Nguyen Doan Tuan, Pham Viet Duc (Hanoi Ped. Univ., Vietnam)

ON THE DEGREE OF HOLOMORPHIC MAPPINGS FROM AN ANNULUS INTO AN ANNULUS

ПРО СТЕПЕНІ ГОЛОМОРФНИХ ВІДОБРАЖЕНЬ ІЗ КІЛЬЦЯ У КІЛЬЦЕ

We establish an estimate for the degree of the holomorphic mapping $f\colon K_1\to K_2$ (here, K_1 and K_2 are doubly-connected domains) in terms of the modulus of a family of curves in K_2 . This estimate generalizes a certain result obtained by Kobayashi.

Встаповлено оцінку степеня голоморфного відображення $f\colon K_1\to K_2$ (K_1 , K_2 — двозв'язні області) в термінах модуля сімей кривих у K_2 , яка узагальнює один результат Кобаясі.

Introduction. Let $K_i = \{z \in C: 0 < r_i < |z| < R_i\}$, i = 1, 2, be two standard annuli. Let $f: K_1 \to K_2$ be a holomorphic mapping and let $f_*: \pi_1(K_1) \to \pi_1(K_2)$ be the induced homomorphism of the fundamental groups of K_1 and K_2 . Let α_i be the generator of $\pi_1(K_i) \cong Z$, i = 1, 2. It is well known that the degree of f, denoted by deg f, is defined by

$$f_*(\alpha_1) = (\deg f)\alpha_2.$$

In [1, p. 14] (Theorem 6.1), Kobayashi claimed that

$$\left| \deg f \right| \le \frac{\log \left(R_2 / r_2 \right)}{\log \left(R_1 / r_1 \right)}.$$

The aim of this note is to extend the above-mentioned theorem to the case of holomorphic maps between two arbitrary annuli in the complex plane.

1. Preliminaries. I.I. A continuous mapping $\gamma: [a, b] \to C$ (a < b) is called a flat curve if it is nonconstant on every segment $[\alpha, \beta] \subset [a, b]$, where $\alpha < \beta$. A curve $\gamma: [a, b] \to C$ is called a closed curve if $\gamma(a) = \gamma(b)$.

A curve $\gamma: [a, b] \to C$ is said to be a Jordan curve if the restricted mapping $\gamma_{(a,b)}: (a,b) \to \gamma((a,b))$ is homeomorphic.

1.2. Let γ be a rectifiable curve in C and ρ be a Borel function (i. e., ρ is Borel measurable). Then there exists the integral of ρ along γ , i. e.,

$$\int_{\gamma} \rho \, ds \, < \, \infty.$$

Let Γ be a family of rectifiable curves in a domain $\Omega \subset C$. We say that a Borel function ρ is Γ -admissible iff

$$\int_{\gamma} \rho \, ds \, \geq \, 1 \quad \text{for every} \quad \gamma \in \, \Gamma.$$

The modulus of Γ is defined by

$$M(\Gamma) = \inf \int \int_{\Omega} \rho^2 dx dy.$$

Here, infimum is taken over all Γ -admissible Borel functions ρ . It is well-known that $M(\Gamma)$ is a biconformal invariance (see [2, p. 50]).

1.3. A domain $\Omega \subset C$ is called an annulus iff Ω is homeomorphic to a standard annulus $K = \{x \in C: 0 < r < |z| < R\}$ and its boundary components are two closed Jordan curves.

The modulus $M(\Omega)$ of the annulus Ω is the modulus of the family of closed rectifiable Jordan curves in Ω which separate the boundary components of Ω .

1.4. Let Ω_1 , Ω_2 be annuli and $f: \Omega_1 \to \Omega_2$ be a holomorphic mapping. Then the degree of f is defined in the same way as in Introduction.

2. The main theorem.

2.1. **Theorem.** Let Ω_1 , Ω_2 be annuli in the complex plane. Assume that γ_1 , γ_2 are the boundary components of Ω_1 such that $d(\gamma_1, \gamma_2) = \delta < \infty$ and the length L of γ_1 is finite.

Assume that $f \colon \Omega_1 \to \Omega_2$ is a holomorphic mapping. Then the following

assertions hold:

$$\left|\deg f\right| \leq \frac{2\pi M(\Omega_2)}{\log(1+2\pi\delta/L)} \quad \text{if} \quad \gamma_2 \subset \operatorname{ext} \gamma_1$$

and

$$\left|\deg f\right| \leq \frac{-2\pi M(\Omega_2)}{\log(1-2\pi\delta/L)}$$
 if $\gamma_2 \subset \operatorname{int} \gamma_1$.

To prove that main theorem, we need the following lemmas:

2.2. Lemma (see [3], Theorem 2). Let Ω be an annulus. Assume that γ_1 , γ_2 are the boundary components of Ω such that $\gamma_2 \neq \emptyset$ and γ_1 is a closed Jordan curve of the finite length L.

Then the following inequalities hold:

$$M(\Omega) \ge \frac{1}{2\pi} \log \left(1 + \frac{2\pi d(\gamma_1, \gamma_2)}{L}\right) \text{ if } \gamma_2 \subset \operatorname{ext} \gamma_1$$

and

$$M(\Omega) \ge -\frac{1}{2\pi} \log \left(1 - \frac{2\pi d(\gamma_1, \gamma_2)}{L}\right) \text{ if } \gamma_2 \subset \operatorname{int} \gamma_1,$$

where $d(\gamma_1, \gamma_2)$ is the distance between γ_1 and γ_2 .

