A. Kh. Khachatryan, Kh. A. Khachatryan (Inst. Math. Nat. Acad. Sci., Armenia, Yerevan)

FACTORIZATION OF ONE CONVOLUTION-TYPE INTEGRO -DIFFERENTIAL EQUATION ON POSITIVE HALF LINE
 ФАКТОРИЗАЦІЯ ОДНОГО ІНТЕГРО-ДИФЕРЕНЦІАЛЬНОГО РІВНЯННЯ ТИПУ ЗГОРТКИ НА ДОДАТНІЙ ПІВОСІ

Sufficient conditions for the existence of a solution of one class of convolution-type integro-differential equations on half line are obtained. The investigation is based on three factor decomposition of initial integro-differential operator.

Отримано достатні умови для існування розв’язку одного класу інтегро-диференціальних рівнянь типу згортки на півосі. Дослідження базуються на розкладі початкового інтегро-диференціального оператора на три множники.

1. Introduction. A number of problems of physical kinetics (see [1-3]) are described by the integro-differential equation

$$
\begin{equation*}
\frac{d S}{d x}+A S(x)=g(x)+\lambda(x)\left\{B \int_{0}^{\infty} K_{1}(x-t) \frac{d S}{d t} d t+C \int_{0}^{\infty} K_{2}(x-t) S(t) d t\right\}, \quad x \in R^{+} \tag{1.1}
\end{equation*}
$$

Here, S is an unknown solution from a class of functions absolutely continuous on R^{+} and of slow growth in $+\infty$, i.e.,

$$
S \in \mathfrak{M} \stackrel{\text { df }}{=}\left\{f \in A C\left(R^{+}\right) \text {s.t. } \forall \varepsilon>0, e^{-\varepsilon x} f(x) \rightarrow 0 \quad \text { as } \quad x \rightarrow+\infty\right\},
$$

where $A C\left(R^{+}\right)$is the space of functions absolutely continuous on R^{+}, A, B, C are nonpositive parameters, $0 \leq \lambda(\cdot) \leq 1$, and $\lambda \in W_{\infty}^{1}\left(R^{+}\right)$(where $W_{p}^{n}\left(R^{+}\right)$is the Sobolev space of functions f such that $\left.f^{(k)} \in L_{p}\left(R^{+}\right), k=0,1,2, \ldots, n\right)$. The functions g and $K_{j}, j=1,2$, satisfy the following conditions:

$$
\begin{equation*}
0 \leq g \in L_{1}\left(R^{+}\right) \tag{1.2}
\end{equation*}
$$

and $0 \leq K_{j} \in L_{1}(R)$ such that

$$
\begin{equation*}
\int_{-\infty}^{\infty} K_{j}(x) d x=1, \quad j=1,2 \tag{1.3}
\end{equation*}
$$

The initial condition to equation (1.1) - (1.3) is joined

$$
\begin{equation*}
S(0)=s_{0} \in R^{+} \tag{1.4}
\end{equation*}
$$

In the case where

$$
\begin{equation*}
K_{1}(x) \equiv 0, \quad A=0, \quad \lambda(x)=1, \quad K_{2}(x)=\int_{1}^{\infty} e^{-|x| s} \frac{d s}{s^{2}} \tag{1.5}
\end{equation*}
$$

the first results of studying equation (1.1) - (1.3) appeared in the works [3-5]. Later, in [6], the equation (1.1) was considered in the more general case where

$$
\begin{equation*}
K_{1}(x) \equiv 0, \quad \lambda(x) \equiv 1, \quad 0 \leq K_{2} \in L_{1}(R), \quad\left\|K_{2}\right\|_{L_{1}}=1 \tag{1.6}
\end{equation*}
$$

and, under some additional conditions on functions K_{2}, g and parameters A, C, the structural theorems on existence were obtained. Note that in [5, 7], the solvability of equation (1.1), (1.5) in the space $W_{1}^{1}\left(R^{+}\right)$is proved and, by means of the Ambartsumian - Chandrasekhar function, analytical formulae describing the structure of obtained solution are founded.

In the present work, structural theorems on existence are obtained by putting some additional conditions on functions λ, K_{1} and K_{2} for equation (1.1) - (1.4).

Below, we briefly describe our approach to the investigation. First, we construct three factor decomposition of the initial integro-differential operator $D+A I-B K_{\lambda}^{1} D-$ - $C K_{\lambda}^{2}$ [where D is a differential operator, I is the unit operator, $\left(K_{\lambda}^{j} f\right)(x)=$ $\left.=\lambda(x) \int_{0}^{\infty} K_{j}(x-t) f(t) d t, j=1,2\right]$ in the form of product of one differential and two integral operators. Using this factorization, the problem is reduced to the successive solution of two integtal equations and one first-order simple differential equation. The former is the Volterra-type integral equation (it can be solved elementary) and the latter is the integral equation with the kernel $\lambda(x) w(x-t)$, where $w(\cdot) \in L_{1}(R)$ if $A>$ >0 and $w(x)=\rho_{0}(x)+\rho_{1}(x)$ if $A=0$ (here, $\left.\rho_{0} \in L_{1}(R), \rho_{1} \in M(R)\right)$.

It should be also noted that above mentioned factorization allow us to construct a nontrivial solution (from class \mathfrak{M}) of the corresponding homogeneous equation for $A=C$, i.e.,

$$
\begin{equation*}
\frac{d S}{d x}+A S(x)=\lambda(x)\left\{B \int_{0}^{\infty} K_{1}(x-t) \frac{d S}{d t} d t+A \int_{0}^{\infty} K_{2}(x-t) S(t) d t\right\} \tag{1.7}
\end{equation*}
$$

2. Notations and auxiliary information. Let E^{+}be one of the following Banach spaces: $L_{p}(0, \infty), 1 \leq p \leq+\infty$, and $L_{1} \equiv L_{1}(-\infty,+\infty)$. We denote by Ω a class of the Wiener - Hopf integral operators (see [8]): $W \in \Omega$ if $(W f)=\int_{0}^{\infty} w(x-t) f(t) d t$, $w \in L_{1}$.

