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DISTRIBUTED ORDER CALCULUS:
AN OPERATOR-THEORETIC INTERPRETATION *

YUCJIEHHA PO3NOAIVIEHOI'O ITIOPAIKY:
TEOPETHUKO-OITEPATOPHA IHTEPIIPETAIIIA

Within the Bochner — Phillips functional calculus and the Hirsch functional calculus, we describe the
operators of distributed order differentiation and integration as functions of the classical differentiation
and integration operators, respectively.

Y Mexax (yHKIIOHaJIbHUX uucieHb Boxnepa — ®iyutinca Ta Xipina HaBe/IEHO OMKC ONEPaTOPiB
nudepeHIiioBaHHs Ta IHTerpyBaHHs PO3IMO/I/IEHOT O MOPAAKY K (PYHKIIiH Bi/l KJTACHUHUX ONEPaTOpPiB
nudpepeHIitoBaHHS Ta IHTerpyBaHH.

1. Introduction and preliminaries. In the distributed order calculus [1], used in phy-
sics for modeling ultraslow diffusion and relaxation phenomena, we consider deriva-
tives and integrals of distributed order. The definitions are as follows.

Let pu be a continuous non-negative function on [0, 1]. The distributed order de-
rivative D™ of weight p for a function @ on [0, 77 is

1
DW )1 = [ (D) ®mue)do (1)
0

where D' is the Caputo — Dzhrbashyan regularized fractional derivative of order o,
that is

t
(o) _ 1 i v o
(DY) () = T dt-([(t ) %e(t)dt — £ %90)], 0<t<T. (2
Denote
-
k(s) = jr(l_a)u(oc)doc, s> 0. 3)

0

It is obvious that k is a positive decreasing function. The definition (1), (2) can be
rewritten as

t
@Y1 = < [kt -Dp@dt - koo, 4)
0

The right-hand side of (4) makes sense for a continuous function ¢, for which the de-
o d (! .
rivative EJO k(t—1)o(T)dT exists.
If a function @ is absolutely continuous, then

1
DY) = [kit-D¢(T)dt. (5)
0
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Below we always assume that ueC3[O, 1], u(l) # 0, and either n(0) # 0, or
w(o) ~aa’, a, v >0, as oo — 0. Under these assumptions (see [1]),
k(s) ~ s~ (logs)2p(l),
s — 0,
K (s) ~ = s 2(logs) p(D),
sothat ke L;(0,T) and k does not belong toany L,, p > 1. We cannot differenti-

ate under the integral in (4), since &’ has a non-integrable singularity.
It is instructive to give also the asymptotics of the Laplace transform

K(z) = J‘k(s)e_mds.
0
Using (4) we find that

1
K(2) = [* e da,
0

so that X (z) can be extended analytically to an analytic functionon C\R_, R_ =
= {zeC:Imz =0, Rez £ 0}. If zeC\R_, |z|] = o, then [1]

x(2) = 2L 1 0((0glz)2): ©)
logz

see [1] for further properties of X .
The distributed order integral I™ is defined as the convolution operator

t
@)@ = [x@-s)fds, 0<t<T, (7)
0
where ¥ (#) is the inverse Laplace transform of the function z 1 ,
2K (2)
Ve oy
cpy=2 L 1< 1L 40 yso @®)

dt 2mi Y_l,m7 2K (2)

It was proved in [1] that k€ C™(0,>) and K is completely monotone; for small
values of #,

1

K (1) < Clog%, K] < Ct_llog;. )

If feL(0,T), then DWIW 5 = .
The aim of this paper is to clarify the operator-theoretic meaning of the above con-
structions. It is well known that fractional derivatives and integrals can be interpreted

as fractional powers of the differentiation and integration operators in various Banach
spaces; see, for example, [2 —5].
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Let A be the differential operator Au = —% in L,(0,7), 1 <p < oo, withthe
X

boundary condition u(0) = 0. Its domain D (A) consists of absolutely continuous
functions ueL,0,7), such that #(0) = 0 and u'e L,0,7). We show that on
D (A) the distributed order differentiation coincides with the function L (—A) of the

operator —A, where L (z) = zX(z), and the function of an operator is understood in
the sense of the Bochner — Phillips functional calculus (see [6 — 8]).

