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GLOBAL EXPONENTIAL STABILITY OF A CLASS
OF NEURAL NETWORKS WITH UNBOUNDED DELAYS

I'/IOBAJIBHA EKCIIOHEHITAJIbHA CTIAKICTH
OJHOTI'O KJIACY HEMPOHHHUX CITOK
3 HEOBME2KEHUMU 3ATAIOBAHHAMUN

In this paper, the global exponential stability of a class of neural networks is investigated. The neural
networks contain variable and unbounded delays. By constructing a suitable Lyapunov function and
using the technique of matrix analysis, some new sufficient conditions on the global exponential stability
are obtained.

HocJ1ifzKeHo r106a1bHy eKCIOHeHLiaIbHY CTIHKICTh O/IHOTO KJlacy HeMpOHHUX ciToK. HeiipoHHi ciT-
KU MICTATh 3MiHHI Ta HeOOMe KeHi 3araroBaHHs. Ha ocHOBI nmoOyzoBu BianoBigHoi yHKii JIsamyHoBa
Ta TEeXHIKM MAaTPUYHOTO aHaJ/Ii3y OTPUMAHO HOBIi /I0OCTaTHI YMOBH I'JI06aJ/IbHO1 €KCITOHEHIIa/IbHOI CTil-
KOCTI.

1. Introduction. It is well-known that cellular neural networks (CNNs) proposed by
L. O. Chua and L. Yang in 1988 have been extensively studied both in theory and
applications. We refer the reader to [1 — 8] for more details on this matter. The CNNs
have been successfully applied in signal processing, pattern recognition, associative
memories and especially in static image treatments. Such applications rely on the
qualitative properties of the neural networks. In hardware implementation, time delays
occur due to finite switching speeds of the amplifiers and communication time. Time
delays may lead to an oscillation and furthermore, to an instability of networks [1].
On the other hand, the process of moving images requires the occurrence of delays in
the signal transmission among the networks [5]. Therefore, the study of stability of
neural networks with delay is practically required.

It is known that fixed time delays in model of delayed feedback systems serve as a
good approximation of a simple circuit having a small number of cells. The neural
network usually has spatial nature due to the presence of various parallel pathways.
Thus, it is desirable to model them by introducing unbounded delays.

Usually, the Lyapunov functional method is used to study qualitative properties of
CNNSs. Such a method is performed in three steps. In step 1, we construct a Lyapunov

function V(z). In step 2, we get rid of time delays in V/(¢) to estimate V(¢). In step 3,

we require some conditions on CNNs so that the function V(¢) satisfies necessary
properties. Therefore, we obtain the qualitative properties of CNNs.

For autonomous CNNSs, the study of the existence, uniqueness and stability of the
equilibrium point of neural networks have been carried out. Some useful results have
already been obtained in [3, 4, 6 — 11].

The stability of nonautonomous CNNs has been studied in [2, 3, 12, 13]. However,
results about the stability of the neural networks with variable, unbounded delays and
time varying coefficients have not been widely studied. In particular other authors
have not used scale Lyapunov functions in their studies (see [3, 7, 8, 14]). In this
paper, we study the exponential stability of CNNs with variable, unbounded delay and
time varying coefficients by constructing proper scale Lyapunov functions. Some new
sufficient conditions for global exponential stability are obtained.

This paper is organized as follows. In Section 2, we introduce some definitions and
assumptions. In Section 3, the global exponential stability is obtained. In Section 4,
we obtain a series of corollaries.