It is easy to check that the operator W acts in the space E^{+}and the following estimation holds:

$$
\begin{equation*}
\|W\|_{E^{+}} \leq \int_{-\infty}^{\infty}|w(x)| d x \tag{2.1}
\end{equation*}
$$

The kernel w of the operator W is called conservative if

$$
\begin{equation*}
0 \leq w \in L_{1}, \quad \gamma \stackrel{\text { df }}{=} \int_{-\infty}^{\infty} w(x) d x=1 \tag{2.2}
\end{equation*}
$$

We also introduce the algebra $\Omega^{ \pm} \in \Omega$ of lower and upper Volterra-type operators: $V_{ \pm} \in \Omega^{ \pm}$if

$$
\begin{equation*}
\left(V_{+} f\right)(x)=\int_{0}^{x} v_{+}(x-t) f(t) d t, \quad\left(V_{-} f\right)(x)=\int_{x}^{\infty} v_{-}(t-x) f(t) d t \tag{2.3}
\end{equation*}
$$

where $x \in(0, \infty), v_{ \pm} \in L_{1}\left(R^{+}\right)$.
It is easy to see that $\Omega=\Omega^{+} \oplus \Omega^{-}$. We denote by Ω^{λ} a class of the following
integral operators: $Q^{\lambda} \in \Omega^{\lambda}$ if

$$
\begin{equation*}
\left(Q^{\lambda} f\right)(x)=\lambda(x) \int_{0}^{\infty} q(x-t) f(t) d t \tag{2.4}
\end{equation*}
$$

where $0 \leq \lambda(\cdot) \leq 1, \lambda \in W_{\infty}^{1}\left(R^{+}\right), q \in L_{1}(R)$.
It is known that if $W \in \Omega, V_{ \pm} \in \Omega^{ \pm}$, then $V_{-} W \in \Omega$ (see [9]). Below, we prove one generalization of this fact and make essential use of it in the further reasoning.

Lemma 2.1. If $Q^{\lambda} \in \Omega^{\lambda}$, then the following possibilities take place:
a) $Q^{\lambda} V_{+} \in \Omega^{\lambda}$, where $V_{+} \in \Omega^{+}$,
b) $V_{-} Q^{\lambda} \in \Omega^{\lambda}$, where $V_{-} \in \Omega^{-}$, if and only if there exists a real function $r(t)$ on R^{+}, for which

$$
\lambda(x+t)=\lambda(x) r(t), \quad r(t) \nu_{-}(t) \in L_{1}\left(R^{+}\right) .
$$

Proof. Let $f \in E^{+}$be an arbitrary function. We have

$$
\begin{equation*}
\left(Q^{\lambda} V_{+} f\right)(x)=\lambda(x) \int_{0}^{\infty} q(x-t) \int_{0}^{t} v_{+}(t-\tau) f(\tau) d \tau d t \tag{2.5}
\end{equation*}
$$

Changing the order of integration in (2.5), we obtain

$$
\begin{gathered}
\left(Q^{\lambda} V_{+} f\right)(x)=\lambda(x) \int_{0}^{\infty} f(\tau) \int_{\tau}^{\infty} q(x-t) v_{+}(t-\tau) d t d \tau= \\
=\lambda(x) \int_{0}^{\infty} f(\tau) \int_{0}^{\infty} q(x-\tau-z) v_{+}(z) d z d \tau=\lambda(x) \int_{0}^{\infty} P(x-t) f(\tau) d \tau
\end{gathered}
$$

where

$$
\begin{equation*}
P(x)=\int_{0}^{\infty} q(x-z) v_{+}(z) d z \tag{2.6}
\end{equation*}
$$

It follows from Fubin's theorem (see [10]) that $P \in L_{1}(R)$. Now let $V_{-} \in \Omega^{-}, Q^{\lambda} \in \Omega^{\lambda}$. In this case, analogous discussions reduce to the following formula:

$$
\left(V_{-} Q^{\lambda} f\right)(x)=\int_{0}^{\infty} f(\tau) \int_{0}^{\infty} v_{-}(z) \lambda(x+z) q(x-\tau+z) d z d \tau=\int_{0}^{\infty} \rho(x, \tau) f(\tau) d \tau
$$

where

$$
\rho(x, \tau)=\int_{0}^{\infty} v_{-}(z) \lambda(x+z) q(x-\tau+z) d z .
$$

Let $\lambda(x+z)=\lambda(x) r(z)$, where $r(z) v_{-}(z) \in L_{1}\left(R^{+}\right)$. Then

$$
\rho(x, \tau)=\lambda(x) \int_{0}^{\infty} v_{-}(z) r(z) q(x-\tau+z) d z \stackrel{\mathrm{df}}{=} \lambda(x) \rho_{0}(x-\tau)
$$

where $\rho_{0} \in L_{1}(R)$.
The inverse statement is proved by analogy.
The lemma is proved.

Let us consider the following homogeneous equation on half line:

$$
\begin{equation*}
B(x)=\lambda(x) \int_{0}^{\infty} K(x-t) B(t) d t \tag{2.7}
\end{equation*}
$$

with respect to an unknown function $B \in L_{1}^{\mathrm{loc}}(R)$, where $0 \leq K \in L_{1}(R),\|K\|_{L_{1}}, 0 \leq$ $\leq \lambda(\cdot) \leq 1$ is a measurable function.