Moreover, if p = 2 then the distributed order integration operator ™ equals
N(J), where N(x) = L%’ J is the integration operator, (Ju)(t) = J.(;u(‘t)d‘c. This
X

result is obtained within Hirsch’s functional calculus [9, 10] giving more detailed re-
sults for a more narrow class of functions. As by-products, we obtain an estimate of
the semigroup generated by — L (—A), and an expression for the resolvent of the

operator 1.
2. Functions of the differentiation operator. The semigroup U, of operators on
the Banach space X = L,(0,T) generated by the operator A has the form

flx—1), f 0<t<x<T,
0, if 0<x<t,

W, N = {

x€(0,7), t 2 0. This follows from the easily verified formula for the resolvent
R(AA) = (A-AI)™" of the operator A :

X
(RO A)u)(x) = = [e X uy)dy: (10)
0
see [11] for a similar reasoning for operators on L,(0,0). The semigroup U, is nil-
potent, U, = 0 for ¢ > T; compare Sect. 19.4 in [12]. It follows from the expression
(10) and the Young inequality that |R(A, A)|| < X', A > 0, so that U, isa Cy-se-
migroup of contractions.

In the Bochner — Phillips functional calculus, for the operator A, as a generator of a
contraction semigroup, and any function f of the form

fx) = j(l—e_’x)(s(dt) +a+bx, ab2=20, 11
0
where G is a measure on (0, ), such that

1 s(dt) < oo,
1+1¢

S — 3

the subordinate C,-semigroup U,f is defined by the Bochner integral
Ul = j (U,u) 6, (ds)
0

where the measures o, are defined by their Laplace transforms,
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je_‘vxc,(ds) = ¢ W,
0

The class B of functions (11) coincides with the class of Bernstein functions, that
is functions f € C[0, %) (1 C™(0, o), for which f’ is completely monotone. Below
we show that L € B.

The generator A” of the semigroup U,f is identified with — f(—A). On the do-
main D(A),

Ay =~ au + bAu + j(U,u—u)cs(dz), ue D(A). (12)
0

Theorem 1. (i) If u e D(A), then AXu = - D™y,

(i1) The semigroup UtL decays at infinity faster than any exponential function:
HU,L H < Ce " forany r>0. (13)

The operator AL has no spectrum.
(iii) The resolvent R(\,—AY) of the operator — A~ has the form

(RO, —AS)u)(x) = jrk(x—s)u(s)ds, ue X, (14)
0

where
1d
rk(s) = X%u)\’(S)’ (15)
and u, is the solution of the Cauchy problem
DWu, = Mgy,  w,(0) = 1. (16)

(iv) The inverse (—AL )71 coincides with the distributed order integration ope-
rator TV,
(v) The resolvent of 1™ has the form

a® -anu = - %u - %m*u, A # 0. 17
Proof. Let o(dt) = —k'(t)dt. By (3),
1 —o—1
ot
K@) = - dot,
O] £ r—oM@de

so that
7 [om@ 7
jLo(dz) - jMdaj’—c(dz).
11 JT-a) ) 1+1

Using the integral formula 2.2.5.25 from [13] we find that

1
Lcs(dt) = nj%doc < oo,
1+1¢ 0 (sinom)T'(1 - o)

O — 3
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Let us compute the function (11) with @ = b = 0. We have

fx) = - j(l —e ™K (Hdt = xje"xk(t)dt = xK(x) = L(x).