2.3. Lemma. Let $\Omega = \{z \in C: 0 < r < R\}$ be a standard annulus. Then

$$M(\Omega) = \frac{1}{2\pi} \log\left(\frac{R}{r}\right).$$

Proof. By Lemma 2.2, we have

$$M(\Omega) \ge \frac{1}{2\pi} \log\left(\frac{R}{r}\right).$$

We must prove the converse inequality. Consider the function $\rho(z) = 1/2\pi |z|$.

Let Γ be a family of closed Jordan curves which separate the boundary components of Ω . Then ρ is Γ -admissible. Indeed, for every $\gamma \in \Gamma$, we have

$$\int_{\gamma} \frac{|d\theta|}{2\pi} \ge 1. \tag{1}$$

Assume that γ is an arbitrary curve of Γ . Put $z = \gamma(t) = r(t)e^{i\theta(t)}$. Then

$$\gamma(t) = r(t)e^{i\theta(t)} + ir(t)\theta'(t)e^{i\theta(t)}.$$

Therefore,

$$\begin{aligned} & \left| \gamma'(t) \right|^2 = \left| r'(t) \right|^2 + \left| r(t) \right|^2 \left| \theta'(t) \right|^2 \Rightarrow \\ & \Rightarrow \frac{\left| \gamma'(t) \right|^2}{\left| r(t) \right|^2} \ge \left| \theta'(t) \right|^2 \Rightarrow \frac{ds(z)}{|z|} \ge \left| d\theta \right| \Rightarrow \\ & \Rightarrow \frac{ds(z)}{2\pi |z|} \ge \frac{\left| d\theta \right|}{2\pi} \Rightarrow \rho(z) \, ds(z) \ge \frac{\left| d\theta \right|}{2\pi}. \end{aligned}$$

Thus,

$$\int\limits_{\mathcal{X}} \rho(z) ds(z) \, \geq \, \int \frac{|d\theta|}{2\pi} \, \geq \, 1$$

by (1). Hence, ρ is Γ -admissible.

On the other hand, we have

$$\iint_{\Omega} \rho^2 dx \, dy = \iint_{\Omega} \frac{dx \, dy}{4\pi^2 (x^2 + y^2)} = \frac{1}{4\pi^2} \int_{r}^{R} dr \int_{0}^{2\pi} d\theta = \frac{1}{2\pi} \log \left(\frac{R}{r}\right).$$

This implies that

$$M(\Omega) \leq \frac{1}{2\pi} \log \left(\frac{R}{r}\right).$$

Thus,

$$M(\Omega) = \frac{1}{2\pi} \log \left(\frac{R}{r}\right).$$

and Lemma 2.3 is proved.

The proof of the main theorem. Let f be a holomorphic mapping from Ω_1 into Ω_2 . It is well known that there exist standard annuli $K_i = \{z \in C : 0 < r_i < |z| < R_i\}$, i = 1, 2, such that Ω_1 , Ω_2 are conformally equivalent to K_1 and K_2 , respectively (see [2, p. 53]). Assume that $\varphi_1: \Omega_1 \to K_1$ and $\varphi_2: \Omega_2 \to K_2$ are biconformal mappings (i. e., φ_i and φ_i^{-1} are conformal, i = 1, 2).

Consider the holomorphic mapping $F = \varphi_2 \circ f \circ \varphi_i^{-1} : K_1 \to K_2$. By Kobayashi's Theorem [1, p. 14] and by Lemma 2.3, we have

$$\left| \deg F \right| \le \frac{M(K_2)}{M(K_1)}. \tag{2}$$

Since the degree of a holomorphic mapping is invariant under biconformal maps, we have

$$|\deg f| = |\deg \varphi_2^{-1} \circ F \circ \varphi_1| = |\deg F|. \tag{3}$$

On the other hand, since modulus of a domain is also invariant under biconformal maps, we have

$$M(\Omega_1) = M(K_1), \quad M(\Omega_2) = M(K_2). \tag{4}$$

Combining (2) - (4), we obtain

$$\left| \deg F \right| \leq \frac{M(\Omega_2)}{M(\Omega_1)}$$

By Lemma 2.2,

$$M(\Omega_1) \ge \frac{1}{2\pi} \log \left(1 + \frac{2\pi\delta}{L}\right) \text{ if } \gamma_2 \subset \operatorname{ext} \gamma_1$$

and

$$M(\Omega) \ge -\frac{1}{2\pi} \log \left(1 - \frac{2\pi\delta}{L}\right)$$
 if $\gamma_2 \subset \operatorname{int} \gamma_1$,

where $\delta = d(\gamma_1, \gamma_2)$, L is the length of γ_1 . Thus,

$$\left|\deg f\right| \le \frac{2\pi M(\Omega_2)}{\log(1+2\pi\delta/L)} \text{ if } \gamma_2 \subset \exp\gamma_1$$

and

$$\left|\deg f\right| \leq \frac{-2\pi M(\Omega_2)}{\log(1-2\pi\delta/L)} \quad \text{if} \quad \gamma_2 \subset \operatorname{int} \gamma_1.$$

The main theorem is proved.

- Kobayashi S. Hyperbolic manifolds and holomorphic mappings. New York: Marcel Dekker, 1970.
- Ahlfors L. V. Conformal invariants topics in geometric functional theory. New York etc.: Mc Graw-Hill Book Comp., 1973.
- Chinac M. A. Isoperimetric property of modulus and quasiconformal maps // Sib. Math. J. 1986. - 27. - P. 152 - 160.

Received 08.10.2002