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NONISOSPECTRAL FLOWS ON SEMIINFINITE
UNITARY BLOCK JACOBI MATRICES

HEI3OCIIEKTPAJIBHI IIOTOKH
HA HAINIBHECKIHYEHHUX YHITAPHUX
BJIOYHHUX AKOBIEBUX MATPHULIAX

It is proved that if the spectrum and spectral measure of a unitary operator generated by a semiinfinite

block Jacobi matrix J(t) vary appropriately, then the corresponding operator J(t) satisfies the generalized
Ld —

Lax equation J(t) = ®(J(t),t) + [J(t), A(J(t),t)], where ®(\,t) is a polynomial in A and A with

t-dependent coefficients and A(J(¢),t) = Q+ 1+ 5‘1! is a skew-symmetric matrix.

The operator J () is analyzed in the space C®C2 G C2 @ .. .. It is mapped into the unitary operator
of multiplication L(t) in the isomorphic space L?(T,dp), where T = {z: |z| = 1}. This fact enables
one to construct an efficient algorithm for solving the block lattice of differential equations generated
by the Lax equation. A procedure that allows one to solve the corresponding Cauchy problem by the
Inverse-Spectral-Problem method is presented.

The article contains examples of block difference-differential lattices and the corresponding flows that
are analogues of the Toda and van Moerbeke lattices (from self-adjoint case on R) and some notes about
applying this technique for Schur flow (unitary case on T and OPUC theory).

JloBezieHO, IO y BHUIAAKY, KOIM CIEKTP Ta CIEKTpalbHa Mipa YHITapHOTO OHepaTopa, HOPOMKEHOrO
HAaMiBHECKIHYCHHOIO OJIOYHOIO s1K0Oi€BOIO0 Marpuuero J(t), 3MIHIOIOTBCS 3aJaHUM YHUHOM, BiAMOBITHMIT
oneparop J(t) 3am0BONbHSE y3aranbHeHe piBHAHHSA Jlakca j(t) = ®(J(t),t) + [J(t), A(J(1),¢)], ne
®(\,t) € noniHoMoM 1o A Ta A 3 koedinientamu, mwo 3anexars Bin t, i A(J(t),t) = Q+ I + 5\11 —
Tesika KOCOCHMETPHYHA MaTPHIIS.

Oneparop J(t) amanisyetses y npoctopi C @ C2 @ C? @ .... Bin BinobpaxkaeTbcs B yHiTapHUi
oneparop MHoxkeHHs L(t) B isomopduomy npoctopi L2 (T, dp), ne T = {z : |z| = 1}. Ile nae MoxmMBicTh
noOyayBaTy e(peKTUBHHII aIrOPUTM PO3B’sI3yBaHHs OJIOUHOTO JIAHLIOXKKA AU(EepeHLiaTbHUX PIBHSAHB, L0
HOPOIXKyeThCs piBHAHHAM Jlakca. Y cTaTTi HaBeJEHO IPOLELYPY, L0 H03BOJISLE PO3B’I3YBaTH BiAOBIIHY
3agaqy Komri MeToqom oO0epHEHO1 CrieKTpaibHOl 3a1adi.

PosrsinyTo npukitanu 6;104HUX JUEepPEHIiaNbHO-PI3HULICBUX JAHIIOKKIB Ta BIAMOBIHUX M OTOKIB,
IO € aHaJoraMH JNaHIIoKKIB Tonu Ta Ban Mepbeka (y caMOCIpsDKEHOMY BHIAJKY Ha R), a Takox JesKi
3ayBayKEHHs CTOCOBHO 3aCTOCYBaHHs L€l TexHiku 10 notoky llypa (ynitapuuii Bunagox Ha T ta OPUC
Teopis).

1. Introduction. This article is the next logical step in developing the theory of
difference-differential lattices of equations generated by various forms of Lax equati-
on j(t) = O(J(t),t) + [J(t), A(J(¢),t)] of the following type. It is required that
J(t): 15 — 15 can be mapped into the operator L(¢) of multiplication by independent
variable in separable Hilbert space L2(C,dp). Probability measure dp has an infinite
compact support and is defined on the Borelean o-algebra 2(C). In the whole arti-
cle it is assumed that all operators are bounded. These restrictions define the class of
difference-differential lattices of equations that can be integrated by the method presented
here.

This work is based on numerous results by Yu. Berezansky, N. Dudkin, M. Shmoish,
L. Golinskii. And it became possible because of advance in OPUC theory (see related
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article by M. J. Cantero, L. Moral, L. Veldzquez [1] and Simon’s works [2-4]) and
CMV matrices theory (see [5, 6]).

In [7-9] Yu. M. Berezansky developed an approach to Cauchy problem for Toda
lattice on semiaxis and other similar difference-differential lattices. The author used
a number of results from spectral theory of classical Jacobi matrices. The main idea
in these works is as follows. Solution u(t), t € [0,00), was attached in a very si-
mple manner to a bounded self-adjoint Jacobi matrix .J(t). At some restrictions for
initial difference-differential lattice the evolution of spectral measure dp(\;t) of the
corresponding operator J (t) could be found for initial spectral measure dp(A; 0) of any
pre-given J(0) that corresponds to initial condition u(0). Measure dp(\;0) was built
using Direct-Spectral-Problem. Final result «(t) was obtained as the set of entries J(t)
that was reconstructed from dp(\; t) using Inverse-Spectral-Problem for ordinary Jacobi
matrices.

Later in [10-13] this method was extended for nonisospectral equations. In this
case the spectrum of J(t) varies with time ¢ (in the case of Toda lattice the spectrum
is always the same — this is isospectral lattice). And in [14] the case of unbounded
selfadjoint J(t) was investigated.

In all previously mentioned articles J(t) was a self-adjoint operator in ordinary £5.
So the support of its spectral measure (spectrum o(J(t))) always laid on R. Currently
considerable attention is paid to the theory of Orthogonal Polynomials on the Unit Circle
(OPUC) mostly because of the influence of Simon’s books (see. [2, 3]). These polynomi-
als are connected with five-diagonal operators in ordinary /5 (instead of three-diagonal
ones in self-adjoint case, see [1]). At the assumption that J(¢) is unitary operator one can
build the analogous theory of difference-differential lattices with o(J(¢)) concentrated
on the unit circle T = {z € C: |z| = 1}. First results in this direction were obtained by
L. Golinskii in [15]. Toda lattice is replaced with Schur flow here.

