UDC 517.938.5

V. V. Sharko (Inst. Math. Nat. Acad. Sci. Ukraine, Kyiv)

L^2 -INVARIANTS AND MORSE – SMALE FLOWS ON MANIFOLDS L^2 -IHBAPIAHTИ ТА ПОТОКИ МОРСА – СМЕЙЛА НА МНОГОВИДАХ

We study the homotopy invariants of free cochain and Hilbert complexes. These L^2 -invariants are applied to the calculations of exact values of minimal numbers of closed orbits of some indexes of nonsingular Morse – Smale flows on manifolds of large dimensions.

Вивчаються гомотопічні інваріанти вільних коланцюгових та гільбертових комплексів. Ці L²-інваріанти застосовуються при обчисленні точних значень мінімальних чисел замкнених орбіт фіксованих індексів несингулярних потоків Морса – Смейла на многовидах великих розмірностей.

1. Introduction. Let M^n be a closed smooth manifold. By a *nonsingular Morse – Smale* flow on M^n we shall mean a flow φ_t satisfying the following conditions:

1) chain-recurrent set R of φ_t consists of finitely many hyperbolic closed orbit;

2) for each pair of closed orbits of φ_t the intersection of their stable and unstable manifolds is transversal;

3) all closed orbits of φ_t are untwisted.

Notice that usually by a nonsingular Morse – Smale flow one means a flow satisfying the conditions 1) and 2) only.

Let φ_t be a nonsingular Morse-Smale flow on M^n . Denote by A_i , i = 0, ..., n, the number of closed orbits of φ_t of index *i*. Let also $R_i = \dim H_i(M^n; \mathbb{Q})$. Then the following inequalities hold true:

$$A_i \ge R_i - R_{i-1} + \ldots + R_0 \tag{1}$$

for all i = 0, ..., n, see [1-3]. Notice that they are not strict in general.

In this paper we study the following problem:

Problem. For a manifold M^n and i = 0, ..., n find a nonsingular Morse–Smale flow φ_t on M^n with minimal possible value A_i of (untwisted!) closed orbits of index *i*.

Using numerical invariants of free cochain and Hilbert complexes of manifold M^n , see [3, 4], we give an answer to this problem for i = 0, 1, n - 2, n - 1 and $3 \le i \le n - 4$ when dim $M^n \ge 6$. Thus a unique unsettled case is i = 2 (and n - 3 by duality).

By definition the *i*-th Morse S^1 -number $\mathcal{M}_i^{S^1}(M^n)$ of a manifold M^n is the minimal number of closed orbits of index *i* taken over all nonsingular Morse–Smale flows on manifold M^n .

It is convenient to define the following function $\rho: \mathbb{Z} \to \mathbb{N}$ by $\rho(x) = x$ for $x \ge 0$ and $\rho(x) = 0$ for x < 0.

Let M^n , $n \ge 6$, be a closed manifold with zero Euler characteristic and with $\pi_1(M^n) = \pi$. Then the Morse S^1 -numbers of the manifold M^n are given by the following formulas:

$$\mathcal{M}_{0}^{S^{1}}(M^{n}) = \mathcal{M}_{n-1}^{S^{1}}(M^{n}) = 1,$$
$$\mathcal{M}_{1}^{S^{1}}(M^{n}) = \mathcal{M}_{n-2}^{S^{1}}(M^{n}) = \mu(\pi) - 1,$$
$$\mathcal{M}_{i}^{S^{1}}(M^{n}) = \widehat{S}_{(2)}^{i+1}(M^{n}) + \rho \left[(-1)^{i} \sum_{j=0}^{i} (-1)^{j} \dim_{N[G]} \left(H_{(2)}^{j}(M^{n}) \right) \right]$$

for $3 \le i \le n-4$, where $\mu(\pi)$ is the minimal number of generators of π .

© V. V. SHARKO, 2007 522 2. Stable invariants of finitely generated modules and L^2 -modules. We give several definitions and results about finitely generated modules over group rings. Most of the facts are also valid for modules over a wider class of rings.

Let \mathbb{Z} be the ring of integers and \mathbb{C} the field of complex numbers. Let G be a discrete countable group. Denote its integer and complex group rings by $\mathbb{Z}[G]$ and $\mathbb{C}[G]$ respectively. Each group ring admits an augmentation epimorphism ε : $\mathbb{Z}[G] \to \mathbb{Z}$ (ε : $\mathbb{C}[G] \to \mathbb{C}$) defined by $\varepsilon \left(\sum_{i} \alpha_{i} g_{i}\right) = \Sigma_{i} \alpha_{i}$. Denote by $\mathbb{I}[G]$ the kernel of the epimorphism ε . The ring $\mathbb{C}[G]$ has also an involution $*: \mathbb{C}[G] \to \mathbb{C}[G]$ given by $\left(\sum_{i} \alpha_{i} g_{i}\right)^{*} = \sum_{i} \overline{\alpha}_{i} \overline{g}_{i}^{-1}$, where $\overline{\alpha}$ is the conjugate to $\alpha \in \mathbb{C}$. Define the trace tr: $\mathbb{C}[G] \to \mathbb{C}$ by tr $\left(\sum_{i}^{k} \alpha_{i} g_{i}\right) = \alpha_{1}$, where α_{1} is the coefficient at $g_{1} = e$, the unit of the group G.