Below, we need the following theorem proved in [11]:
Theorem [11]. 1. If $0 \leq \lambda(x) \leq 1,1-\lambda(x) \in L_{1}\left(R^{+}\right), \quad v(K) \stackrel{\mathrm{df}}{=} \int_{-\infty}^{\infty} x K(x) d x<$ <0, then equation (2.7) possesses a nontrivial bounded solution $B(x) \neq 0$ and $B(x)=O(1)$ as $x \rightarrow+\infty$.
2. If $0 \leq \lambda(x) \leq 1, \quad x(1-\lambda(x)) \in L_{1}\left(R^{+}\right), \quad v(K)=0$, then equation (2.7) possesses a solution $B(x) \geq 0, B(x) \neq 0$, and besides,

$$
\int_{0}^{x} B(t) d t=O\left(x^{2}\right) \text { as } x \rightarrow+\infty
$$

3. Factorization problem. We rewrite equation (1.1) in the operator form

$$
\begin{equation*}
\left(D+A I-B K_{1}^{\lambda} D-C K_{2}^{\lambda}\right) S=g . \tag{3.1}
\end{equation*}
$$

We consider two possibilities: 1) $A>0$, and 2) $A=0$.

1. Let $A>0$. We consider the following factorization problem: For operators D and $K_{j}^{\lambda} \in \Omega^{\lambda}, j=1,2$, and for arbitrary $\alpha>0$, it is necessary to find operators $W^{\lambda} \in \Omega^{\lambda}$ and $U_{\alpha} \in \Omega^{+}$such that the factorization

$$
\begin{equation*}
D+A I-B K_{1}^{\lambda} D-C K_{2}^{\lambda}=\left(I-W^{\lambda}\right)\left(I-U_{\alpha}\right)(D+\alpha I) \tag{3.2}
\end{equation*}
$$

holds as an equality of integral operators acting in $W_{1}^{1}\left(R^{+}\right)$.
2. Let $A=0$. For operators D and $K_{j}^{\lambda} \in \Omega^{\lambda}, j=1,2$, and for arbitrary $\alpha>0$, it is necessary to find operators $V_{\alpha} \in \Omega^{+}, H^{\lambda} \in \Omega^{\lambda}$ such that the factorization

$$
\begin{equation*}
D-B K_{1}^{\lambda} D-C K_{2}^{\lambda}=\left(I-H^{\lambda}-V_{\alpha}\right)(D+\alpha I) \tag{3.3}
\end{equation*}
$$

takes place as an equality of integral operators acting in $W_{1}^{1}\left(R^{+}\right)$.
The following lemma holds:
Lemma 3.1. Suppose that $A>0, K_{j}^{\lambda} \in \Omega^{\lambda}, j=1,2$. Then for each $\alpha>0$, the factorization (3.2) takes place. Kernel functions of the operators $W^{\lambda} \in \Omega^{\lambda}$ and $U_{\alpha} \in \Omega^{+}$have the forms

$$
w^{\lambda}(x, t)=\lambda(x) w(x-t),
$$

where

$$
\begin{equation*}
w(x)=B K_{1}(x)+\int_{-\infty}^{x}\left\{c K_{2}(t)-A B K_{1}(t)\right\} e^{-A(x-t)} d t \tag{3.4}
\end{equation*}
$$

and

$$
u_{\alpha}(x)=(\alpha-A) e^{-\alpha x} \theta(x), \text { where } \quad \theta(x)= \begin{cases}1, & \text { if } x \geq 0, \tag{3.5}\\ 1, & \text { if } x<0 .\end{cases}
$$

Moreover, if $K_{1} \in W_{1}^{1}(R)$, then $w \in W_{1}^{1}(R)$.
Proof. We denote by Γ_{α} an inverse operator of the differential operator $D+\alpha I$ in the space $W_{1}^{1}\left(R^{+}\right) \bigcap\{f: f(0)=0\}$. It is easy to verify that Γ_{α} belongs to Ω^{+} and has the following form:

$$
\begin{equation*}
\left(\Gamma_{\alpha} f\right)(x)=\int_{0}^{x} e^{-\alpha(x-t)} f(t) d t, \quad \alpha>0 \tag{3.6}
\end{equation*}
$$

It follows from Lemma 2.1 that $Q^{\lambda} \stackrel{\mathrm{df}}{=} K_{j}^{\lambda} \Gamma_{\alpha} \in \Omega^{+}, j=1,2$, and kernels of the operators Q_{j}^{λ} are given by formulae

$$
\begin{equation*}
q_{j}^{\lambda}(x, t)=\lambda(x) q_{j}(x-t), \quad q_{j}(x)=\int_{-\infty}^{x} K_{j}(t) e^{-\alpha(x-t)} d t \in W_{1}^{1}(R), \quad j=1,2 . \tag{3.7}
\end{equation*}
$$

We have

$$
\begin{equation*}
D+A I-B K_{1}^{\lambda} D-C K_{2}^{\lambda}=D+\alpha I-\alpha I+A I-B K_{1}^{\lambda} D-C K_{2}^{\lambda}=\left(I-P_{\alpha}\right)(D+\alpha I), \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{\alpha}=B K_{1}^{\lambda} D \Gamma_{\alpha}+C K_{2}^{\lambda} \Gamma_{\alpha}+(\alpha-A) \Gamma_{\alpha} . \tag{3.9}
\end{equation*}
$$

It is easy to see that $D \Gamma_{\alpha}=I-\alpha \Gamma_{\alpha}$, hence, $P_{\alpha}=R_{\alpha}^{\lambda}+U_{\alpha}$, where $R_{\alpha}^{\lambda} \in \Omega^{\lambda}$, $R_{\alpha}^{\lambda}=B K_{1}^{\lambda}+\left(C K_{2}^{\lambda}-\alpha B K_{1}^{\lambda}\right) \Gamma_{\alpha}$ and $U_{\alpha} \in \Omega^{+}$, the kernel of which is given by (3.5). We denote by $I+\Phi_{\alpha}$ the inverse of the operator $I-U_{\alpha}$ in $W_{1}^{1}\left(R^{+}\right)$. By means of simple calculations, it is easy to verify that $\Phi_{\alpha} \in \Omega^{+}$and, moreover,

$$
\begin{equation*}
\left(\Phi_{\alpha} f\right)(x)=(\alpha-A) \int_{0}^{x} e^{-A(x-t)} f(t) d t, \quad A>0 \tag{3.10}
\end{equation*}
$$