In mentioned above articles all operators were considered in ordinary £, = C'@C' @
@ .... Recently Yu. Berezansky and M. Dudkin noticed that five-diagonal matrices
in OPUC can be concidered as ordinary three-diagonal block Jacobi matrices (see
[16]). Moreover this structure is absolutely natural (and arises in much simpler way as
essential construction) from slightly more general point of view (see [17]). J(¢) must be
considered as Jacobi matrix in I, = C! ¢ C2 & C3® @ ... if it is
normal operator. In particular it can be unitary. In this case it should be considered in
subspace 15, = C'@C?® C%2@ ... Cly. Then one has Jacobi matrix for which it is
possible to apply a wide range of ideas developed in the last 150 years for ordinary
Jacobi matrices. The origins of this fruitful idea can be found in Mark Krein’s
article [18].

The main aim of this article is to show that the described above approach gives
results that are fully compatible with already obtained results (see [2, 3, 1, 15]). We
restrict ourselves with the unitary case. However most of the results can be formally
copied for more general case of normal J(¢) (because all the proofs have algebraic
taste and does not depend on space structure). Now we are about to give a mechanism
of solving quite general lattice of block difference-differential equations and show that
already known results can be easily obtained as particular samples.

It is worth stressing that the described approach (use of block three-diagonal Jacobi
matrices in block spaces) allows to obtain in simple algebraic way a wide range of
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well-known and completely new results which otherwise (if considered in ordinary /)
would be technically complicated. This method reveals algebraic structure of spaces and
operators and in particular gives the hope to make OPUC much simpler. A series of
articles is planned by the author on this subject in the nearest future.

2. Common notes. We shall start with definitions of the main objects that are used
in this article: spaces, equations and operators. In the next section we shall formulate
the main result. Last sections are devoted to the explanation why the result is as it is
shown here and why is it convenient just in this form. All the proofs are contained in
Section 4.

The article is synchronized with [11]. So it is very simple to compare old and new
results if one has the two articles at hand simultaneously. Remind that one of the goals of
this work is to show that the corresponding well-known results (see [11, 1, 15]) naturally
embed into the new theory and are really simple here. Thus the article is organized in
such a way that the comparison of new and old results is as convenient as possible. The
last section will contain samples that show how one can construct the embedding of
theories.

Consider three-diagonal block Jacobi matrix

J(t) = M

in the space
lb=HodHi1®HaB ..., Ho=C, H,=C? n>1. ()

1, is Hilbert space with natural scalar product: for f, g € lo with coordinates in the

standard orthonormal basis
0 0
=11 ..
o= (1(0)(0) )
0 0 1 0
€n,1 = 07(())77(0)7(0)7(0) } (3)

n

(0000

n

the norm and scalar product are defined as follows:

||f||122 = Z an”g-tnv (f,9h, = Z(fVL?gn)Hn'
n=0 n=0

Here [|full%,, = Ifallze = 1fadl® + | fn2l?,
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(fnagn)Hn = (fn>gn)(C2 = fn,l QT,1+ .fn,2 QT,Q

Let J in standard orthonormal basis have the following view:

bo22 | co:21  Coj22
ap;12 | brin bie 0 0
0 |bi21 bi22 | c121 c122
J(t) = ayir araz | baar baaz | 0 0 4)
0 0 | ba21 booa | c221 €222
a1 a2 | bzi1 bzie | O 0
0 0 | b321 bspo2 | 321 c3:22

All the entries are assumed to be continuously differentiable functions on the interval
[0, T]. Matrix J(t) generates the corresponding operator J(¢). The next step we need
is to apply [16] (Theorem 2). So we make assumptions for the entries of J(¢) that
are described in this theorem. Assume that J(¢) is unitary operator (in particular, it
is bounded, defined on the whole 1y and operators a,(t), b, (t), c,(t) are uniformly
bounded). Additionally we assume that the entries of J(¢) have the following properties
(see [16], formula (42)):
ap;12 >0, ay;11 >0,

az;11 >0, as11>0,...,

)

Co:22 > 0, C1;22 > 0, C2;22 > 0, C3;22 > 0,....

Now it is necessary to cite [16] (Lemma 5).

Denote by lg, the linear subset of finite vectors in 15 (i.e., vectors that have only
finite number of non-zero coordinates) and by 1 denote the corresponding conjugate
space.

Lemma 1. Let p(2) = (on(2))220, ¢n(z) € Hn, z € T, be a fixed solution from
15, of the following system with boundary condition ¢o(z) = ¢o € C:

(Jo(2))n = an-10n-1(2) + bnon(2) + cnpni1(2) = 2n(2),

(JF(2)n = ch10n-1(2) + b5,0n(2) + a70n11(2) = Zn(2), (6)
n €Ny, ¢_1(z)=0.

Then this solution exists for all @y and has the form for all n € N

Qon(z> = Qn(z)@o = (Qn;l(z)a Qn;2(2))T9007

where Q.1 and Q2 are polynomials in z and z of the following form:
Qn;l(z) = ln;lzn + qn;1(Z),

Qn;Q(Z) = ln;QZn + Qn;Q(Z)'

Here lp;1 > 0, o > 0, Qo(z) = 1 and ¢n.1(2), qn.2(%) are linear combinations of 1,
2,2y, 2" 2 for gua(2) and 1, 2, Z, .., 2T 2L T for gual(2).
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This lemma will be very important for us a bit later: this is conceptual point that
glues difference-differential lattices of equations with spectral theory technique. Now
we follow [16] (Theorem 2). Take any complex number ¢y € C and build the solution
©(2) = (pn(2))5, ©n(2) € Hy,, of equations (6) using Lemma 1 [16] (Theorem 2)
says that the mapping

Tl Dlgn —  LA(T,dp(2)),

f = (fn)%ozo — .fO + Z (Qn;l('z)fn;l + Qn;Q(Z)fn;Q)

n=1

after closure by continuity is unitary mapping between 1y and L?(T,dp(z)). Here p is
probability spectral measure of J. Moreover the following Parseval equality takes place:
Vf, 9 € lan