0 0

The corresponding expression (12) for ALu, ue D(A), is as follows:

(A% 1) (@) = - (W) - u@lK (t)dr =
0

=_ j[u(x — 1) —u()]K @) dt + u(x) j K(@dt =
0 X

X

= — k(x)u(x) — j[u(x — 1) —u(x) K (t)dt.

0

By (4), we find that AZu =~ DWWy, ue D(A).
The function £ (z) is holomorphic for Re z > 0. We will need a detailed infor-
mation (refining (6)) on the behavior of Re L (6 +it), 6, Te R, ¢ > 0, when |1| —

— o. We have

1
ReL(oc+it) = J.(p((x, G, T) (o) dou
0

where

o0, 0,7) = (6% +12)*? cos(oc arctan 1).
o

We check directly that @(c, 6,0) = 6%,

20(0, G, T _
90(@.6.7) _ 0c(c52+‘l72)°‘/2 Ucos[ ovarctan X || 1 — otan| o arctan * || > 0,
ot c c
99(a, 0, T)
T
(which is even in T) is strictly monotone increasing in T for T > 0. Its minimal va-
lue is

and > 0 for oo < 1. This means that the function g5(T) = ReL (0 +1iT)

1
26(0) = [ 6”p(o)dor.

0
On the other hand,
1 21:/2 2
ReL(c+iT) = '[(02 +12)*2 cos%u(a}da = = j (c? +*c2)’/"u(—t)costdt =
T T
0 0

21:/2 2 2 /2 2
= ,J' e"’u(—t)costdt = feqn/zj equu(l—fs)sinsds
U T T T

where g = llog(cs2 + 172). By Watson’s asymptotic lemma (see [14]), since W (1) #
1

# 0, we have
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/2 >
J e_qs},t(l—fs)sinsds ~ Cq?
0 T

where C does not depend on &, T. Roughening the estimate a little we find that

oIReL(o+iT) o Ce—tp\r\”z’E (18)

where 0 < € < 1/2 can be taken arbitrarily, and the positive constants C and p do
not depend on ¢ and 7.

It follows from (18) (see [15]) that for each ¢t > O the function x > ¢ is
represented by an absolutely convergent Laplace integral. This means that the measure
0,(ds) has a density m (t,s) with respect to the Lebesgue measure. Moreover,

—tL(x)

Y+tioo

m(t,s) = —— [ere @z, y>o. (19)
2w Y
Y—ieo
Since U, = 0 for t > T, we have
T
Ulu = [Uuym, s)ds. (20)
0

The representation (19) yields the expression

oo

s . ,
e —
(f, S) | ez‘re tL (y+it) Y‘C,
0

1
L(y+iT) = j(y+i1)°‘u(oc)doc, 0< 1T <oo.
0
We have

YR
|m(t, s)| < e—I TPy,
T
0
The above monotonicity property of g, makes it possible to apply to the last in-
tegral the Laplace asymptotic method [14]. We obtain that, for large values of ¢,

_ -1, (0
\m(t,5)| < Crle®e 5O

Changing v and C we can make the coefficient g,(0) arbitrarily big. By (20), this

leads to the estimate (13).
Due to (13), the resolvent

T
R(LAY) = ~[eMufar, Q1)
0
is an entire function, so that A has no spectrum.
It follows from (21) that

T
R\ —A") = [MUE ar,
0

and if ue X, ReA < 0, then
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(R(k,—AL)u)(x) = jek’dtju(x—s)m(t,s)ds = jrx(x—s)u(s)ds
0 0 0
where

oo

n(s) = emm(t, s)dt. (22)
0

For a fixed ®we(1/2,1), let us deform the contour of integration in (19) from the
vertical line to the contour S, , consisting of the arc

T,o = {zeC:z| =7, largz| € o7},

and two rays
D?fm = {zeC:largz| = tom, [z| =7}

The contour S, , is oriented in the direction of growth of argz. By Jordan’s
lemma,
m(t,s) = L '[e”e_tL(Z)dz.
2mi S