The ring $\mathbb{C}[G]$ has also an inner product $\left\langle \sum_{i} \alpha_{i} g_{i}, \sum_{i} \beta_{i} g_{i} \right\rangle = \sum_{i} \alpha_{i} \overline{\beta}_{i}$. Then for each $r \in \mathbb{C}[G]$ its norm |r| can be defined by $|r| = \operatorname{tr}(rr^{*})^{1/2}$. Let $L^{2}(G)$ be the completion of $\mathbb{C}[G]$ with respect to this norm. Then $L^{2}(G)$ has a structure of a Hilbert space (with inner product given by the same formula as for the group ring $\mathbb{C}[G]$) and elements of G constitute its orthonormal basis. Notice that $\mathbb{C}[G]$ acts faithfully and continuously by left multiplication on $L^{2}(G)$

$$\mathbb{C}[G] \times L^2(G) \to L^2(G)$$

therefore we can regard $\mathbb{C}[G]$ as a subset of the set $\mathbf{B}(L^2(G))$ of bounded linear operators on $L^2(G)$. A a week closure of $\mathbb{C}[G]$ in $\mathbf{B}(L^2(G))$ is called the *von Neumann algebra of* G and denoted by N[G]. The map $N[G] \to L^2(G)$ given by $w \to w(e)$ turns out to be injective and this allows us to identify N[G] with a subspace of $L^2(G)$.

Thus algebraically we have $\mathbb{C}[G] \subset N[G] \subset L^2(G)$. The involution and the trace map on $\mathbb{C}[G]$ extends to N[G] by the same formulas. Moreover, the trace map can also be extended to the space $M_n(N[G])$ of $(n \times n)$ -matrices over von Neumann algebra N[G]by $\operatorname{tr}(W) = \sum_{i=1}^n w_{ii}$, where $W = (w_{ij})$ is a matrix with entries in N[G].

Following Cohen [5] we will now define a notion of Hilbert N[G]-module. Let $E = \mathbb{N} \bigcup \infty$, where ∞ is the first infinite cardinal. For each $n \in E$ let $L^2(G)^n$ be the Hilbert direct sum of n copies of $L^2(G)$. Thus $L^2(G)^n$ is a Hilbert space. The von Neumann algebra N[G] acts on $L^2(G)^n$ from the left, whence $L^2(G)^n$ is a left N[G]-module called a *free* $L^2(G)$ -module of range n.

The left Hilbert N[G]-module M is a closed left $\mathbb{C}[G]$ -submodule of $L^2(G)^n$ for some $n \in E$. If $n \in \mathbb{N}$, then Hilbert N[G]-module M is called *finitely generated*.

Following [5, 6] we will say that a *Hilbert* N[G]-submodule of M is a closed left $\mathbb{C}[G]$ -submodule of M, a *Hilbert* N[G]-ideal is a Hilbert N[G]-submodule of $L^2(G)$, and a *Hilbert* N[G]-homomorphism $f: M \to N$ between Hilbert N[G]-modules is a continuous left $\mathbb{C}[G]$ -map.

Let M be a Hilbert N[G]-module and let $p: L^2(G)^n \to L^2(G)^n$ be a orthogonal projection onto $M \subset L^2(G)^n$. Then the number

$$\dim_{N[G]}(M) = \operatorname{tr}(p) = \sum_{i=1}^{n} \langle p(e_i), e_i \rangle_{L^2(G)^n}$$

is called a *von Neumann dimension* of M, where $e_i = (0, ..., 1(g), ..., 0)$ is a standard basis in $L^2(G)^n$. It is known that $\dim_{N[G]}(V)$ is a nonnegative real number [6].

In what follows we will assume, unless otherwise stated, that Λ is an associative ring with unit e and M is a left finitely generated Λ -module. Rings for which the rank of a free module is uniquely defined are called IBN-rings. It is known that the group rings $\mathbb{Z}[G]$ and $\mathbb{C}[G]$ are IBN-rings. In the present paper, we consider only IBN-rings. For a module M let $\mu(M)$ be the minimal number of its generators. If M is zero, then $\mu(M) = 0$. Evidently, $\mu(M \bigoplus F_n) \leq \mu(M) + n$, where F_n is a free module of rank n. There are examples (of stably-free modules) when this inequality is strict [3]. Recall that a Λ -module M is called *stably-free* if the direct sum of M with some free Λ -module F_k is free.

A ring Λ is said to be *Dedekind-finite* if, for any $\lambda_1, \lambda_2 \in \Lambda$, relation $\lambda_1 \cdot \lambda_2 = 1$ implies $\lambda_2 \cdot \lambda_1 = 1$. A ring Λ is *stably-finite* if the matrix rigs $M_n(\Lambda)$ are Dedekind-finite for all $n \in \mathbb{N}$. The terminology here follows the usage of workers in operator algebras.