Using (3.10), from (3.8) and (3.9) we have

$$
\begin{gathered}
D+A I-B K_{1}^{\lambda} D-C K_{2}^{\lambda}=\left(I-R_{\alpha}^{\lambda}\left(I+\Phi_{\alpha}\right)\right)\left(I-U_{\alpha}\right)(D+\alpha I)= \\
=\left(I-W^{\lambda}\right)\left(I-U_{\alpha}\right)(D+\alpha I)
\end{gathered}
$$

where $W^{\lambda} \stackrel{\text { df }}{=} R_{\alpha}^{\lambda}+R_{\alpha}^{\lambda} \Phi_{\alpha}$.
Using Lemma 2.1, we conclude that $W^{\lambda} \in \Omega^{\lambda}$. It is easy to check that operator W^{λ} does not depend on α. Actually, let $f \in E^{+}$be an arbitrary function. Then

$$
\left(R_{\alpha}^{\lambda} \Phi_{\alpha} f\right)(x)=(\alpha-A) \lambda(x) \int_{0}^{\infty} r_{\alpha}(x-t) \int_{0}^{t} e^{-A(x-\tau)} f(\tau) d \tau d t
$$

where $\lambda(x) r_{\alpha}(x-t)$ is the kernel of the operator R_{α}^{λ}. Changing the order of integration in the last integral and taking into account (3.7), we have

$$
\left(R_{\alpha}^{\lambda} \Phi_{\alpha} f\right)(x)=\lambda(x) \int_{0}^{\infty} Y_{\alpha}(x-\tau) f(\tau) d \tau
$$

where

$$
Y_{\alpha}(x)=\int_{-\infty}^{x}\left\{C K_{2}(\tau)-A \alpha K_{1}(\tau)\right\} e^{-A(x-\tau)} d \tau-\int_{-\infty}^{x}\left\{C K_{2}(\tau)-A \alpha K_{1}(\tau)\right\} e^{-\alpha(x-\tau)} d \tau
$$

Hence, from (3.7) it follows that W^{λ} does not depend on α, its kernel is given by (3.4). Now we show that operator W^{λ} acts in the space $W_{1}^{1}\left(R^{+}\right)$. Really, let f be an arbitrary function from $W_{1}^{1}\left(R^{+}\right)$. We have

$$
\left(W^{\lambda} f\right)(x)=\lambda(x) \int_{0}^{\infty} w(x-t) f(t) d t=\lambda(x) \int_{-\infty}^{x} w(\tau) f(x-\tau) d \tau
$$

We denote by $\rho(x)$ the function

$$
\rho(x)=\lambda(x) \int_{-\infty}^{x} w(\tau) f(x-\tau) d \tau
$$

Applying Fubin's theorem and taking into account that $0 \leq \lambda(x) \leq 1, w \in L_{1}(R)$, and $f \in W_{1}^{1}(R)$, we obtain $\rho \in L_{1}(R)$. If $\lambda \in W_{\infty}^{1}(R), f \in W_{1}^{1}(R)$, then from equality

$$
\rho^{\prime}(x)=\lambda^{\prime}(x) \int_{-\infty}^{x} w(\tau) f(x-\tau) d \tau+\lambda(x)\left\{w(x) f(0)+\int_{-\infty}^{x} w(\tau) f_{x}^{\prime}(x-\tau) d \tau\right\}
$$

it follows that $\rho^{\prime} \in L_{1}(R)$. Therefore, $\rho \in W_{1}^{1}(R)$. From (3.4) it follows that if $K_{1} \in$ $\in W_{1}^{1}(R)$, then $w \in W_{1}^{1}(R)$.

The lemma is proved.
It is simple to prove the following lemma:
Lemma 3.2. If $A=0$, then operator $D-B K_{1}^{\lambda} D-C K_{2}^{\lambda}$ permits factorization of type (3.3), where kernels of operators $\quad V_{\alpha} \in \Omega^{+}, H^{\lambda} \in \Omega^{\lambda}$ are given, respectively, by formulae

$$
\begin{equation*}
v_{\alpha}(x)=\alpha e^{-\alpha x} \theta(x), \quad h^{\lambda}(x, t)=\lambda(x) h(x-t) \tag{3.11}
\end{equation*}
$$

where

$$
\begin{equation*}
h(x)=B K_{1}(x)+\int_{-\infty}^{x}\left\{C K_{2}(t)-\alpha B K_{1}(t)\right\} e^{-\alpha(x-t)} d t \tag{3.12}
\end{equation*}
$$

Further, we essentially use the following lemma that establishes connection between first moments of functions w and $K_{j}, j=1,2$:

Lemma 3.3. Suppose that

$$
v\left(K_{j}\right) \stackrel{\mathrm{df}}{=} \int_{-\infty}^{+\infty} x K_{j}(x) d x<+\infty, \quad j=1,2
$$

exists. Then $v(w)<+\infty$ exists and the following formula holds:

$$
v(w)=\frac{C-A B}{A^{2}}+\frac{C}{A} v\left(K_{2}\right) \quad \text { for } \quad A>0
$$

Proof. As $v\left(K_{j}\right)<+\infty, j=1,2$, then by Fubin's theorem we have

$$
\begin{gathered}
v(w)=\int_{-\infty}^{+\infty} x w(x) d x= \\
=B v\left(K_{1}\right)-A B \int_{-\infty}^{\infty} x \int_{-\infty}^{x} K_{1}(t) e^{-A(x-t)} d t d x+c \int_{-\infty}^{\infty} x \int_{-\infty}^{x} K_{2}(t) e^{-A(x-t)} d t d x= \\
=B v\left(K_{1}\right)-A B \int_{-\infty}^{\infty} K_{1}(t) e^{A t} \int_{t}^{\infty} x e^{-A x} d x d t+C \int_{-\infty}^{\infty} K_{2}(t) e^{A t} \int_{t}^{\infty} x e^{-A x} d x d t= \\
=\frac{C-A B}{A^{2}}+\frac{C}{A} v\left(K_{2}\right)
\end{gathered}
$$

