) has a real root $\zeta \in (1, R_0]$. **Proof.** It is clear that

$$P_k(1) = 1 - p_k - \dots - p_1 = 1 - R_0 < 0.$$
(13)

On the other hand

$$P_k(R_0) = R_0^k - p_k R_0^{k-1} - \dots - p_1 \ge R_0^k - R_0^{k-1} (p_k + \dots + p_1) = 0.$$
 (14)

From (13) and (14) the result follows.

By Lemma 4 we obtain the following result.

Corollary 5. Assume $R_0 > 1$ and $p_i \ge 0$, i = 1, ..., k. Then the solutions of Eq. (1) are not stable.

From the above we obtain the following theorem.

Theorem. Consider Eq. (1), where $p_i \ge 0$, i = 1, ..., k, $k \in \mathbb{N}$, and $x_{-k}, ...$

...,
$$x_{-1} \in \mathbf{R}$$
. Let $R_0 = \sum_{i=1}^k p_i$. Then

- (a) if $R_0 = 1$ the solutions of Eq. (1) are stable;
- (b) if $0 \le R_0 < 1$ the solutions of Eq. (1) are asymptotically stable;
- (c) if $R_0 > 1$ the solutions of Eq. (1) are not stable.
- Khusainov D. Ya., Nikiforova S. N. Stability of a difference equation with positive coefficients // Ukr. Math. J. - 1999. - 51, Nº 9. - P. 1276 - 1280.
- 2. Pielou E. C. An introduction to mathematical ecology. New York: Wiley, 1969.
- 3. Pielou E. C. Population and community ecology. New York: Gordon and Breach, 1974.
- Beddington R. J., Holt S. J. On the dynamics of exploited fish poulations // Fish. Invest. London. - 1957. - 19. - P. 1 - 53.
- 5. De Vault R. C., Dial G., Kocic V. L., and Ladas G. Global behaviour of solution of $x_{n+1} = ax_n + f(x_n, x_{n-1})$ // J. Different. Equat. and Appl. 1998. 4. P. 311 330.
- Fisher M. E., Goh B. S. Stability results for delayed-recruitment models in population dynamics // J. Math. Biol. - 1984. - 19. - P. 147 - 156.
- Grove E. A., Kent C. M., Ladas G., and Valicenti S. Global stability in some population models //
 Proc. Forth Int. Conf. Different. Equat. and Appl. (August 27–31, 1999, Poznan, Poland). New
 York: Gordon and Breach Sci. Publ., 2000. P. 149 176.
- De Vault R. C., Grove E. A., Ladas G., Levins R., and Puccia C. Oscillations and stability in a delay model of perennial grass // J. Different. Equat. and Appl. – 1995. – 1. – P. 173 – 185.
- Cushing J. M., Kuang Y. Global stability in a nonlinear difference delay equation model of flour beetle population growth // Ibid. - 1996. - 2. - P. 31 - 37.
- Sedaghat H. Geometric stability conditions for hihger order difference equations // J. Math. Anal. and Appl. - 1998. - 224. - P. 255 - 272.
- 11. Stević S. A global convergence result // Indian J. Math. (to appear).

Received 04.05.2001