Definition 1. Let d be a function from the category of Λ -modules M (not necessarily over group rings) to the set of nonnegative integers \mathbb{N}_0 . We say that this function d is weak additive if the following conditions holds true:

a) d(M) = d(N) if modules M and N are isomorphic;

b) d(M) = 0 if and only if M = 0;

c) $d(M \bigoplus F_n) = d(M) + n$ for any free module F_n of rank $n \in \mathbb{N}$.

Definition 2. For a finite generated module M over IBN-ring Λ let us define the following function:

$$\mu_s(M) = \lim_{n \to \infty} (\mu(M \oplus F_n) - n)$$

Lemma 1. The function $\mu_s(M)$ is well defined and is weak additive for modules over stably-finite rings.

Proof. Condition a) is obvious. Let us prove b). Suppose that $\mu_s(M) = 0$ for some non-zero module M. Then there exists $n \in \mathbb{N}$ such that for the module $N = M \bigoplus F_n$ we have $\mu(N) = n$. Therefore, there is an epimorphism $f: F_n \to N$ of a free module F_n of rank n onto the module N. In addition, there exists a canonical epimorphism p: N = $= M \bigoplus F_n \to F_n$ with the kernel equal to M. Let K be the kernel of the epimorphism $p \circ f: F_n \to F_n$. It follows from the construction of f and p that $K \neq 0$. Moreover, $p \circ f$ is an epimorphism onto a free module, therefore it splits, whence $K \oplus F_n = F_n$. Since Λ is stably-finite, we obtain that K = 0. The condition c) is proved in [7].

Corollary 1. The function $\mu_s(M)$ is week additive for modules over the rings $\mathbb{Z}[G]$ and $\mathbb{C}[G]$.

Proof. It follows from theorems of Kaplansky and Cockroft [3] that the group rings $\mathbb{Z}[G]$ and $\mathbb{C}[G]$ are hopfian.

Remark 1. It is clear, that for any non-zero module M we have that

$$0 < \mu_s(M) \leq \mu(M).$$

The difference

$$\mu(M) - \mu_s(M)$$

estimates how much times the addition a free module of rank one to the modules $M \bigoplus k\Lambda$, $k = 0, 1, \ldots$, does not increase by one the number $\mu(M \bigoplus k\Lambda)$. There are also inequalities

$$\mu(M \bigoplus N) \leqslant \mu(M) + \mu(N),$$
$$\mu_s(M \bigoplus N) \leqslant \mu_s(M) + \mu_s(N)$$

It is not hard to construct examples of projective modules in which strict inequalities hold true.

Lemma 2. For every finitely generated module M over IBN-ring Λ there exists $n \in \mathbb{N}$ such that for the module $N = M \bigoplus n\Lambda$ and for all $m \ge 0$ we have that

$$\mu(N \bigoplus m\Lambda) = \mu(N) + m.$$

Moreover, $\mu(N)$ is additive for the module N.

Proof. An existence of such a number n is proved in [3]. It is clear, that if for a module N we have

$$\mu(N \bigoplus m\Lambda) = \mu(N) + m,$$

then $\mu(N) = d(N)$ by the virtue of the definition of the function d(N).

Let N be a submodule of the free module F_k . Following H. Bass we define f-rank of the pair (N, F_k) to be the largest nonnegative integer r such that N contains a direct summand of F_k isomorphic to free module F_r . We shall denote this number by f-rank (N, F_k) .

By definition *f*-rank of (N, F_k) is called *additive* if

$$f$$
-rank $(N \oplus F_m, F_k \oplus F_m) = f$ -rank $(N, F_k) + m$.

We note that for any submodule N of the free module F_k there exist a positive integer m_0 such that f-rank of $(N \oplus F_m, F_k \oplus F_m)$ is additive for all $m > m_0$, see [3] (Lemma III.7).

3. Homotopy invariants of cochain complexes. It is known that the homology (cohomology) of a free chain (cochain) complex over the ring of integers determines its homotopy type. But for a free chain (cochain) complex over arbitrary rings this is not the case, one should require the existence of a chain (cochain) map that induces homology (cohomology) isomorphisms.

Definition 3. Let $(C_*, d_*) : C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} \dots \xleftarrow{d_n} C_n$ be a free chain complex. Then the following chain complex:

$$(C_*(i), d_*(i)): C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} \dots \xrightarrow{d_i} C_i$$

is called the *i*-th skeleton of the chain complex (C_*, d_*) .

It is well known that the Euler characteristic $\chi(C_*, d_*) = \sum_{i=1}^{i} (-1)^i \mu(C_i)$ is an invariant of the homotopy type of the chain complex (C_*, d_*) . But in general the *i*-th Euler characteristics of homotopy equivalent chain complexes (C_*, d_*) and (D_*, ∂_*) may differ each from other.