The lemma is proved.
Remark. If $C v\left(K_{2}\right) \leq B-\frac{C}{A}, A>0$, then $v(w) \leq 0$.
4. Solution of problem (1.1) - (1.4) for $\boldsymbol{A}=\mathbf{0}$. Let us consider equation (1.1) when $A=0$. Using factorization (3.3), the equation (1.1) (for $A=0$) we can write in the following form:

$$
\begin{equation*}
\left(I-H^{\lambda}-V_{\alpha}\right)(D+\alpha I) S=g \tag{4.1}
\end{equation*}
$$

The solution of (4.1) is reduced to successive solution of the following equations:

$$
\begin{gather*}
\left(I-H^{\lambda}-V_{\alpha}\right) \varphi=g \tag{4.2}\\
(D+\alpha I) S=g . \tag{4.3}
\end{gather*}
$$

We denote by $I+\Phi$ the resolvent of operator $I-V_{\alpha}$ in the space $L_{1}^{\text {loc }}\left(R^{+}\right)$. It is easy to check that $(\Phi f)(x)=\alpha \int_{0}^{x} f(t) d t$. From representation of operator Φ it follows that the operator Φ transfers the space $L_{1}\left(R^{+}\right)$to the space $M\left(R^{+}\right)$, where $M(R)$ is the space of bounded functions on R^{+}. We represent the operator $I-H^{\lambda}-V_{\alpha}$ in the following form:

$$
\begin{equation*}
I-H^{\lambda}-V_{\alpha}=(I-G)\left(I-V_{\alpha}\right) \tag{4.4}
\end{equation*}
$$

where $G=H^{\lambda}+H^{\lambda} \Phi$. It is easy to check that the operator $(G f)(x)$ is determined as

$$
(G f)(x)=\lambda(x) \int_{0}^{\infty} G_{0}(x-t) f(t) d t
$$

where

$$
G_{0}(x)=B K_{1}(x)+C \int_{-\infty}^{x} K_{2}(t) d t, \quad K_{1} \in L_{1}(R), \quad \int_{-\infty}^{x} K_{2}(t) d t \in M(R)
$$

Using factorization (4.4), the solution of equation (4.2) is reduced to successive solution of the following equations:

$$
\begin{align*}
& (I-G) \Psi=g \tag{4.5}\\
& \left(I-V_{\alpha}\right) \varphi=\psi \tag{4.6}
\end{align*}
$$

We rewrite the equation (4.5) in the open form

$$
\psi(x)=g(x)+\lambda \int_{0}^{\infty} G_{0}(x-t) \psi(t) d t
$$

and consider the following iteration process:

$$
\begin{equation*}
\psi^{(n+1)}(x)=g(x)+\lambda(x) \int_{0}^{\infty} G_{0}(x-t) \psi^{(n)}(t) d t, \quad \psi^{(0)}=0, \quad n=0,1,2 \ldots \tag{4.7}
\end{equation*}
$$

It is easy to see that $g(x) \leq \psi^{(n)} \uparrow$ by n. We note that if $\lambda \in L_{1}\left(R^{+}\right)$, then $\psi^{(n)} \in L_{1}\left(R^{+}\right), n=0,1,2 \ldots$. Really, for $n=0$, we have $\psi^{(1)}=g(x) \in L_{1}(R)$. Assume that $\psi^{(n)} \in \in L_{1}\left(R^{+}\right)$and prove that $\psi^{(n+1)} \in L_{1}(R)$. Then for arbitrary $r>0$ we have

$$
\begin{gathered}
\int_{0}^{r} \psi^{(n+1)}(x) d x \leq \int_{0}^{\infty} g(x) d x+\int_{0}^{\infty} \lambda(x) \int_{0}^{\infty} G_{0}(x-t) \psi^{(n)}(t) d t d x= \\
=\int_{0}^{\infty} g(x) d x+B \int_{0}^{\infty} \psi^{(n)}(t) \int_{0}^{\infty} K_{1}(x-t) \lambda(x) d x d t+C \int_{0}^{\infty} \psi^{(n)}(t) \int_{0}^{\infty} \int_{-\infty}^{x-t} K_{2}(\tau) d \tau \lambda(x) d x d t \leq \\
\leq \int_{0}^{\infty} g(x) d x+B \int_{0}^{\infty} \psi^{(n)}(t) d t+C \int_{0}^{\infty} \psi^{(n)}(t) d t \int_{0}^{\infty} \lambda(x) d x \Rightarrow \psi^{(n+1)} \in L_{1}\left(R^{+}\right)
\end{gathered}
$$

It is also easy to check that

$$
\begin{equation*}
\int_{0}^{\infty} \psi^{(n+1)}(x) d x \leq \int_{0}^{\infty} g(x) d x+\underset{t \in R^{+}}{\operatorname{vrai} \max } \int_{-t}^{\infty} \lambda(t+\tau) G_{0}(\tau) d \tau \int_{0}^{\infty} \psi^{(n+1)}(t) d t \tag{4.8}
\end{equation*}
$$

Now we suppose that

$$
\begin{equation*}
q_{0} \stackrel{\mathrm{df}}{=} \operatorname{vraii}_{t \in R^{+}} \int_{-t}^{\infty} \lambda(t+\tau) G_{0}(\tau) d \tau<1 \tag{4.9}
\end{equation*}
$$

Then from (4.8), taking into account (4.9), we receive

$$
\int_{0}^{\infty} \psi^{(n+1)}(x) d x \leq\left(1-q_{0}\right)^{-1} \int_{0}^{\infty} g(x) d x
$$

From B. Levi's theorem (see [10]) it follows that the sequence $\psi^{(n)}$ almost everywhere in R^{+}has a limit $\psi(x)=\lim _{n \rightarrow \infty} \psi^{(n)}(x)$, and besides $\psi \in L_{1}\left(R^{+}\right)$.