2. Definitions and assumptions. In this paper we consider the general neural
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networks with variable and unbounded time delays of the form

Jj=1 j=1
+ iclj(t) szj(l—S)hj(xj(s))ds + Ii(t)’ i = 1’ n, (1)
j=1 —oo

where x; 1is the state of neuron i, i =1,...,n; n is the number of neuron; A(¢) =
= (a;;()pxns B()= (bj(1))xn» C(1) = (c;i(1)),x, are connection matrices; (1) =
= (L), ..., I,(1))" is the input vector;

f@ = (@), ..., L@)', g = (@), ..., g,w)",

hu) = (b, ..., hyw)"

are the activation functions of the neurons. D(r) = diag(d,(?), ..., d,(t)), d;(r)
represents the rate in which the ith unit will reset its potential to the resting state in
isolation when disconnected from the network; kl-j ), i,j=1,...,n, are the kernel

functions; 7t;(¢), i,j=1,..., n, are the delays.
. . . n
For convenience, we introduce some notations: x = (xy, ..., xn)T e R denotes a

172
column vector (the symbol (T) denotes the transpose) with norm \x\ = (z:leiz )

For matrix A = (a;;),,x - A" denotes the transpose of A, A™! denotes the inverse of

A. If A, B are symmetric matrices, A > B (A = B) means that A — B is positive
definite (positive semidefinite). The minimum and maximum real eigenvalue of a
symmetric matrix A are denoted by A,,;,(A) and A, (A), respectively.

We consider system (1) under some following assumptions.

(H;) Functions d;(1), a;(t), b;(1), c;(t) and I;(1), i,j =1,....n, are defined,

bounded and continuous on R". Functions tij(t), i,j=1,...,n, are defined

nonnegative, bounded and continuously differentiable on R, tir]g+ (I-1;(0) >0,
€

where i:ij(t) is the derivative of 1;(#) with respect to 7. Functions k;;: [0, o) —

— [0, ), i,j =1,...,n, are piecewise continuous on [0, ) and satisfy

I(:Oegskij(s)ds = p;i(€), where p;(e) are continuous functions in [0, ), & > 0,

p;(0)=1.

(H,) There are positive constants H;, K;, L;, i=1,...,n, such that

0 < 7]6"(”3:?”*) < H, g -gw)| < Klu-u

E}

| () = Iy (")

< Li‘u—u*

for all u,u*e R and i=1,...,n.

(Hj3) There are a positive definite symmetric matrix S, diagonal matrices

o = diag(o,...,0,) >0, B = diagB;,...,B,) > 0,
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o = diag(w,...,»,) >0, o© = diag(c,...,0,) > 0,

Y = diag(yy,....v,) 20
and a constant >0 such that A, (Dy(r,M)) 2 a forall te R', 0<n < H, where

D/(t,M) = SD(t) + DS — nS(a™ ' + 0™ 1)s —
- myB~" + 67 Hm - (SA(r) - D(t)y)n -
- n(AT(®)S - yD) - (YA + AT (t)y)n -

- Z[(ai +B;)B;(1) + (o; + 6,)C, (1],
i=1

n = diag(n,...,n,), H = diag(H,..., H,),

0 0
Z‘i(t) = diag [L]2 J. k,-](—s)cl-zl(t —s)ds, ..., Li J kin(—s)c;(t - s)ds],

—oo

B = dig| k2 BAVAO) e B(vR@) )
’ P )T 1= 1,5 0) ) e

here wi_jl(t) is inverse function of ;(¢) =1 — T;(7).

(Hy) There are a positive definite symmetric matrix S, diagonal matrices
B = diag(B;,....B,) >0, o = diag(cy,...,0,) > 0,
Y = diag(yy,...,v,) >0
and a constant a>0 such that YA(t) + AT(t)y <0, A, (Dy(t,M) > a forall re
€ R+, 0<n<H, where
Dy(t,m) = SD(t) + D(1)S — nSP~' +o7Hs —

— (SA() - D(tyy)n - n(AT(1)S - yD(1)) -

M=

[(B; — 0)B;(1) + (0, — ©))C;(1)],

i=1

T -1
o o] )
teR” 2

E is unit matrix.
We denote by BC the Banach space of bounded continuous functions @ : (—oe,

0] - R" withnorm |@| = sup |o(s)].
—o0<s<0
The initial condition associated with (1) is of the form

x(0) = ¢(0), 0€(-,0], where ©¢ecBC. 2)