(f. 9 = / i) 3@p(). (T, = / 2 f(2) - 5@)dp(2).
T

Explicit substitution of the elements of standard orthonormal basis (3) reveals that
Fourier transform maps them to Q.o (%), n € N, o = 1,2 and Qo o(z) = 1. The last
statement of [16] (Theorem 2) claims that Q.o (2), n € N, @ = 1,2 and Qg o(2) =1
constitute orthonormal basis of L?(T, dp). Thus we can jump to two conclusions: first
under Fourier transform operator J maps to operator L of multiplication by independent
variable in L*(T, dp):

12 —_— 12

Al JA

LQ(Ta dp) T) L2(T7 dp)

and second: matrices of J (in standard orthonormal basis) and L (in Q. (2), n € N,
a = 1,2 and Qo,o(z) = 1) coincide: they both are equal to J. Second conclusion is
of great importance for us. It says that there will be no need to make any changes
to the coefficients of difference-differential equations while passing from initial task
formulation (that is being performed in 1) to the space L?(T, dp) where it can be solved
by using the explicit sense of L (see first conclusion).

Mentioned above [16] (Theorem 2) solves the Direct-Spectral-Problem. The corollary
of [16] (Theorem 2) (see the same page: corollary is unnumbered) solves Inverse-
Spectral-Problem. It says that if we apply [16] (Theorem 1) to measure dp then we
reconstruct the original matrix J.

Lemma 1 ([16], Lemma 5) gives an interesting result (see remarks in the proof of ISP
mentioned above in [16], Theorems 1, 2). Polynomials Q.o (z),n € N,a = 1,2 and
Q0,0(z) = 1 can be constructed in the same manner as orthonormal basis was built in
the same situation in [1]. This is particular case of more common construction (see [17])
and that’s the way how [16] (Theorem 1) is being proved. We give only the necessary
brief sketch of this construction.
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Denote by 2 the set of probability Borel measures on the unit circle T with infinite
support. Take a measure p € 9. Functions

, 2=, oz, ZF=—, .. @)

are linearly independent in the space L?(T, dp). Denote moments of p by
t, = /z”dp(z), n € Z. 8)
T

By using standard Gramm — Schmidt orthogonalization procedure construct the followi-
ng orthonormal basis of the space L?(T, dp):

2= (2, Py(2))2Po(z) _ © /T zdp(2)

P S LG R eRGI, R T o
1 1 1
; — <Z,P0(Z)>L2PQ(Z) — (27P1’1(2)>L2P171(Z)

Pra(z) = 11 - O

L (;Po(z))LzPo(z) — <i’P1’1(Z))L2PLl(Z)

z

12
= k1,2§ + (= totkio + K kraty (t—o —Tit—1)) — kT k12 (t—o — Fit—1) 2
Poi(z) =kn1z"+..., kn1>0,

Poo(z) =knoz " +..., kpa2>0.

The fact is that in this way we actually obtain basis elements m, neN a=1,2,

and Qo (z) = 1. According to [16] (proof of Corollary from Theorem 2) the following
equality holds:

Qo(2) =1 = Po(z), Qni1(2) = P (2), Qn;2(2) = Ppia(2).

It is worth noting that Py, P,.., n € Ny, a = 1,2, are the same polynomials as x,,,
n € Ny, in [3, p. 442].
Finally from (6) we have the following system of equations:

Un—1Pn—1(2) + b Pp(2) + ¢n Pry1(2) = 2Py (2),
(10)

Cho1Pn—1(2) + 07, Pu(2) + a5, Py (2) = 2P (2).

In coordinate form it has the following view:

Gn_111 Gn_112 \[Pr-11 bni11 by 12>(Pn,1>
' ’ + (gt O +
< 0 0 ><Pn_1,2> <bn,21 bn,22 Pn,2
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+ 0 0 c Pn+1,1 -3 Pn,l
22 =
Cn 21 "\ P12 P,2)’
0 Cn—1,21 Pnfl,l bn,n bn,21 Pn,l
0 + +
Cn—-1,22 )\ P12 bn,12  bno2 P2
a 0\/P, P,
+ n,11 n+tl,1) P n,1 )
an12 O0J\Ppi12 P2

This result will play significant role for us. It gives explicit formulae for entries of

multiplication operators by z (operator L) and by z = 1 (operator L* = L~1). Itis
worth noting that these equations are equivalent to Szegd recursion (this question is not
considered in this article). For now it is sufficient to note that described above ideas
give the possibility to establish a connection with OPUC theory. To make the first step
towards OPUC it is necessary to rewrite entries of .J in terms of Verblunsky coefficients
using [1].

The last remark touches the block structure of the spaces and operators used in this
article. Space 1, is built as block space from the most start. Its image under Fourier
transform L?(T;dp) does not have any block structure. To be accurate it is necessary to
show the image of each cell of 15. This can be done fairly easily.

Introduce the spaces Py = span{1} = C, P, ; = span {1,z,%,...,2(~1 z=(n=1),
2"}, Ppo=span{l,z,z,...,2(071) z=(=1D »n 2=} Tt is obvious by construction
of elements of orthonormal basis that

Poi={P} @ {Pi1}®{Pi2}®.. ®{Pr11} S {Pr12} B {Pn1},
(11)
Pn,Q - Pn,l 2 {P",Q}'

It is quite natural to combine pairs of one-dimensional subspaces in (11). Unite each
Pn’l(z))

Pn,2 (Z) .