We prove that $\psi(x)$ is the solution of equation (4.5). Actually, from (4.7) we have

$$
\begin{equation*}
\psi^{(n+1)}(x) \leq g(x)+\lambda(x) \int_{0}^{\infty} G_{0}(x-t) \psi(t) d t, \quad n=0,1,2 \ldots \tag{4.10}
\end{equation*}
$$

Passing to the limit in the last inequality, we obtain

$$
\begin{equation*}
\psi(x) \leq g(x)+\lambda(x) \int_{0}^{\infty} G_{0}(x-t) \psi(t) d t \tag{4.11}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
g(x)+\lambda(x) \int_{0}^{\infty} G_{0}(x-t) \psi^{(n)}(t) d t \leq \psi(x) \tag{4.12}
\end{equation*}
$$

From Lebeg's theorem it follows that

$$
\begin{equation*}
g(x)+\lambda(x) \int_{0}^{\infty} G_{0}(x-t) \psi(t) d t \leq \psi(x) \tag{4.13}
\end{equation*}
$$

Combining inequalities (4.11) and (4.12), we get

$$
\begin{equation*}
\psi(x)=g(x)+\lambda(x) \int_{0}^{\infty} G_{0}(x-t) \psi(t) d t \tag{4.14}
\end{equation*}
$$

Now we pass to the solution of the equation (4.6):

$$
\begin{equation*}
\varphi(x)=\psi(x)+\alpha \int_{0}^{x} e^{-\alpha(x-t)} \varphi(t) d t \tag{4.15}
\end{equation*}
$$

It is obvious that

$$
\begin{equation*}
\varphi(x)=\psi(x)+\alpha \int_{0}^{x} \psi(t) d t \tag{4.16}
\end{equation*}
$$

Finally solving equation (4.3) and taking into account (1.4), we obtain

$$
\begin{equation*}
S(x)=s_{0} e^{-\alpha x}+\int_{0}^{x} e^{-\alpha(x-t)} \varphi(t) d t \tag{4.17}
\end{equation*}
$$

Using formula (4.16), we have

$$
\begin{equation*}
S(x)=s_{0} e^{-\alpha x}+\int_{0}^{x} \psi(t) d t \tag{4.18}
\end{equation*}
$$

In its turn, it follows that

$$
\begin{equation*}
\int_{0}^{\infty} g(x) d x \leq S(+\infty)=\int_{0}^{\infty} \psi(t) d t \leq \frac{\int_{0}^{\infty} g(x) d x}{1-q_{0}} \tag{4.19}
\end{equation*}
$$

The following theorem holds:
Theorem 4.1. Let $0 \leq \lambda(x) \leq 1, \quad \lambda \in L_{1}\left(R^{+}\right) \cap W_{\infty}^{1}\left(R^{+}\right)$, and let the following estimation be true:

$$
\underset{t \in R^{+}}{\operatorname{vrai} \max } \int_{-t}^{\infty} \lambda(t+\tau) G_{0}(\tau) d \tau<1
$$

where $G_{0}(x)=B K_{1}(x)+C \int_{-\infty}^{x} K_{2}(t) d t$.
Then problem (1.1) - (1.4) for $A=0$ in the class $\mathfrak{M}\left(R^{+}\right)$possesses a positive solution of the type (4.18) and inequality (4.19) is true.
5. Solution of equation (1.1) - (1.4) for $\boldsymbol{A}>\mathbf{0}$. In this section, we study equation (1.1) - (1.4) for $A>0$. In this case, we consider the following three possibilities: 1) $A>C \geq 0,2) A=C>0$, 3) $0<A<C$.
5.1. Equation (1.1) - (1.4) in case $A>C \geq 0$. The following theorem is
true:
Theorem 5.1. Suppose that a) $w(x) \geq 0, x \in R$, b) $0 \leq \lambda(x) \leq 1, \lambda \in W_{\infty}^{1}\left(R^{+}\right)$. Then the problem (1.1) - (1.4) for $A>C \geq 0$ in the space $W_{1}^{1}\left(R^{+}\right)$has a positive solution of the type

$$
\begin{equation*}
S(x)=s_{0} e^{-\alpha x}+\int_{0}^{x} e^{-\alpha(x-t)} F(t) d t \tag{5.1}
\end{equation*}
$$

where $\alpha>0$ is the constant, $0 \leq F \in L_{1}\left(R^{+}\right)$.
Proof. Using factorization (3.2), the equation (1.1) may be written in the form

$$
\begin{equation*}
\left(I-W^{\lambda}\right)\left(I-U_{\alpha}\right)(D+\alpha I) S=g . \tag{5.2}
\end{equation*}
$$

Solution of (5.2) is reduced to successive solution of the following equations:

$$
\begin{align*}
& \left(I-W^{\lambda}\right) F=g, \tag{5.3}\\
& \left(I-U_{\alpha}\right) \chi=F, \tag{5.4}\\
& (D+\alpha I) S=\chi . \tag{5.5}
\end{align*}
$$

We rewrite the equation (5.3) in the open form and consider the iteration

$$
F^{(n+1)}(x)=g(x)+\lambda(x) \int_{0}^{\infty} w(x-t) F^{(n)}(t) d t, \quad F^{(0)}=0, \quad n=0,1,2 \ldots .(5.6)
$$

By induction, it is easy to check that

$$
\begin{equation*}
g(x) \leq F^{(n)} \in L_{1}\left(R^{+}\right), \quad n=1,2, \ldots, \quad F^{(n)} \uparrow \text { by } n . \tag{5.7}
\end{equation*}
$$

Therefore, we have

$$
\begin{gathered}
\int_{0}^{\infty} F^{(n+1)}(x) d x \leq \int_{0}^{\infty} g(x) d x+\int_{0}^{\infty} \lambda(x) \int_{0}^{\infty} w(x-t) F^{(n+1)}(t) d t d x= \\
=\int_{0}^{\infty} g(x) d x+\int_{0}^{\infty} F^{(n+1)}(t) \int_{-\infty}^{\infty} w(t) \lambda(t+z) d z d t \leq \int_{0}^{\infty} g(x) d x+\gamma \int_{0}^{\infty} F^{(n+1)}(t) d t,
\end{gathered}
$$

where

$$
\begin{equation*}
\gamma=\int_{-\infty}^{\infty} w(x) d x=\frac{C}{A}<1 . \tag{5.8}
\end{equation*}
$$

As (5.7) and (5.8) are satisfied, then form B. Levi's theorem it follows that the sequence $\left\{F^{(n+1)}(x)\right\}_{0}^{\infty}$ converges almost everywhere in R^{+}to an integrable function $F(x)$. It is obvious that the function $F(x)$ is the solution of equation (5.6). Successively solving equations (5.4) and (5.5), we arrive to result (5.1).