Definition 4. Let (C_*, d_*) : $C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} \dots \xleftarrow{d_n} C_n$ be a free chain complex and

$$\chi_i(C_*, d_*) = (-1)^i \chi \big(C_*(i), d_*(i) \big).$$

The following number:

 $\chi_i^a(C_*, d_*) = \min\left\{\chi_i(D_*, \partial_*) \mid (D_*, \partial_*) \text{ is homotopy equivalent to } (C_*, d_*)\right\}$

will be called the *i*-th Euler characteristics of the chain complex (C_*, d_*) .

For cochain complexes the definitions are similar.

Theorem 1. Let (C_*, d_*) : $C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} \dots \xleftarrow{d_n} C_n$ be a free chain complex. Then $\chi_i^a(C_*, d_*) = \chi_i(C_*, d_*)$ if and only if f-rank of $(d_{i+1}(C_{i+1}), C_i)$ is additive and is equal to zero:

$$f$$
-rank $(d_{i+1}(C_{i+1}), C_i) = 0.$

Proof. Necessity. Suppose that $\chi_i^a(C_*, d_*) = \chi_i(C_*, d_*)$ but

$$f$$
-rank $(d_{i+1}(C_{i+1}), C_i) = r > 0.$

The the module C_i can be represented in the form $C_i = \tilde{C}_i \oplus F_r$. Therefore stabilizing the boundary homomorphisms d_i and d_{i+2} via the free module F_r we can assume that the submodule \tilde{C}_i is free and there is a decomposition

$$C_{i+1} \oplus F_r = \tilde{C}_{i+1} \oplus \tilde{F}_r$$

such that $d_{i+1}(0 \oplus \tilde{F}_r) = 0 \oplus F_r$. Canceling the fragment $0 \leftarrow F_r \leftarrow \tilde{F}_r \leftarrow 0$ from (C_*, d_*) we obtain the chain complex $(\tilde{C}_*, \tilde{d}_*)$ such that $\chi_i(\tilde{C}_*, \tilde{d}_*) < \chi_i(C_*, d_*)$. It follows that the chain complexes (C_*, d_*) and $(\tilde{C}_*, \tilde{d}_*)$ are homotopy equivalent but $\chi_i(\tilde{C}_*, \tilde{d}_*) < \chi_i(C_*, d_*)$ which contradicts to the definition of $\chi_i^a(C_*, d_*)$.

If f-rank $(d_{i+1}(C_{i+1}), C_i)$ is nonadditive the proof is similar.

Sufficiency. Suppose that there exists a chain complex

$$(\tilde{C}_*, \tilde{d}_*) : \tilde{C}_0 \xleftarrow{\tilde{d}_1} \tilde{C}_1 \xleftarrow{\tilde{d}_2} \dots \xleftarrow{\tilde{d}_n} \tilde{C}_n$$

such that *f*-rank of $(\tilde{d}_{i+1}(\tilde{C}_{i+1}), \tilde{C}_i)$ additive and equal to zero but

$$\chi_i(\tilde{C}_*, \tilde{d}_*) > \chi_i^a(C_*, d_*).$$

Then there exists a chain complex (C_*, d_*) : $C_0 \stackrel{d_1}{\leftarrow} C_1 \stackrel{d_2}{\leftarrow} \dots \stackrel{d_n}{\leftarrow} C_n$ which is homotopy equivalent to $(\tilde{C}_*, \tilde{d}_*)$ and such that $\chi_i(C_*, d_*) = \chi_i^a(C_*, d_*)$. Then it follows from necessity of our theorem that *f*-rank of $(d_{i+1}(C_{i+1}), C_i)$ is additive and equal to zero.

Then by Cockroft–Swan's lemma we can stabilize the boundary homomorphisms d_j and \tilde{d}_j , j = 1, 2, ..., n, via some free modules F_{k_j} and $F_{\tilde{k}_j}$ respectively and obtain isomorphic chain complexes (C_*^{st}, d_*^{st}) and $(\tilde{C}_*^{st}, \tilde{d}_*^{st})$. By the construction the modules $F_{k_i} \oplus C_i \oplus F_{k_{i+1}}$ and $F_{\tilde{k}_i} \oplus \tilde{C}_i \oplus F_{\tilde{k}_{i+1}}$ are isomorphic and therefore $\chi_i(C_*^{st}, d_*^{st}) = \chi_i(\tilde{C}_*^{st}, \tilde{d}_*^{st})$. We note that

$$\begin{split} k_{i+1} = & f\text{-rank}(d_{i+1}^{st}(C_{i+1} \oplus F_{k_{i+1}} \oplus F_{k_{i+2}}), C_i \oplus F_{k_i} \oplus F_{k_{i+1}}) = \\ = & f\text{-rank}(\tilde{d}_{i+1}^{st}(\tilde{C}_{i+1} \oplus F_{\tilde{k}_{i+1}} \oplus F_{\tilde{k}_{i+2}}), \tilde{C}_i \oplus F_{\tilde{k}_i} \oplus F_{\tilde{k}_{i+1}}) = \tilde{k}_{i+1}. \end{split}$$

Hence we get $\chi_i(\tilde{C}_*, \tilde{d}_*) = \chi_i^a(C_*, d_*).$

Theorem 1 is proved.