Denote P(z) = (Pn(z))zozo. Final answer is as follows:

pair P, 1, P, 2 and construct the vector P, (z) = (

oo

o> f = (fu)nzo = f(2) = Y (fas Pa(2))n, € L*(T,dp).

n=0

3. Main result. Now let us pass to the central result of the article. Consider the
following polynomials in A:

l
D) =Y @i (N, @i(t) €Clhoycs AET, (12)
j=-1
T = > (N, (1) € Clhayey AET. (13)
j=—m

. . 0 .
Denote by D — differential operator Y and consider operators:
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E=-Q-Q -,

1_ - — —_ =
570,101 | S0,1;1,1 =0,151,2 | =0,1;2,1 =0,1;2,2
1_ — — =
0 5=LLLL SLLL2 | =112 =1,1;2,2
1_ - -
I= 0 551212 | Sizen Hiaao (14)
1_ =
0 0 0 -Z21:21  S2,1;2,2
2 1
0 0 0 0 —Ho 0.
9=2,22,2
Consider the following differential equation:
d 1
SL(0) = (L(), ) + |L(0),0+ T+ 9], (15)

Here [A, B] = AB — BA. This Lax equation is equivalent to the following differential-
difference chain of equations in matrix-variables a,,, b,, ¢, :

an(t) = (an . Qn,n + bn+1 : Qn+1,n)+

O* Ak A*
+(Qn—l,n+1 “Cp—1+ Qn,n-i—l : bn + Qn-Q—l,n-i—l . Cln)+

1_ -
izn,l;n,l =n,lin,2
+ Qp * 1 +
0 §:n,2;n,2

=% . =% . =k . —
+ (_‘nfl,n+1 Cn—1 + —n,n+1 bn + —n+1,n+1 an)
1 (Ent+1,1m+1,1 0
— cQp +
2 0 = .
—n+1,2;n+1,2

+ (a/n : lIln,n + bn-‘,—l : \I/n+1,n) + ¢)n+1,n7
bn(t) = (an—l : Qn—l,n + bn : Qn,n + Cn * Qn+1,n)+

+(Q:<L—17n *Cp—1 + Q’:,n ‘ bn + Q’TL+1,TL . an)+

~, 7En,1;n,1 En,l;n,2

+ |ap—1- {_Q -0 - qj}n—l,n + bn . 1 =

i 0 5:'71,2;71,2

- 1—‘

. ~ . §~:n,1;n,1 0
+ {*Q -0-v }n—l,n’cn—1+ bn +
En,l;n.Q 7En,2;n,2
L ’ 2
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+(an71 . \Ilnfl,n + bn . \Iln,n + Cn - \Ianrl,n) + (Dn,n7 (16)
é7z(t) = (an—l : Q7L—1,7z+1 + by, - Qn,n+1 +cp - sz+1,n+1)+

HO e+ Qg b+ Qg Gngr) T

+ (anfl ° Enfl,n%»l + bn : En,n+1 + Cp * En+1,n+1)_

1 Hnt1,15m41,1 0
—Ze¢,- _
2 0 Hnt1,2n41,2

1_
§~:n,1;n,1 0
+ “Cp | +

-
—

=n,1n,2 2 n,2;mn,2

+

+ (anfl : \Ilnfl,nJrl + bn : \I,n,nJrl + Cp * lI/n+1,11+1) + ¢n,n+1'

The Cauchy problem for the differential equation (15) can be stated as follows.

Suppose we have bounded unitary block Jacobi matrix Lo with entries a,;11 > 0,
Cn22 > 0. Find L(t), t € [0;T), with continuously differentiable entries such that: L(t)
is a solution of (15) for t € [0, T] where T depends only on initial condition Lo and
functions ®, U (see (12), (13)) and

L(0) = Lo. 7

Here we introduce the following algorithm that solves the described above Cauchy
problem.

Algorithm. Let p(-,0) be the spectral measure of the Jacobi matrix Lg. It is built
using Direct-Spectral-Problem discussed in Section 2. Denote by M = supp p(+,0) C T.
Consider the Cauchy problem

From the standard theory of differential equations it is well known that one can choose
T > 0 such that for every u € M there exists unique solution A(-, ) of the Cauchy
problem (18) defined on the interval [0, T']. We suppose that polynomial ®(\,t) is such
that |\(¢)| = 1 Vt € [0; 7.

For every fixed ¢ € [0, T consider the mapping

wp: M — T,
19)
o At p)

and construct the following measure (mapping step):

ISSN 1027-3190. Ykp. mam. ocypn., 2008, m. 60, Ne 4



530 0. A. MOKHON’KO
PAE) = plw; 1(A),0), A e B(T). (20)

Here w; '(A) is full preimage of the set A under the mapping w;. Let us consider the
following partial differential equation:

9s(\, 1)
(D)

9s(A, t)
ot

P(N 1)+ =T\ t)s(\ t), s(A\,00=1, XxeT, t>0.(21
Let s(\, t) be its nonnegative solution. Build the final measure tranformation (multipli-
cation step):

p(At) = / s\ dp(N L), A € B(T). 22)
A

The last step is to reconstruct L(¢) from its spectral measure p(-,¢),t € [0, T by solving
the Inverse-Spectral-Problem discussed in Section 2. Briefly recall the corresponding
algorithm.

Consider the following family of functions:
1 9 o 1

Z=—, 2° Z=—,.... (23)

1
z 22’

z

) )

Build orthonormal basis Py(z,t), P11(z,t), P12(2,t), Pa1(z,t), Paa(z,t),... of the
space L?(T,dp(-,t)) (using standard Schmidt orthogonalization procedure). L(t) is
operator of multiplication by independent variable in the space L?(T, dp(-,t)). Thus its
entries (that are the desired solution) can be found as:

%mmw:/MMOﬁﬂd%WM%U
T

Theorem 1. A solution of the Cauchy problem (15), (17) exists and can be found
using the described above algorithm.

4. Proof. Here we restrict ourselves with existence theorem only. Uniqueness
theorem can be found in [11]. The aim now is to prove that if we take the described
above measure transformation then operator of multiplication by independent variable
satisfies differential equation (15) with initial condition (17).