It is well-known that if hypotheses (H;), (H,) are satisfied, then the system (1) has a
unique solution x(¢)= (x(?), ..., xn(t))T satisfying the initial condition (2) (see [15]).
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Definition 1. The equilibrium point x* of the system (1) is said to be globally
exponentially stable (GES) if there exist constants A >0 and M > 0 such that
for any solution x(t) of the system (1) with initial function @, we have

‘x(t)—x*‘ < MH(p—x* e ™ forall re R

Definition 2. The system (1) is said to be globally exponentially stable, if there
are constants € >0 and M =1 such that for any two solutions x(t), y(t) of the
system (1) with the initial functions @, \, respectively, one has

|x(t) = y(t)| < M|y —ole® forall reR".

The activation function f is said to belong to the class P LI (denoted fe PLI) if
foreach je {1,2,....n}, g;: R— R is a partially Lipschitz continuous and

monotone increasing function. A function [ is said to be partially Lipschitz
continuous in R if for any p € R there exists a positive number 1, such that

| f(®) = f(P)| < L,|6—p| forall 6eR.

Definition 3. The system (1) is said to be absolutely exponentially stable with
respect to the class P LI if it possesses a unique GES equilibrium point for every

functions g, f, he PLI and every input vector 1.
Definition 4. A matrix A is said to belong to the class Fy if A satisfies that

all principal minors of A are nonnegative (denoted A € Fy).

3. Global exponential stability of CNNs. In this section, by constructing a
suitable Lyapunov function and using the technique of matrix analysis we give some
sufficient conditions for the global exponential stability of solutions of the system (1).

The main results in this article are content of Theorem 1.

Theorem 1. If the hypotheses (H,), (H,) and (Hsy) or (Hy) are satisfied then
the system (1) is globally exponentially stable.

Proof. Let x(t), y(t) be two arbitrary solutions of the system (1) with initial
value Y, @, respectively. Setting z(¢)=x(z)—y(t), we have

1) = =D()z(t) + AO)P(z(1)) + G(z(r — (1)) + F(z(1)), 3)

where

D(z(1) = (@y(51(D))s ..., P,(2,(1))),
GGt — 1)) = Gt = H®))) ... G, (z,t = 1,0,
F(z(0) = (RO ... Bz,0)),
@,(z;(1) = filx(®) — £((0),
Gi(z(t — t(n)) = ibij(t)[gj(xj(t = 1;(1)) = g;(y;(t - Tij(f)))],

j=1
E(z(1) = Y,c;(0) j kit = 9| 0) = hy(y;0)]ds, i =1,....n.
j=1 Zeo

Define a Lyapunov function as follows
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n ()
Vit z) = ' 0Sa0e + 2, [ y®i(s)dse™ +
i=1 0

t
n n (Wz] (s )) 2 (41w ()

z i i Z Ax —o.(v. iji\Wij d
* i:l(al ’ Bl) j=1 _J sz(w ( ))[ ](x](s)) gf(yl(s))] ¢ s +

O\

+ 2(0) +0)) 2 [ ky=9) j 2 — 9)[h(x ;) - hj(yj(u))]zeg(”_s)duds, 4)

J=1 —co t+s

where S, o, B, ¥, ®, G are given by (H3), € > 0 be a constant which will be
determined later on. Caculating the derivative of V(t,z,) along the solutions of
equation (3), we get

dv(t, z,)

el 68'[— 227 (O)SD()z(1) + 227 ()SAW)D(z(1)) + 227 ()SG(z(t — (1)) +

+ 227 (DSF(z2(t)) — 2@ (2()YD(t)z(t) + 2@ (2() YA D(2(1)) +

+ 207 (ZO)G(a(t - 1)) + 20(GONVF((0)] +

*Zem X [_(W()()» (55,00 = £, )0 )