Remark 2. If (C^*, d^*) : $C^0 \xrightarrow{d^0} C^1 \xrightarrow{d^1} \dots \xrightarrow{d^{n-1}} C^n$ is a free cochain complex then reversing arrows in Theorem 1 we obtain that $\chi_i^a(C^*, d^*) = \chi_i(C^*, d^*)$ if and only if *f*-rank of $(d^i(C^i), C^{i+1})$ is additive and equal to zero:

$$f$$
-rank $(d^{i}(C^{i}), C^{i+1}) = 0.$

4. The value of the *i*-th Euler characteristic. Let $(C_{(2)}^*, d^*)$: $C_{(2)}^0 \xrightarrow{d^0} C_{(2)}^1 \xrightarrow{d^1} \dots \cdots \xrightarrow{d^{n-1}} C_{(2)}^n$ be a sequence of free Hilbert N[G]-modules and bounded $\mathbb{C}[G]$ -map such that $d^{i+1} \circ d^i = 0$. Such a sequence is called a *Hilbert complex*. The *reduced cohomology* of the Hilbert complex $(C_{(2)}^*, d^*)$ is the collection of $L^2(G)$ -modules $\overline{H^i}_{(2)}(C_{(2)}^*, d^*) = \operatorname{Ker} d^i / \operatorname{Im} d^{i-1}$.

Definition 5. Let

$$(C^*, d^*): C^0 \xrightarrow{d^0} C^1 \xrightarrow{d^1} \dots \xrightarrow{d^{n-1}} C^n$$

be a free cochain complex over $\mathbb{Z}[G]$. Then the following complex:

$$\left(L^{2}(G)\bigotimes_{\mathbb{Z}[G]}C^{*}, \operatorname{Id}\bigotimes_{\mathbb{Z}[G]}d^{*}\right):$$

$$L^{2}(G)\bigotimes_{\mathbb{Z}[G]}C^{0} \stackrel{\operatorname{Id}\otimes_{\mathbb{Z}[G]}d^{0}}{\longrightarrow}L^{2}(G)\bigotimes_{\mathbb{Z}[G]}C^{1} \stackrel{\operatorname{Id}\otimes_{\mathbb{Z}[G]}d^{1}}{\longrightarrow} \dots \stackrel{\operatorname{Id}\otimes_{\mathbb{Z}[G]}d^{n-1}}{\longrightarrow}L^{2}(G)\bigotimes_{\mathbb{Z}[G]}C^{n}$$

of free Hilbert N[G]-modules is called a Hilbert complex generated by the $\mathbb{Z}[G]$ -cochain complex (C^*, d^*) .

Consider the *i*-th skeletons of these complexes

$$(C^{*}(i), d^{*}(i)) \colon C^{0} \xrightarrow{d^{0}} C^{1} \xrightarrow{d^{1}} \dots \xrightarrow{d^{i-1}} C^{i},$$

$$\left(L^{2}(G) \bigotimes_{\mathbb{Z}[G]} C^{*}(i), \operatorname{Id} \bigotimes_{\mathbb{Z}[G]} d^{*}(i)\right) \colon L^{2}(G) \bigotimes_{\mathbb{Z}[G]} C^{0} \xrightarrow{\operatorname{Id} \otimes_{\mathbb{Z}[G]} d^{0}} L^{2}(G) \bigotimes_{\mathbb{Z}[G]} C^{1} \xrightarrow{\operatorname{Id} \otimes_{\mathbb{Z}[G]} d^{1}} \dots \xrightarrow{\operatorname{Id} \otimes_{\mathbb{Z}[G]} d^{i-2}} L^{2}(G) \bigotimes_{\mathbb{Z}[G]} C^{i-1} \xrightarrow{\operatorname{Id} \otimes_{\mathbb{Z}[G]} d^{i-1}} L^{2}(G) \bigotimes_{\mathbb{Z}[G]} C^{i}.$$

Set $\Gamma^i = C^i/d^{i-1}(C^{i-1})$. It is clear that

$$\widehat{\Gamma^{i}} = L^{2}(G) \bigotimes_{\mathbb{Z}[G]} C^{i} / \mathrm{Id} \bigotimes_{\mathbb{Z}[G]} d^{i-1} \left(L^{2}(G) \bigotimes_{\mathbb{Z}[G]} C^{i-1} \right)$$

is the *i*-th Hilbert N[G]-module of the reduced cohomology of the *i*-th skeleton of the Hilbert complex

$$\left(L^2(G)\bigotimes_{\mathbb{Z}[G]}C^*(i), \operatorname{Id}\bigotimes_{\mathbb{Z}[G]}d^*(i)\right).$$

For a cochain complex (C^*, d^*) over $\mathbb{Z}[G]$ set

$$\widehat{S}_{(2)}^{i}(C^*, d^*) = \mu_s(\Gamma^i) - \dim_{N[G]} \widehat{\Gamma^i}.$$

If (C^*, d^*) and (D^*, ∂^*) are two homotopy equivalent free cochain complexes over the group ring $\mathbb{Z}[G]$ then

$$\widehat{S}_{(2)}^{i}(C^{*}, d^{*}) = \widehat{S}_{(2)}^{i}(D^{*}, \partial^{*}).$$

The numbers $\widehat{S}^i_{(2)}(C^*,d^*)$ are nonnegative for every i.