Let F(\,t) € CY(T x [0,7] — C) and consider the following function:

16 = [ FO0dp1) = [ PO 04501 =

T T

_ / Flwi(p), t)s(wi(u), t)dp(u, 0) =

w; H(T)

= [ PO 05 1), 0)dp(4.0) 24)

T

Using (18) and (21) obtain the formula for df /dt:
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i OF (At 1), £) OA(E, 1) OF(A(t, ), 1)
a = {( O o T o )S(A“’“%t>+

T

+ (85(/\((;’:“ it 6)‘2;7 M) + 65()‘(;;:”)3”> F(/\(t,,u),t)} dp(pq()) _

.0
A
= [{(ZBGE om0+ R sa g +

+ (W (A, ), t) + W) F(A(t’m’t)} el =

= [{(ZGE e+ A a0 +
T

SO0 ). O, OF e ). )| o 0) =

_/{8F(§i7t) BN t) + 3F((£,t) +\IJ(/\,t)F()\,t)}dp()\,t).
T

Final result:

%/me@mwz
T

= /{8Fa(;7t) CB(N ) + 8F((£,t) + ‘IJ(/\,t)F()\,t)} dp(\,1). 25)
T

The next step is to take left-hand side of (15) and obtain its right-hand side. So it is
d
necessary to compute %Ljva;kﬂ(t).

Let Py(-,t), P11(-,t), Pi2(-,t), ... bethe elements of orthonormal basis of the space
L2(T,dp(-,t)) according to (9). Consider two operators: operator of multiplication and
differentiation operator in L? (T, dp(-,t)):

L(t) : LT, p(-, 1)) — L*(T,p(-1)),

26
fz) — z-f(2), 0

D(t):C>® — L*(T,p(-,t)),
df (2, 1) 27)

fz,t) — o

By applying (25) with F'(\,t) = APy g(\, t)Pj .o (A,t) one can find the expression for
derivative of the coordinate L; o1 3:
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d

%Lma;kﬂ(t) =

- / {;\(Apkﬁ()\ DB D)- 80 0) + o (MPes\ DB 00D ) +

T
FU(N 1) ()\Pk 5O, t)m) }dp()\ DY T Tt . (28)

Simplify each components Ji, J, J3 one-by-one:
J5 = {LOTLI.D} 0y = L0k 5 (29)

Jl = / aa)\ </\Pk ﬁ()\ t)m) (A,t)dp(A,t) _
T

_ / PosOn PO DO, )dp(\, £)+

/ aPkﬁ >\ t JQ(A t) ()\,t)dp()\,t)+

+ [2pes0n PO 0 apa,n -
T

= {20, 1) + LOBLE), D) + D OBLH). LW | =

={®+ L+ QL) (30)

Jrek,B’

Here Q = ®(L(t),t)D(t), Q = ®(L*(t),t)D(t).
We used the following facts:

- X
A1) = Y (N = pi(t)A Zsoy _(I)<xt>'

j=—t j=—1 j=—1

The second fact is that L(t) is unitary operator in L(T,dp(-,t)), so L*(t) = L™(t).
And inverse operator L~1(t) is obviously the operator of multiplication by 1/\:

Jy = /g (APk,g(A,t)Pj,a(m)) dp(\ 1) =
T

OPj o(A 1)

ot dp(\t) =

= /AMPJQ(A )dp(\, t) + /)\Pk_ﬂ(A,t)
T T
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8Pk5 1 8Pja
= A Pop; —22) .

Denote by

I:C* — L3(T,p(-1t)),

df (z,1)
dt

fzt) —

Operator J5 can be represented as:
Jo = (L1Pyp, Pjo) > + (I" LBy, Pjo)p, -
Thus
{J2}jakp = { LI+ I"L}j sk -
Finally we have the following expression:

%L:<I>+LQ+§*L+LI+I*L+L\I/.

533

€2))

(32)

(33)

34

To obtain from this formula (15) it is necessary to express I through €2 and W. We shall
synchronize our notations and proof with the one from [11] (Lemma 2). Note that in
this article operator J is self-adjoint and the main space is ordinary ¢». We shall use
block-matrix ideology in our case to make the reasonings as close to [11] as possible.

Lemma 2 [analogue of [11], Lemma 2]. Denote by:

aPk,g
I sk = (éﬂj;lﬁﬂy> )
L

and = —Q — Q0 — 0.
The following matrix equalities hold:
1) Ik = 0for j > k;
1

iEk,l;m ke, 13k,2 1
2) Ik?;k?: 1 7k>07 10;025
0 iak,2;k,2
3) Ij;k: Ej;}gfol"j < k.

Note that in [11] a = cx, © = ¥, Q* = Q.

20505

. 0P . .
Proof. Since 812’5 € Py it is obvious that

Iiarp=0 for 7>k and for j=k a=2, g=1.

(35)

(36)

All the other cases must be examined in the following specific way. We shall

differentiate the equality
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[ PP Bdo01) = g
T

To do this we use formula (25) where F'(\,t) = Py g(A, 1) Pj.a(A t):

0= 5 [ PLaOn 0P aOndp(00) =
T
-/ {ai (P OPT) - 00 + 37 (Proh 075000 +
T
00) (o500 i) -

8 -
- / B0 1) - Ps B O Didp(A, ) +

T
0
+/<I>()\,t)P;.c?g()\,t)ﬁPLa()\,t)dp()\,t) +
T

ot

7] _— 0
+ / &Pk,ﬁ(>Ht)Pj,a(/\at)dp(/\at) +/Pk,ﬂ()Ht)in,oc()\vt)dp()‘vt) +
T T

+ [ BRI PAT TP 1) =
T

={®(Lt),)DM)}, (s T {PL* (1), )D(B) ], 4 o

+ Lk, + Ingja + {OLE, )} 0 o
Thus the following equality takes place:

Ij’a;kﬁ + Ikﬁ;j,a =

= —|{@(L#), ) D) }jak,p + {P(L* (), ) D) }r,8:5,0 + LV (L(E), 1) },ask, | -

Thus we have
[+ =-Q-Q"— V. (37)
Ifj<kor(j=k 8=2 a=1)then Iy g, = 0 and we obtain
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Lok, = — ({2(L(1), 1) D(t) }5,a5k,6 F{P(L*(£), ) D(8) b, 65,0 H{U(L(E): )}, | -

The last option left is j = k; o = (3. First let us show that [; .o~ € R.
Let « = 1 (option o = 2 is analyzed in the same manner). As we saw in (9)

A . i 0
Pj1 =kj1 A +... where k; 1 > 0. It is obvious that —P; 1(\,t) = coPo+c1,1Pi1+

ot
0
+c12Pio+ ...+ ¢j1P; 1. That's why (&Pj’l(.,t)7 Pj,l(.j)) = ¢;,1. Compare
L2
. ; dk;1(¢) .
coefficients at \’. We have —=——= = ¢; 1(t)k; 1(t). Here k; 1 (t) is real-valued non-zero

dt
function, so ¢; 1(t) is real-valued too. So I ok 8+ Ik gj.0 =2 Ljaks, J =k, a=p.