- bé(l)[gj(xj(f = 1;(1)) — g;(y;(t - Tij(f)))]zegl:| +

+ 2(‘9 +6;) 2 |: J kij (= S)Cy(f [hj(xj(l)) - hj()’j(l))]zeg(t_s) ds —

j=l1lL—

j SO+ 5)) - h(yj(t+s))] dse® }

n ()
+ e (OSe0e + 28 Y, [ y@i(s)dse . (5)
i=1

It follows by using Cauchy — Schwarz inequality that

n 3 B20e; (e - 1)) - 2,0, — )] =
i=1

n 2
= [ > by(0)]g;(xjt — (1) — g;(v;(t - r,;(t)))]} :
j=1
Since J:kij(s)ds =1, we obtain

j [ Cxjte+ ) = Bt + )] ds =
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0
j ki)t + ) = (e + )] ds [ ky—s)ds 2

—oo

2
[ [ k=) (xj(t+s))—hj(yj(t+s))]dsj

forall i,j=1,...,n. Hence, we have
n 0
Y 0) [ k[ Cxie + ) = oyt + )] ds 2
j=1 oo
n t 2
> Zc,%(r)( J Kt = )9 h,-(y,-(s))]ds) >
j=1 oo

v

2
{Zc,,a) [ ke = ) (x() = hy(y(s)] ]
Firstly, we assume that (H;) holds. From (H;), (H,), we have
% < e“{ =227 (SD()z(1) + 22T (NSADYD(2(r)) + 227 (1)SG(z(t — (1)) +

+ 227 (DSF(2(1)) — 2@ (2(0)yD(t)z(2) + 20" (2()YA()D(2(1)) +
+ 207 (2(OYG(2(t — 1)) + 20(z(D)YF(2(1)) +

n n b2 -1 t o
+ (0 +B) X K; U("’ivfl)) SV D2y
= = =Ty @)

n n 2
- Z;(Oﬂi +B) % |:2_:1 bij(f)[gj(xj(f = 1;(1)) — g;(y;(t = Tij(f)))]:| +

+ 2(0) +c)2 _[k( S)i(t — s)e™® ds 323 (1) -

Jj=l —

¢ 2
~ Y (o + c»i(Zc,-,(z) [ ke = 9)[n;0xj09)) - hj(y,(s))]dsJ +
i=1 j=1 —oo
n ()
+ €2’ (0Sz(1) + 2e Y, j y,.cb,.(s)ds} =
i=l 0
= est{ =228 ()SD(1)z(1) + 22T (SADD(z(1)) + 227 (1)SG(z(r — (1)) +
+ 227 (DSF(2(1)) — 207 (z()NYD(1)z(1) + 207 (2())YA)D(2(1))) +

+ 207 (z(OWG(2(t — (1)) + 20(OWF(2(1) + Y (0 + B)z” ()Bi(t, €)z(t) —

i=1
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- i G (z(t - 1)) (0 + P)G(z(t — (1)) + D (o; + 6,)z" (NCi(t, £)z(t) —

i=1

n (0
- % F'(z0)(@ + 0)F(z(0) + &2 (0S2(0) + 28 Y, | ¥, @,(s)ds. (6)
i=l 0
where
-1 -1
E,-(l‘, 8) _ dlag (Klz b,%.(\Vil Etl)) egtil(‘Vﬁl(l))’ L K,ZZ b,i(‘lfm El;)) esrin(winl(t)))’
1— 1,0y (1) 1 -1, ()
. 0 0
Cite) = diag ( j ky(=s)ca(t — s)e S dsL3, ..., j ki (= $)c2 (1 — s)e” % ds Lﬁ]

forall i=1,...,n.
Let n(7)= diag(m;(z), ..., M, (7)), where m;(¥) = M;(z;(#)) such that
(z(1) = ) (Ve RY). 9
Using the inequality
1