Y,®
Under this integral, we may integrate in ¢, as required in (22). We find that

s

5 (s) = Zim j L(iﬁdz, s >0 (23)
S0
(for Re A > 0, v should be taken big enough).
If A = 0, the right-hand side of (23) coincides with that of (8) (see also the
formula (3.4) in [1], and we prove that (—A*)™! = W,
For A # 0, we rewrite (23) as

1 zs L(Z) 1 zs
ns) = — e dz — e“dz. 24
) 2mik j L(@)-A 2Mik J @
S“{sw Sy,m

For 0 < 5 < T, we have

Iezsdz = — lim J.ezsdz,
R— o
[z|=R

on<|argz|<m

S.

V.0

T
je“dz < 2Rje“°°“"d<p < 2Rm(l - w)efeosor

|z|=R [y
on<|argz|<m

as R — oo,
Thus, the second integral in (24) equals zero, and it remains to compare (24) with
the formula (2.15) of [1] giving an integral representation of the function u; .

The formula (17) follows from (15) and the general connection between the resol-
vents of an operator and its inverse ([11], Chapter 3, formula (6.18)).

The theorem is proved.

Note that the expression (17) for the resolvent of a distributed order integration
operator is quite similar to the Hille — Tamarkin formula for the resolvent of a
fractional integration operator (see [12], Sect. 23.16). In our case, the function u; is a
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counterpart of the function z > Ea(lz(x) (for the order o case). However, in our
situation no analog of the entire function E, (the Mittag-Leffler function) has been
identified so far. Accordingly, our proof of (17) is different from the reasoning in [12].
3. Functions of the integration operator. In this section we assume that p = 2.
Hirsch’s functional calsulus deals with the class & of functions which are conti-
nuous on C\(—eo, 0), holomorphic on C\ (-0, 0], transform the upper half-plane

into itself, and transform the semi-axis (0, ) into itself. The class X is a subclass
of B.
Another important class of functions is the class .S of Stieltjes functions

@ = ax [BB e o\w 0,
OZ+

a0 _ .

where a > 0, p is a non-decreasing right-continuous function, such that j 1
+1

0
If f is a nonzero function from .S, then the function

|
1@ =50

also belongs to S.
If fe S, then the function H/(z) = f @Y belongs to R . It has the form

a2 o
Hy(z) = a+.([l+xzdp(k), z€ C\(=oo,0].

For some classes of linear operators V, the function Hy(V) is defined as a closure
of the operator

Wx = ax + '[V(I+XV)_1xdp(7»), xe D (V).
0

In particular, this definition makes sense if — V' is a generator of a contraction Cj-
semigroup, and in this case the above construction is equivalent to the Bochner — Phil-

lips functional calculus [3, 16]. In addition, by Theorem 2 of [9], if (- V)_1 is also a
generator of a contraction Cj-semigroup, then

[, = H (). (25)

In order to apply the above theory to our situation, note that [9]

oo

% = I [—=x%an, 0<o<l,
T(e)T(1-0)y 1+Az
whence
L(z) = J1+sz B(L)dA
0
where
1 _
_ ()
PO = -([F(oc)l“(l—oc)
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Thus L(z) = H(z), with

=

S
f(z) = £Z+Kﬁ(k)dk.

It follows from Watson’s lemma [14] that B(A) £ C(log M2 for large values of A.
Therefore

b

Denote A (z) = H];(Z) = .

L(2)
If V=—A, then (V)" = —J, where J is the integration operator. It is easy to

check that {(J +J")u,u) >0 ({-,-) is the inner product in L,(0,T)). Therefore —J
is a generator of a contraction semigroup.

After these preparations, the equality (25) implies the following result.

Theorem 2. The operator I of distributed order integration and the integra-

tion operator J are connected by the relation

10.

11.
12.

14.
15.

16.

™ = AN(J).
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