Finally we obtain the following expression for I o.j.q, j € No, o = 1,2:

Ij»a;j,a -

_ 7% {®(L@),0DW)}, .+ (BT O.0DO}, .+ {WL®,0}, .|

Jrosg,a

Thus we have the following view of I:

1
520,1;0,1 =0,1;1,1 £0,1;1,2 =0,1;2,1 =0,1;2,2
1_ - — -
0 521,1;1,1 =1,151,2 =1,1;2,1 =1,152,2
I= 0 0 iz = = (38)
§~1,2;1,2 =1,2;2,1 =1,2;2,2 :
1 -
0 0 0 752121 E2122
1_
O O O 0 5:2 2;2,2

The lemma is proved.

Actually in this lemma the key role for us has formula (37). It allows us to finish
the proof of (15). The following lemma makes it obvious.

Lemma 3. The following equality takes place:

1
—L(t) = O(L(t),t) + | L(t), Q2+ I + 5\11 . (39)
Proof. Taking into account that A - U(A, %) = U(\,¢) - A\ = LU = UL we obtain

d .
%L:<1>+LQ+Q*L+LI+I*L+L\I':

— (@+LQ+ QL) + (LI+T"L) + (;(L\I/) + ;(\pL)> _

1 ~ 1
:<I>—|—L<Q+I+2\I')—|—<Q*—|—I*+2\I'>L:
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1 A, A, 1
=0+ L Q+[+§\Il +(Q+ (-2 -0Q —\I/—I)+§\I' L=

:<I>+L<Q+I+;\IJ> - <Q+I+;\II)L:<I>+ [L7Q+I+;x1/].

For algebraic purposes this result is the most convenient one. Note that in [11] the
same one-dimensional result was obtained in much more complicated and obscure way.

5. Difference-differential lattices. We follow [11] and give coordinate-wise
interpretation of (15). This section is devoted to the proof of (16). It is important
for numerical applications and also gives the possibility (by choosing appropriate ® and
U) to obtain different matrix flows. This is obviously interesting in comparison with
e.g. Schur flow (see [15]).

The idea is to establish a connection between difference-differential lattices and Lax
equations (this section), Lax equations and spectral measures (previous section), spectral
measures and block Jacobi matrices (see [16, 17]), block Jacobi matrices and OPUC
theory (in particular with Verblunsky coefficients and their flows, Szegd recursion etc.
— see further papers). First we need another lemma.

Lemma 4 [analogue of [11], Lemma 3]. Denote by

OP; o (\ L
%dp()\,t) = (LPW;IPJ,Q) ,

Lo

Ejak,p = /Apk,ﬁ()‘vt)
T

0Py (A, t)

Ejakp = | A5,

T

P (A t)dp(\,t) = <LIPM3; Pj,a)
L2

The following equalities take place:
(@ E;jr=0, Ej,={LE}x j<k—-1

1_
55k-1,15k-1,1 0
(b) Ep—1x= 1 CCh—1,
Sh-11k-12  5Zk-12k-1.2
~ _ 1 Ek,1k,1 0
Eix_1p={L -Z}p-1 — 5Ck=1" _
:k,Q,k,Q
1_
5=k, 1;k,1
'k
©) Err={E"}b—1k k1 +
Sk, 1k,2 -—4k 2:k,2
1_
- iﬂk,l;k,l uk 1;k,2
Epr=ar—1 -Zp—1,5+ b
0 ~k 2k,2
_ 1 [ Ek+1,16+1,1 0
(d) Epy1r={=" Likt1x — 3 - ag,
0 Ekt1,2;k41, 2
1_ —
~ iik,l;k,l =k, 1:k,2
Ept1,r=ayg - 1 ;

0 —Zk,2:k,2
2

(e) E]‘}k: = L}jk, k—O i>k+1.
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Proof. J is the matrix of multiplication operator L. So the following holds:

o= ZP]%l 6Pj71. 8Pj,2 o
ik Zpkg L ot ’ ot o
_ Pr_y 1> - <Pk- 1) _ <Pk+1 1>) <3Pj.1 OP; 2)
= (¢ . ’ + b . ’ +at - ) . = 2 =
( Rl <Pk1 2 o\ Pyo B\ Pry12 ot o
. P._11 (9Pj 1 8PJ 2 N Pr1 an 1 8‘Pj.2
- ) A 1. ; b* . A 1. ;
Ot (Pk._m) L2 ( ot ot ) T Do) Y\ ot o i

var . (Prerra L (9Bia OBz _
A\ Priio ot ot

= Cpo1 -1, 0 - Iy +ag - Tpsr g

Finally we obtain
Ej,k = Il:—l,j “Ckp—1+ Il:,j -by + IZ—&-l,j cap = {I*L}jyk. (40)

In the same manner we obtain the corresponding matrix representation for E; .1 3:

OP, )\t
B oskp = /A d o e 1) =

— /%}E/\”APJQ(/\ t)dp(\ t) = (({W;Vj,a@vw

L
T 2

Thus (the same way as in the previous case)

E* . ZPj,l 8Pk,1'8pk72 .
W \ap,) M\ o o )

_ P4 1) - <Pj 1) _ (Pj+1 1)) (3Pk 1 0Py 2)
—(ayon - () oy () v () 1, 982
( = (PjL? ! Pjo ! Pii12 L ot ot

= i1 Lj—ik +bj Lk +¢j - Tjpag

Final result:
Ej;k =aj-1 'ijl,k + bj . Ij,k + Cj Ij+1’k = {LI}JJc (41)

Formulae (40), (41) allow us to write out the following expressions for Ej i, Ej, ke
@ Ejk=0,Ejp=aj1- L1k +b; - Lig+¢ Liyiw, j <k—1
() Er—1e =15 1 -1 k-1, Ex—1k = ak—2 - Tp—2 +bk—1 - Tp—1k + k-1 Ii ks

(©) Epp =15 15 o1+ Iy bk, Beg = ap—1 - Tp—1k + bk - Lo i3
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(d) By =154 g1 -1+ 5 - be + L gpr - @y Bropre = a - Ly
(e) Ej’k = I;:—l,j “Ck—1 +Il;k,j - by +IZ+1,]' s A, Ej’k =0,7>k+1.