ISSN 1027-3190. Укр. мат. журн., 2007, т. 59, № 4

. . .

Theorem 2. Let $(C^*, d^*) : C^0 \xrightarrow{d^0} C^1 \xrightarrow{d^1} \dots \xrightarrow{d^{n-1}} C^n$ be a free cochain complex over $\mathbb{Z}[G]$. Then

$$\chi_i^a(C^*, d^*) =$$

$$= (-1)^i \sum_{j=0}^i (-1)^j \dim_{N[G]} \left(H^j_{(2)} \left(L^2(G) \bigotimes_{\mathbb{Z}[G]} C^*, \operatorname{Id} \bigotimes_{\mathbb{Z}[G]} d^* \right) \right) + \widehat{S}^{i+1}_{(2)}(C^*, d^*).$$

Proof. Suppose that the cochain complex $(C^*, d^*) : C^0 \xrightarrow{d^0} C^1 \xrightarrow{d^1} \dots \xrightarrow{d^{n-1}} C^n$ is such that $\chi_i(C^*, d^*) = \chi_i^a(C^*, d^*)$. Consider the Hilbert complex

$$\left(L^{2}(G)\bigotimes_{\mathbb{Z}[G]}C^{*}, \operatorname{Id}\bigotimes_{\mathbb{Z}[G]}d^{*}\right):$$

$$L^{2}(G)\bigotimes_{\mathbb{Z}[G]}C^{0} \xrightarrow{\operatorname{Id}\otimes_{\mathbb{Z}[G]}d^{0}}L^{2}(G)\bigotimes_{\mathbb{Z}[G]}C^{1} \xrightarrow{\operatorname{Id}\otimes_{\mathbb{Z}[G]}d^{1}} \dots \xrightarrow{\operatorname{Id}\otimes_{\mathbb{Z}[G]}d^{n-1}}L^{2}(G)\bigotimes_{\mathbb{Z}[G]}C^{n}$$

and let

$$\left(L^{2}(G) \bigotimes_{\mathbb{Z}[G]} C^{*}(i), \operatorname{Id} \bigotimes_{\mathbb{Z}[G]} d^{*}(i) \right):$$

$$L^{2}(G) \bigotimes_{\mathbb{Z}[G]} C^{0} \stackrel{\operatorname{Id} \otimes \underset{\mathbb{Z}[G]}{\longrightarrow} d^{0}} L^{2}(G) \bigotimes_{\mathbb{Z}[G]} C^{1} \stackrel{\operatorname{Id} \otimes \underset{\mathbb{Z}[G]}{\longrightarrow} d^{1}} \dots$$

$$\dots \stackrel{\operatorname{Id} \otimes \underset{\mathbb{Z}[G]}{\longrightarrow} L^{2}(G) \bigotimes_{\mathbb{Z}[G]} C^{i-1} \stackrel{\operatorname{Id} \otimes \underset{\mathbb{Z}[G]}{\longrightarrow} d^{i-1}} L^{2}(G) \bigotimes_{\mathbb{Z}[G]} C^{i}$$

be its *i*-th skeleton.

It is clear from additivity of $\dim N[G]$ that

$$\begin{split} \chi_i(C^*,d^*) &= \\ &= (-1)^i \sum_{j=0}^i (-1)^j \dim_{N[G]} \left(\overline{H^j}_{(2)} \left(L^2(G) \bigotimes_{\mathbb{Z}[G]} C^*(i), \operatorname{Id} \bigotimes_{\mathbb{Z}[G]} d^*(i) \right) \right) = \\ &= \dim_{N[G]} \left(\overline{H^i}_{(2)} \left(L^2(G) \bigotimes_{\mathbb{Z}[G]} C^*(i), \operatorname{Id} \bigotimes_{\mathbb{Z}[G]} d^*(i) \right) \right) - \\ &- (-1)^{i-1} \sum_{j=0}^{i-1} (-1)^j \dim_{N[G]} \left(\overline{H^j}_{(2)} \left(L^2(G) \bigotimes_{\mathbb{Z}[G]} C^*, \operatorname{Id} \bigotimes_{\mathbb{Z}[G]} d^* \right) \right). \end{split}$$

Similarly to [4] one can check that

$$\begin{split} \dim_{N[G]} \left(\overline{H^{i}}_{(2)} \left(L^{2}(G) \bigotimes_{\mathbb{Z}[G]} C^{*}(i), \operatorname{Id} \bigotimes_{\mathbb{Z}[G]} d^{*}(i) \right) \right) &= \\ &= \dim_{N[G]} \left(\overline{H^{i}}_{(2)} \left(L^{2}(G) \bigotimes_{\mathbb{Z}[G]} C^{*}, \operatorname{Id} \bigotimes_{\mathbb{Z}[G]} d^{*} \right) \right) + \widehat{S}^{i+1}_{(2)}(C^{*}, d^{*}). \end{split}$$

Theorem 2 is proved.