The theorem is proved.
5.2. Equation (1.1)-(1.4) in case $\boldsymbol{A}=\boldsymbol{C}>\mathbf{0}$. The following theorem holds:

Theorem 5.2. Suppose that the following conditions are satisfied: i) $w(x) \geq 0$, $x \in R$, ii) $0 \leq \lambda(x) \leq 1, \lambda \in W_{\infty}^{1}(R)$, iii) $v\left(K_{j}\right)<+\infty, j=1,2$, exists and moreover, $v\left(K_{2}\right) \leq(B-1) / A$. Then problem (1.1)-(1.4) for $A=C>0$ in the class \mathfrak{M} possesses the solution of the following structure:

$$
\begin{equation*}
S(x)=s_{0} e^{-\alpha x}+\int_{0}^{x} e^{-A(x-t)} \varphi(t) d t \tag{5.9}
\end{equation*}
$$

Here, $0<\alpha=$ const, $0 \leq \varphi \in L_{1}^{\text {loc }}\left(R^{+}\right)$,

$$
\int_{0}^{x} \varphi(t) d t=o\left(\int_{0}^{x} f(t) d t\right) \text { for } \quad x \rightarrow+\infty
$$

where $f(x)$ is the positive increasing function, $f(0)=1$ and if $v\left(K_{2}\right)<(B-$ $-1) / A$, then $f(x)=O(1)$ for $x \rightarrow+\infty$, and if $v\left(K_{2}\right)=(B-1) / A$, then $f(x)=O(x)$ for $x \rightarrow+\infty$.

Proof. From the condition $A=C>0$ it follows that $\gamma=1$. Together with (5.3), we consider the following auxiliary equation:

$$
\begin{gather*}
\tilde{F}(x)=g(x)+\int_{0}^{\infty} w(x-t) \tilde{F}(t) d t \tag{5.10}\\
f(x)=\int_{0}^{\infty} w(x-t) f(t) d t \tag{5.11}
\end{gather*}
$$

It was proved in $[12,13]$ that if $v(w) \leq 0, \quad 0 \leq g \in L_{1}\left(R^{+}\right)$, then equation (5.10) in $L_{1}^{\text {loc }}\left(R^{+}\right)$has positive solution which, almost everywhere in $(0,+\infty)$, is the limit of the following simple iterations:

$$
\begin{equation*}
\tilde{F}^{(n+1)}(x)=g(x)+\int_{0}^{\infty} w(x-t) \tilde{F}^{(n)}(t) d t, \quad \tilde{F}^{(0)}=0, \quad n=0,1,2, \ldots \tag{5.12}
\end{equation*}
$$

and the asymptotic

$$
\begin{equation*}
\int_{0}^{x} \tilde{F}(t) d t=o\left(\int_{0}^{x} f(t) d t\right), \quad x \rightarrow+\infty \tag{5.13}
\end{equation*}
$$

is true, where f is a positive increasing solution of equation (5.11), $f(0)=1$. Mentioned solution f satisfies also the following conditions: $f(x)=O(x),(x \rightarrow \infty)$ for $v(w)=0$ and $f(x)=O(1), x \rightarrow \infty$, for $v(w)<0$. We consider the following iteration for equation (5.3) (in the case $A=C>0$):

$$
\begin{equation*}
F^{(n+1)}(x)=g(x)+\int_{0}^{\infty} w(x-t) F^{(n)}(t) d t, \quad \tilde{F}^{(0)}=0, \quad n=0,1,2, \ldots \tag{5.14}
\end{equation*}
$$

It is easy to show that
i) $g(x) \leq F^{(n)} \uparrow$ by n, ii) $F^{(n)} \leq \tilde{F}^{(n)}$ almost everywhere in $(0,+\infty)$.

Hence, almost everywhere in R^{+}, there exists $F(x)=\lim _{n \rightarrow \infty} F^{(n)}(x)$ and

$$
\begin{equation*}
0 \leq g(x) \leq F(x) \leq \tilde{F}(x) \tag{5.15}
\end{equation*}
$$

It is obvious that $F(x)$ is the solution of equation (5.3) for $A=C>0$ (the proof of last fact has analogy with Theorem 4.1). Using (5.13), (5.15) and Lemma 3.3, we obtain

$$
\int_{0}^{x} F(t) d t=o\left(\int_{0}^{x} f(t) d t\right), \quad x \rightarrow+\infty
$$

Solving equations (5.4) and (5.5), we obtain (5.9).
The theorem is proved.
5.3. Equation (1.1) - (1.4) in case $C>\boldsymbol{A}>0$. Doing analogous discussions as in Theorems 4.1 and 5.1, we get the following theorem:

Theorem 5.3. Let i) $w(x) \geq 0, \quad x \in R$, ii) $0 \leq \lambda(x) \leq 1, \quad \lambda(x) \in W_{\infty}^{1}\left(R^{+}\right)$, iii) the inequality

$$
\underset{t \in R^{+}}{\operatorname{vrai} \max } \int_{-t}^{\infty} \lambda(t+\tau) w(\tau) d \tau<1
$$

takes place. Then problem (1.1)-(1.4) for $C>A>0$ in $W_{1}^{1}\left(R^{+}\right)$possesses a solution of the type (4.18).
6. Construction of nontrivial solution of homogeneous equation (1.7). The factorization (3.2) allows us to construct nontrivial solution of corresponding homogeneous equation when $A=C>0$. Unfortunately, for other values of parameters A and C, up to now we were not able to construct a nontrivial solution. It is known only that, in the case $A>C>0$, the homogeneous equation $F(x)=\lambda(x) \int_{0}^{\infty} w(x-t) \times$ $\times F(t) d t$ in the class \mathfrak{M} has no nontrivial solutions. It is also known that the homogeneous equation, in the case $A=C>0$ and $v(w)>0$, in \mathfrak{M} has no nontrivial solutions either. On evristic level we conclude that for other values of parameters A and C nontrivial solutions do not exist.