2xTy - yTDy < x'D7'x,  where X,y € R", D >0, ®)

we have
T T o T o)™
27" (HSG(z(t — 1)) — G (z(t — (1)) - G(z(t—1(1)) < z°(H)S (;) Sz(1),
-1
227 ()SF(z(1)) — FT (2(0)) (9) Fzt) < Z'(0)S (9) Sz(t),
n n
207 Z(OYG(z(t — 1)) — GT (2t — 1(1))) % G(z(t - (1)) <
-1
< o (z))y (%) YO(z(1)),

-1
207 ()r0) = F o) (%) Fan) < o7 @op (2] v,
This implies

avi, z,)

L < —e¥77 (1) [SD(t) + D(1)S — (SA() — D(t)y)n —

- (AT (S = yD(1)) - N(A@)Y + YAT ()M - nS(@ " + oS -

—my(c” +BTHmM = D (0 + BBt €) — D (; + 6,)Cit, ) —

i=1 i=1

n ()
— &S — 2¢E % D f Yiq)i(s)ds] 1) = " (OD(t, n, )z(0), )
z i=1 0

where
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Dy(t,m,€) = SD(t) + D(t)S — (SA(r) — D(t)y)n —
~ (AT (S = yD(®)) — n(At)y + AT ()N -
— S + o )S —myc + B Hym -
- i(%’ +B;)B;(t, €) - Zn:(“)i +0,)G(t, &) -

i=1 i=1
n Zl(t)

—eS — 26E —— 2 jy,cb (s)ds.
z i=1 ¢

Obviously, lim B;(t,€) = Bi(r) uniformly for all re R", lim Ci(t,e) = C(t)
e—0 34U

uniformly for all ¢ e R and i= 1,..., n. From a assumption (H,) we obtain

max (y;H;) (Ve RY).

l\)\»—

1 n (0
- l'(DiSdSS
T !v (s)

i=1
Hence, we have lin}) Dy(t,m, €) = Di(¢, n) uniformly forall ¢ e R and 0< n<H.
E—

Thus, by assumption (H; ), there exists a constant € >0 such that A, (D,(z, M, €)) =
> % forall rfe R" and 0< M < H. Therefore, by (9), we have

dV(t, Zt) < _ a estZT(t)Z(t) (VZE ]R+) (10)
dt 2

Secondly, we assume that (H,) holds. By (8) we obtain

T
207 (WGt - 1(1)) + D7 (2(1)) (W) o(z(1) =

T
= 207 GONGG( - 1)) - <I>T(z<r>)(— W) o)) <

T -1
< 6lete— s (- OO 6w

T
207 (ZOWF((0) + BT (1) (W) o(x(1) =

T
= 207 W) - D (1) (— W) o)) <

T -1
< F(z(r))v(—W) V().

2" (0SG(e(t — 1) = 67 (e - 7)) B 6 - 7)) < Ty (5)] S(0).
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-1
ZZT(t)SF(Z(t)) - FT(Z(I)) (%) F(z(1) < ZT(I)S (%) Sz(1).
So from (4), (6) with o.=—0.", @ =—®", we have

% < e‘e”{—ZzT(t)SD(t)z(t) + 221 (OSA()D(z(1)) +

_ AW + ATy
2

_vAm + ATy
2

-1
. G(Z(t—r(t)))v( ) YG(:(t - ) +

4
. F(zm)v( ) YFC0) +

+ nzl OSPE™ + 67HSz(t) - 207 (2(0)yD(1)z(1) +

+ D (0 + Bzl (1)By(t, £)z(t) + D (; + 6,)z" (NCi(t, €)z(t) —

i=1 i=1

- 67 (el = 30) & 6(elo - 7)) - F(a0) (2) o) +

n (0
+ ez (0Sz(t) + 2e Y, j y,.cb,.(s)ds} <
i=l 0

< =zl (@) [SD(t) + D(t)S — (SA(t) — yD(t))n —
- (AT (S - D(tyy) - nSB~' +07S —

— Y (o + BB, &) — D (; + 6,)Cit, &) —

i=l1 i=l1

n %)
- &S — 2¢E % D J Yiq)i(s)ds] 2(1).
< (t) i=l ¢

Let
Dy(1,m,€) = SD(t) + D(1)S — (SA(r) — yD(1))n —

- (A" (S - D(t)yy) - nSB~' +67)S -

- i(ai +B;)B;(t, €) - i((’)i +0,)G(t, €) -
i=1 i=1
1 n i)
—eS — 26 —— D.(s)ds.
o526 5 v