5. Topological applications. Let Y be a topological space endowed with some structure K = K(Y) of a finite CW-complex. Denote by K_i the *i*-th skeleton of K(Y). Let also $n(\sigma^j)$ be the total number of *j*-cells of K(Y) and

$$\chi_i(K(Y)) = (-1)^i \chi(K_i) = (-1)^i \sum_{j=0}^i (-1)^j n(\sigma^j)$$

Definition 6. The cellular *i*-th Euler characteristics of the space Y is the minimal value of $\chi_i(K(Y))$ taken over all cellular decomposition K(Y) of Y:

$$\chi_i^c(Y) = \min\left\{\chi_i(K(Y)) \mid K(Y) \text{ is a cellular decomposition of } Y\right\}.$$

Remark 3. Let M^n be a closed (possibly only topological) manifold having a handle decomposition. Then similarly to the Definition 6 we can define the *i*-th handle Euler characteristics $\chi_i^h(M^n)$ of the manifold M^n using handle decompositions M^n .

Evidently, that if a closed manifold M^n admits a handle decomposition, then contracting each handle to its middle disk we obtain some cell decomposition of M^n . Therefore

$$\chi_i^c(M^n) \le \chi_i^h(M^n).$$

Note that for a closed simply-connected smooth manifold $M^n(n > 4)$ the following equality holds true:

$$\chi_i^c(M^n) = \chi_i^h(M^n) = \mu(H_i(M^n, \mathbb{Z})) - (-1)^{i-1} \sum_{j=0}^{i-1} (-1)^j \mu(H_j(M^n, \mathbb{Q})).$$

Now let K be a CW-complex and $p: \widetilde{K} \to K$ be the universal covering of K. Using the map p we can lift the CW-complex structure of K to \widetilde{K} . Then the fundamental group $\pi = \pi_1(K)$ acts free on \widetilde{K} also preserving its CW-structure. This action turns each chain group $C_i(\widetilde{K}, \mathbb{Z})$ into a left module over the group ring $\mathbb{Z}[\pi]$. It is evident that the resulting chain module $C_i(\widetilde{K}, \mathbb{Z})$ is free. Moreover, lifting each *i*-cell of K to some cell of \widetilde{K} we obtain a *finite* set of generators of $C_i(\widetilde{K}, \mathbb{Z})$ over \mathbb{Z} . As a result we get a free chain complex over the ring $\mathbb{Z}[\pi]$:

$$C_*(\widetilde{K}): C_0(\widetilde{K}, \mathbb{Z}) \xleftarrow{d_1} C_1(\widetilde{K}, \mathbb{Z}) \xleftarrow{d_2} \dots \xleftarrow{d_n} C_n(\widetilde{K}, \mathbb{Z}).$$

Definition 7. For a CW-complex K the following number $\chi_i^a(K)$ defined by

$$\chi_i^a(K) = \chi_i^a(C_*(K)).$$

is called the *i*-th algebraic Euler characteristics of K.

It is well known that any two chain complexes constructed from some cellular decompositions of the same topological space K have the same homotopy type. Therefore it follows directly from the previous discussion or from [3, 8] that the numbers $\chi_i^a(K)$ are invariants of the homotopy type of the cell complex K.

It is clear that for a cell complex K we have that

 $\chi_i^a(K) \le \chi_i^c(K).$

For a smooth manifold M^n it is possible to define a cochain complex via Morse functions (handle decomposition). The details can be found in [3]. It is proved in [8] that the all chain complexes constructed from some Morse functions (handle decomposition) on the manifold M^n have the same homotopy type. This means that the values of *i*-th algebraic Euler characteristic $\chi_i^a(M^n)$ of M^n do not depend on the way of constructing a chain complex.

If the fundamental group $\pi = \pi_1(K)$ of K is non-zero then for calculation of the values of some $\chi_i^c(Y)$ one can use L^2 -theory. To describe this let us recall the definition of the integers $\widehat{S}_{(2)}^i(K)$ [4].