Consider the element Ej 1 j, (here calculations are the most complicated; all other
coefficients are obtained in the same manner):

Bk =I5 1 jp1 - k-1 + I n bk + Lipq g - ak =
* A *
= —(Qk—l,k+1 + Qg1 k41 + ‘I’k—1,k+1) CCr—1—

~ (g1 + Opees1 + U er1) - brt

1 =
9 {_Qk+1,1;k+171 - QZ+1,1;k+1,1 - ‘Dk+1,1;k+171} 0
+ Cag =

= 1
[_Qk+1,1;k+1,2 — k12— ‘1/k+1,1;k+1,2} 5[:k+1,2;k+1,2]

= (—H{Q" - Lyrgrn + Qyq g - ax)+

+(—{§ “L}pt1k + Qk+1,k+1 cag) + (Y Lhegae +Vhig g - ar)+

1 —
3 [_Qk+1,1;k+171 = k1 — ‘I’k+1,1;k+1,1] 0
+ Q.

— 1
[_Qk+1,1;k+1,2 = Lk — \Ijk+1,1;k+1,2} §[Dk+1,2;k+1,2]

Note that

Qpt1,15641,1 Qk+1,2;k+1,1><ak;u amz)

Q;;Jrl,k:Jrl Cap = ( 0 0

Q116412 Qht1.2:k41,2

Qg1 1554+1,1 0 k11 Qk:12
Qrer1,1:6+1,2 Qpt1.2:k41,2 0 0

So we obtain the following result (overline can be stripped because I 4.5, € R):

Epp1 0= —{Q - L+ Q- L+ur “L}pq1e—

1 ({—Qk+171;k+171 =1k — ‘Ifk+1,1;k+1,1] 0 ) "
—_— . k f—
2 0 [Ekt1,2:6+1,2]
[t
o 1 {=k+1,156+1,1 0
={E" L}pt1k — 3 . - ag
0 Sk41,2:k41,2

Compare this result with analogous one-dimensional result contained in [11] (Lemma 3,
formula (d)).

Formula (d) for F; at j > k + 1 is being calculated in the same way (its proof is
part of the proof for Ej1,). Consider the element Ek,l?k :
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Ep apn=ap—2 Ip—op+bp_1-In_1px+cr—1-Ipp=
=ap—2 (2% — ok — Ve2k)+

+bp—1 - (— Qg1 — QZ_M — Wy k)+

1
S=k,1:k,1 Sk, 1k,2
+Cp—1-

—_

k,2:k,2

0 _
2
= (—{LQ} k1o + o1 - Qi) + (*{Lﬁ*}k—l,k + Cp—1 - @Zyk)Jr

H(—{LY} o1k + o1 - Vi) +

1 - ~
3 {—Qk,l;m Qe — ‘Ilk’,l;k,l} [—Qk,l;kQ = ke — \Ilk71§k72:|
+Ck71 : 1 R
0 5 [—Qk,z;k,z — o2 — ‘I’k,z;m]
Analogously
0 0 Qe Qe1ik,2
Cr—1 Qg p = .
cr21 Cri22) \ k281 Qk2ik2
So
Ch—1 Tk +cr—1 Qe+ k1 Qp g + k-1 Vi =
1 .
3 Qe k1 + Qrgr + Ve 0
= Ckg—1" 1 R
I 201 5 | k2ik,2 + Qi o2 + Vi,2ik,2
2 T

From (36) we have I}, 2.,1 = 0, thus
~ _ 1 Ek1ik,1 0
Ey 1, ={L -E}k_1k — 5Ck—1" _ .
0 Ek,2:k,2

The lemma is proved.
Lemma 5 [analogue of [11], step 1]. The non-trivial entries a,, by, ¢, of Jacobi

matrix L(t) satisfy the formulae (16).
Proof. Using Lemma 2 and Lemma 4 it is easy to verify that

an(t) = Lnra(t) = {71(8) + (E() + B(1)) + Ja(D)}ns1,0 =

~ 7En,1;n,l En,l;n,2
={P+ LA+ L} i1+ |an- 1 +
0 §En,2;n,2
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_ 1 (Zn+1,1m41,1 0
:* : L}n+1,n - A *Qp

+
2 0 = .
—n+1,2;n+1,2

+{LY}ns1m =

- q)nJrl,n + (an . Qn,n + bn+1 . Qn+1,n)+

A* A* A*
+( n—1,n+1 " Cn—1 + Qn,nJrl by + Qn+1,n+1 : a’n)+

5:%,1;7@1 Zn,1in,2
+ |an - 1 +
0 5':71,2;71,2

+ (‘—‘nfl,n+1 Cn*1+“n,n+1 bn+‘—‘n+1,n+1 an)

1 [ Znt1,1m+1,1 0
_5 . an
0 Ent1,2n41,2

+(an : \Iln,n + bn+1 : \I/n+1¢n)~

+

Now verify the same for b,,(¢):

ba(t) = Lnnlt) = {110 + (B(t) + E®) + Js(0)} =

n,n

1_ -
~ S=n,1;n,1 Zn,ln,2
={®+LQ+Q Lbnn + @1 Eporn +bn - | 2 ) +
0 §En,2;n,2
1_
_ S=n,1;n,1 0
+ {:*}nfl,n *Cn—1 + + {L\I/}n)n =