1409

(1)

By a similar argument as used for Dj(t, M, €), we also have lim D,(t,n,€) =
e—0

= D,(t,n) uniformly forall ze R" and 0< M < H. Thus, by assumption (H,) there

exists a constant € >0 such that
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a

Xmin(DZ(t’ n, 8)) 2

\S]

Therefore, by (11) we finally have

av(t, z;)
dt
From (10), (12) we further obtain

V() < VO) (Vt=0). (13)

< ng(t)z(t) (Vie R, (12)

Directly, from (4) and a assumption (H,) we have
V() = T 0)Sz(t)e® = Apin(S)e |z (V120), (14)
n %(0)

VO) = " )8:2(0) + 2 [ y@s5)ds +
i=l ¢

n 0 .
' Z(“ X ] -( YID 1 (oo g, o g
j=1 -1, (O) T\ ( )

+ Z(u) + 0; )z j k(= s)'[cy(u h (x W) — h; (yj(u))] =) quds <

Jj=1 —oo

< A0 = [ + max (y;Hy)|o - v’ +2<oc +BoRlo - [ +
i=1

+ z(mi—i_ci)OiH(p_WHZ = ( max(S)+ max (Y[Hl)—i_z(a +B1)P +

i=1 i=l1

+ z(ﬂ)i + Gi)Oi)

i=l1

where

Kzr,

1

20 1
bij (i (5)) es(s+‘c,j(\|li,~1(s))):|

P = max sup [ - —
’ 1= 1,y ()

Isjsn [—10]

0, = L 1 max (p;(e) - 1).
€ 1<j<n

1

Hence, we have P> 1 such that \z(t)\ <K H(p 1|!H “® forall re R, thatis

+

|x() = y(0)| < B —yle®? forall reR".

This completes the proof of Theorem 1.
4. Corollaries. In this section, as some special cases of Theorem 1, we derive
some corollaries which seems to be advantageous for the stability test.

Corollary 1. Assume that the hypotheses (H,), (H,) are satisfied. If there is a
constant a >0 such that

ISSN 1027-3190. Ykp. mam. xypn., 2008, m. 60, N° 10
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Amin [ZD(t) - Am-nA’ (@) - 2 (Bi(1) + Ci(1)) — 2nE:| >a

i=1

forall te R" and 0< N < H, then the system (1) is globally exponentially stable.
Proof. Choosing S=o.=w=08F (6>0) and y=0, we obtain

Dit,m) = § lzba) - A(m -nAT (1) - 2 (Bi(1) + (1)) - an} -
i=1
- > (B:Bi(1) + 6,Ci(1)).
i=1

According to Theorem 1, this corollary holds.
Corollary 2. Assume that the hypotheses (H,), (H,) are satisfied. If A(t) +

+ AT(t) <0 and there is a constant a >0 such that

Amin [2D(t) — (A - DN - (A" (@) - D(¥)) - 2nE -

- i((l—Oﬁf)Bi(l)+(1—w?)C}(f))} 2 a

i=1

forall te R and 0< N < H, then the system (1) is globally exponentially stable,

here

T _1
o' =0 =n inf lkmin (A(t) +2A (t)) :|E

Proof. By choosing S=f =vy=0=E, we obtain
Dy (t,M) = 2D(1) = (A(t) = D(t))n = (A (1) = D(t)) — 2nE —
- 2 (= a)B(® + (1 = 0))G(0).
i=1