We consider corresponding homogeneous equation (1.1)-(1.4) for $A=C>0$ (see (1.7)).

Using factorization (3.2), we rewrite the equation (1.7) in the form

$$
\begin{equation*}
\left(I-W^{\lambda}\right)\left(I-U_{\alpha}\right)(D+\alpha I) S=0 \tag{6.1}
\end{equation*}
$$

The equation is equivalent to the successive solution of the following equations:

$$
\begin{align*}
& \left(I-W^{\lambda}\right) \rho_{1}=0 \tag{6.2}\\
& \left(I-U_{\alpha}\right) \rho_{2}=\rho_{1} \tag{6.3}\\
& (D+\alpha I) S=\rho_{2} \tag{6.4}
\end{align*}
$$

We write equation (6.2) in the open form: $\rho_{1}(x)=\lambda(x) \int_{0}^{\infty} w(x-t) \rho_{1}(t) d t$.
As $A=C>0$, then $\gamma=1$. Using Theorem from [11] (see Sec. 2 of this paper), Lemma 3.3 and solving equations (6.3) and (6.4), we obtain the following results:

Theorem 6.1. A. Suppose that i) $w(x) \geq 0$, ii) $0 \leq \lambda(x) \leq 1, \quad \lambda(x) \in W_{\infty}^{1}\left(R^{+}\right)$, $I-\lambda(x) \in L_{1}\left(R^{+}\right)$, iii) $v\left(K_{2}\right)<\frac{B-1}{A}$.

Then the problem (1.7), (1.3), (1.4) for $A=C>0$ in the class \mathfrak{M} possesses a nontrivial solution of the type

$$
\begin{equation*}
S(x)=s_{0} e^{-\alpha x}+\int_{0}^{x} e^{-A(x-t)} \rho_{1}(t) d t \tag{6.5}
\end{equation*}
$$

where $\rho_{1} \neq 0$ and $\rho_{1}(x)=O(1), x \rightarrow \infty$.
B. Let i) $w(x) \geq 0, \quad x \in R^{+}, \quad$ ii) $0 \leq \lambda(x) \leq 1, \quad \lambda(x) \in W_{\infty}^{1}\left(R^{+}\right)$, $x(1-\lambda(x)) \in \in L_{1}\left(R^{+}\right)$, iii) $v\left(K_{2}\right) \leq \frac{B-1}{A}$. Then the problem (1.7), (1.3), (1.4) for $A=C>0$ in the class \mathfrak{M} possesses a nontrivial solution of the type (6.5), where $\quad \rho_{1} \geq 0, \quad \rho_{1} \neq 0$, and has the asymptotic behaviour $\int_{0}^{x} \rho_{1}(t) d t=O\left(x^{2}\right)$, $x \rightarrow+\infty$.

The authors express their gratitude to Professor N. B. Yengibaryan for useful discussions.

1. Latishev A. V., Yushkanov A. A. A precise solution of the problem of current passage over borders between crystals in metal (in Russian) // FFT. - 2001. - 43, № 10. - P. 1744-1750.
2. Latishev A. V., Yushkanov A. A. Electron plazma in seminfinite metal at presece of alternating electric field (in Russian) // Zh. Vych. Mat. i Mat. Fiz. - 2001. - 41, № 8. - P. 1229 - 1241.
3. Livŝic E. M., Pitaevskii L. P. Physical kinetics (in Russian). - Moscow: Nauka, 1979. - Vol. 10.
4. Khachatryan Kh. A. Integro-differential equations of physical kinetics // J. Contemp. Math. Anal. 2004. - 39, № 3. - P. 49 - 57.
5. Khachatryan A. Kh., Khachatryan Kh. A. On solvability of some integro-differential equation with sum-difference kernels // Int. J. Pure and Appl. Math. Sci. (India). - 2005. - 2, № 1. - P. 1-13.
6. Khachatryan Kh. A. Ph. D. - Yerevan, 2005. - 115 p. (in Russian).
7. Khachatryan A. Kh., Khachatryan Kh. A. On structure of solution of one integro-differential equation with completely monotonic kernel // Int. Conf. Harmonic Anal. and Approxim. - Armenia, Tsakhadzor. - 2005. - P. 42-43.
8. Wiener N., Hopf N. Über eine Klasse singularer Integral eichungen Sitzing. - Berlin, 1931. 706 S.
9. Yengibaryan N. B., Arabajian L. G. Some factorization problems for integral operators of convolution type (in Russian) // Differents. Uravneniya. - 1990. - 26, № 8. - P. 1442-1452.
10. Kolmogorov A. N., Fomin V. S. Elements of the theory of functions and functional analysis. Moscow: Nauka, 1981. - 544 p.
11. Arabajian L. G. On one integral equation of transfer theory in nonhomogeneous medium (in Russian) // Differents. Uravneniya. - 1987. - 23, № 9. - P. 1618-1622.
12. Arabajian L. G., Yengibaryan N. B. Equations in convolutions and nonlinear functional equations (in Russian) // Itogi Nauki i Tekh., Mat. Anal. - 1984. - P. 175-242.
13. Yengibaryan N. B., Khachatryan A. Kh. On some convolution type integral equations in the kinetic theory (in Russian) // Zh. Vych. Mat. i Mat. Fiz. - 1998. - 38, № 3. - P. 466-482.