—_
—

En,l;n,Z 2 n,2;n,2 ° bn
= {(p}n,n + (anfl ' Qnfl,n + bn ' Qn,n + ¢y - Qn+1,n) +
+ (i ent + Qb+ Dy an) +

izn,l;n,l Zn,1n,2

+ Ap—1 {*Q - ﬁ* - \Ij}n—l,n + bn : +

0 5 =n,2;n,2

2
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541
1
~ ian,l;n,l 0
+ {_Q* -0 - \Il*}n—lm “Cp—1+ . bn +
En71;n,2 §En,2;n,2
1 1
LU+ UL
+ {5peejorl
n,n
= {q)}n,n + (anfl . anl,n + bn ' Qn,n +cp - Qn+1,n)+
(U1 enor + Qb+ Q- an)
~ 7En,1;n,1 En,l;n,Z
+ Ap_1 * {—Q — Q* — \I/}n—l,n + bn . 2 1 +
0 iEn,Z;n,Q
1_
~ izn,l;n,l 0
+ {_Q*_Q_\Ij*}n—l,7n'cn71+ = _ b" +
Zn,ln,2 5:%,2;11,2

1
+ {Q(G/nl . \Ilnflfn + bn . ‘Iln,n +cp - \I/n+17n) +

+

N | =

(\I]n,nfl “Cp—1+ \Ijn,n ' bn + \I]n,nJrl : an)} =

n,n

= {(I)}mn + (bn Qpnt+en- Qn-l-l,n) + (ﬁ;kl—lﬂ’b “Cp—1F ﬁjz,n “bp + Q:H-l,n ’ a")+

1_ _ -
—~ izn,l;n,l S=n,lin,2
*
+ |an—1- {_Q }n—l,n + bn . 1 +
0 §:n,2;n,2
1_
" —~ N i:dn,l;n,l 0
T R S ST b+
Zn,lin,2 izn,Q;n,Z

1 1
+ {2(bn . \Iln,n +cp - \Ijn+1,n) + i(an,nfl “Cp—1+ \Iln,n : bn + \Ijn,nJrl . an)}

The lemma is proved.

Similarly obtain analogous results for ¢, :

en(t) = Lnnr1(t) = {J1(t) + (E(t) + E(t)) + J3(t) b1 =
~ _ 1 Entl,1nd1,1 0
= {CI) + L + Q L}n,n+1 + {L . :'}n,n+1 — —Cp - _ +
2 0 En+t1,2in41,2
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1_
izn,l;n,l 0

+ - Cp + {L\IJ}n)n_,'_l =

En,l;n,Q §En,2;n,2
= (an—l : Qn—l,n—i—l + by - Qn,n+1 +cn - Qn+1,n+1)+

+(§\2:17TL “Cp + Q:H-l,n ' b’fH‘l + ﬁiH—Q,n ) a’n+1)+

+ (anfl N Enfl,nJrl + bn : En,n+1 + Cp * En+1,n+1)_

1 Zn+1,Lint1,1 0
756771 : - +
0 En+1,2:n41,2
1_
izn,l;n,l 0
+ + Cp +
=n,1n,2 5':7z,2;n,2

+(an71 : \Ilnfl,n+1 + bn : \Ijn,nJrl + Cp * lIlrLJrl,'rH»l) + (Dn,n+1~

6. Samples. To obtain difference-differential flows like Schur Flow it is sufficient to
overwrite the coefficients of multiplication operator L (matrix .J) in terms of Verblunsky
coefficients. The reader can find particular example in Leonid Golinskii article [15] of
how to obtain Schur flow from the appropriate Lax equation.

Example 1. Let (\,t) =0, U(\,t) =+ % Then we obtain the case described
in [15] by L. Golinskii.

Proof. At ®(\,t) =0 we have Q = ®(L(t),#)D(t) = 0, Q = ®(L*(t),t)D(t) =
=0, V(L(t),t)=L+L*Z2=-Q—-Q"— ¥ = —-U = —[ — L*. Substitute this
into (39):

d

1
ZL(t) = ®(L(1),0) + |L(H),Q+ I+ 3| = [L,B],

1 L+L*)_—(L+L*
WhereB:I+§\I/:( + 1) (L + )+.Comparethiswith[lS](formulae(l.21),

2
(1.22)). This equation corresponds to Schur flow:

ay,(t) = (1 =) (ans1(t) — an-1(t), t>0. (42)

Example 2. Let ®(\t) = 0, U(\,t) = \. Then we obtain two-dimensional
analogue for unitary case of the Toda lattice (that originally was built in one-dimensional
case by =C o CadCD... for self-adjoint L).

Proof. At ®(\,t) =0 we have Q = ®(L(t),t)D(t) = O, Q= O(L*(t),t)D(t) =
=0, U(L(t),t) = L(t),E=—-Q — Q" — U = —¥ = —L. Substitute this into (39):
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d 1
%L(t) =®(L(t),t)+ | L), Q2+ T+ E\II =[L, A],
where
1 1
0 —5C010  — 50 0 0
1 1
—ap. —=by.
540501 0 50101 0 0
o | L 0 L L
A= 50110 2C1;10 201;11
0o |2 L 0 Ly
5 1;00 5 @101 50201
1
0 0 0 562;10 0

Note that A is not uniquely determined: differential equation doesn’t change if we
replace A with A + T where T is an arbitrary operator that commutes with L.
Now if we re-write A and L in terms of Verblunsky coefficients

Qo | Q1po  pPopi
po | —Guagy  —Qpp1 0 0
L=C({an})=|] 0 | Gzp1 —aoo1 | aspa  p2p3
p1p2 —aaps | —Qzae  —Q2p3
0 0 aups  —0yas

then we obtain “Toda” flow for unitary case:

ol () = (lawl? = Dan_1.

n

(44)

There are many ways how to prove this. The simplest one is to modify slightly [15]
(Theorem 2). Similarly the next example is obtained.

Example 3. Let ®(\,t) =0, U(\,t) = \2. Then we obtain the analog for Kac—
van Moerbeke lattice.

Proof. Recall that classical Kac—van Moerbeke lattice for self-adjoint L has the
following view:
TLZO,L..., x_1:O.

5.571,(75) = xn(xn—&-l - xn—l)a (45)

1
In our case Lax equation has the same form as in previous example with A = [ + 5\Il

where U = L? and £ = —L?. In terms of Verblunsky coefficients Kac—van Moerbeke
flow is as follows:
an(t) = (1- |an|2) (n41GnQn—1 — Qp_a + lotn 112 (oun + n—2)). (46)

The described above theory gives the possibility to build entire families of different
flows. And this is the object of further investigations.
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