Using Theorem 1, the Corollary 2 holds.
When D(t) =D, A(t) =A, B(r)=B, C(1) =C, t;(t1) =1, f=g=h, It) =1

forall re R", system (1) degenerates into

dx; n n
xd,it(l‘) = —dix;(t) + Zaijgj(xj(t)) + Zbijgj(xj(t—’(?)) +
Jj=1 j=1
n 13
+ Zlcij J. kl](t—s)gj(x](s))ds + Ii’ i = 1, n. (15)
j=l e

We consider the following assumptions:
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(H]) —(A +B + C) e Py; functions k,-j: [0, 0) > [0,00), i,j=1,...,n, are
piecewise continuous on [0, o) and satisfy J:emklj(s)ds =p;j(€), where p;(g) are

continuous functions in [0, §), 6 >0, p;(0)=1.

(H5) There are positive constants H;, i = 1,... ,n, such that 0 <
< MS% for all u,u*e R and i=1,...,n.
u—u

(H3) There are a positive definite symmetric matrix S, diagonal matrices
o = diag(o,...,0,) >0, P = diagB,...,B,) > 0,
o = diag(w;,...,»,) >0, o = diag(c,...,0,) > 0,

Y = diag(y,...,Y,) =20

such that A, (Dy(1)) >0 forall 0<m<H,

D(m) = SD + DS — nS(@ ' + o HS — nmyP~ + o7 Hym -
— (SA=Dym - n(A"S—yD) - n(vA + ATy)n -

n
- 2[(0%' +B,)B; + (o; +6,)C]
i=1
where m = diag(n,,...,m,), H = diag(H,,..., H,), B, = diag(b7H},...,b>H?),
C = diag(c3L2,...,c2I2), i=1,...,n.
(H}) There are a positive definite symmetric matrix S, diagonal matrices

B = diag(By,...,B,) >0, o = diag(oy,...,0,) >0,

vy = diag(yy,...,Y,) >0
such that YA + ATy <0, A, (Dy(1)) >0 forall 0<m<H, where

Dy(t,m) = SD + DS — nSB~' + 1S — (SA- Dy)n -

- n(ATS —yD) = Y [(B; - &))B; + (0, — ©))C}],

i=1

7 N\l
o = o = n7\«min [Y(YA+2A YJ 'YJE

We have some following results.
Corollary 3. Assume that the hypotheses (H{), (H3) and (H3) or (H}) are

satisfied, then the system (15) is absolutely exponentially stable with respect to the
class PLI

Proof. By [13], the system (15) have a unique equilibrium point for any function
g € PLI and any input vector [/ if and only if —(A + B + C) € P,. Hence, the
Corollary 3 follows from Theorem 1.

Further, as consequence of Corollaries 1 and 2 we have the following corollaries.

Corollary 4. Assume that the hypotheses (H}), (H5) are satisfied. If
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2D-An-nA" =Y (B +C)-2nE | > 0
i=1

A

min

forall 0 <n £ H, then the system (15) is absolutely exponentially stable with
respect to the class PLI.

Corollary 5. Assume that the hypotheses (H}), (H5) are satisfied. If A + AT <
<0 and

xmin

2D - (A-Dn-nA” —D)—2nE—i((1—oc;‘)E- +(1-0)C)| >0
i=1

for all 0 <m < H, then the system (15) is absolutely exponentially stable with
respect to the class PLI.

5. Conclusions. In this paper, the general neural networks with variable and
unbounded time delays have been studied. We introduce two new important

assumptions (Hs ), (Hy) to ensure the global exponential stability of the systems. The

results obtained in this paper are new and completely different from that given in [3, 6
— 8]. Comparing with [2], the results in this article improve and extend those results of
[2] in many aspects. Here, the Lyapunov functional is a scale function. It shows that
we can use scale Lyapunov functionals to study CNNs with variable and unbounded
delays (see [7] for a criticism this method).
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