Let $C^{i}(\widetilde{K}, \mathbb{Z}) = \operatorname{Hom}_{\mathbb{Z}[G]} (C_{i}(\widetilde{K}, \mathbb{Z}), \mathbb{Z}[G])$. and using involution in the ring $\mathbb{Z}[G]$ introduced the structure of left $\mathbb{Z}[G]$ -module on $C^{i}(\widetilde{K}, \mathbb{Z})$. Consider the following cochain complex

$$C^*(\widetilde{K}) = C^0(\widetilde{K}, \mathbb{Z}) \xrightarrow{d^0} C^1(\widetilde{K}, \mathbb{Z}) \xrightarrow{d^1} \dots \xrightarrow{d^{n-1}} C^n(\widetilde{K}, \mathbb{Z})$$

Taking the tensor product of $C^*(\widetilde{K})$ and $L^2(G)$ as $\mathbb{Z}[G]$ -module we obtain the Hilbert complex

$$C^*_{(2)}(\widetilde{K}): L^2(G) \bigotimes_{\mathbb{Z}[\pi]} C^0(\widetilde{K}, \mathbb{Z}) \xrightarrow{\mathrm{id} \otimes d^0} L^2(G) \bigotimes_{\mathbb{Z}[\pi]} C^1(\widetilde{K}, \mathbb{Z}) \xrightarrow{\mathrm{id} \otimes d^1} \dots$$
$$\dots \xrightarrow{\mathrm{id} \otimes d^{n-1}} L^2(G) \bigotimes_{\mathbb{Z}[\pi]} C^n(\widetilde{K}, \mathbb{Z}).$$

The $L^2(G)$ -module of *i*-th cohomology $H^i_{(2)}(K)$ of this Hilbert complex is called $L^2(G)$ module of *i*-th cohomology of the space K. Therefore the following $\mathbb{Z}[\pi]$ -module:

$$\widehat{\Gamma}^{i}(\widetilde{K}) = C^{i}(\widetilde{K}, \mathbb{Z})/d^{i-1} \big(C^{i-1}(\widetilde{K}, \mathbb{Z}) \big),$$

can be interpreted as the *i*-th cohomology module with compact support of the *i*-th skeleton of \widetilde{K} and $L^2(G)$ -module

$$\Gamma^{i}(K) = L^{2}(G) \bigotimes_{\mathbb{Z}[\pi]} C^{i}(\widetilde{K}, \mathbb{Z}) / \operatorname{id} \bigotimes d^{i-1} \left(L^{2}(G) \bigotimes_{\mathbb{Z}[\pi]} C^{i-1}(\widetilde{K}, \mathbb{Z}) \right)$$

is the *i*-th $L^2(G)$ -module of cohomology of the *i*-th skeleton of K.

Definition 8. For a cell complex K, set

$$\widehat{S}^{i}_{(2)}(K) = \widehat{S}^{i}_{(2)}(C^{*}(\widetilde{K})) = \mu_{s}(\widehat{\Gamma}^{i}(\widetilde{K})) - \dim_{N[G]}(\Gamma^{i}(K)).$$

From our previous discussion or from [3, 4] it follows that the numbers $\widehat{S}_{(2)}^{i}(K)$ are invariants of the homotopy type of the cell complex K.

Of course, for a smooth manifold M^n the values of the numbers $\widehat{S}^i_{(2)}(M^n)$ do not depend on the method of constructing a chain complex.

Theorem 3. Let M^n , $n \ge 6$, be a closed smooth nonsimply connected manifold with $\pi_1(M^n) = \pi$. Then

$$\chi_1^c(M^n) = \chi_1^h(M^n) = \mu(\pi) - 1,$$

$$\chi_2^c(M^n) = \chi_2^h(M^n),$$

$$\chi_i^c(M^n) = \chi_i^h(M^n) = \chi_i^a(M^n) =$$

$$= (-1)^i \sum_{j=0}^i (-1)^j \dim_{N[G]}(H_{(2)}^j(M^n)) + \widehat{S}_{(2)}^{i+1}(M^n)$$

for $3 \le i \le n - 4$.

Proof. The condition $n \ge 6$ allows us to construct a handle decomposition of the manifold $M^n = \bigcup H_i^i$ such that the free chain complex

$$(C_*, d_*): C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} \dots \xleftarrow{d_n} C_i,$$

over $\mathbb{Z}[\pi]$ corresponding this handle decomposition satisfies following conditions:

a) $\mu(C_0) = 1;$

b) $\mu(C_1) = 1;$

c) $\chi_2^c(M^n) = \chi_2^h(M^n);$

d) f-rank $(d_{i+1}(C_{i+1}), C_i) = 0$ and is additive for $3 \le i \le n-4$.

The proof follows from Theorems 1 and 2.

Remark 4. For a closed smooth nonsimply connected manifold M^n , $n \ge 6$, the numbers $\chi_1^c(M^n)$, $\chi_1^h(M^n)$, $\chi_i^c(M^n)$, and $\chi_i^h(M^n)$, $3 \le i \le n-4$, are invariants of homotopy type of manifold.

6. Nonsingular Morse – Smale flows.

Definition 9. A smooth flow φ_t on smooth closed manifold M^n is called nonsingular Morse – Smale if

a) the chain-recurrent set R of φ_t consist of finite number of hyperbolic closed orbit;

b) the unstable manifold of any closed orbit has transversal intersection with the stable manifold of any closed orbit.

A vector field \mathcal{X} generating a nonsingular Morse – Smale flow is also called *nonsingular Morse* – *Smale*. A result of K. Meyer (see [2]) says for each nonsingular Morse – Smale vector field there exists a *Lyapunov function* $f: M^n \longrightarrow \mathbb{R}$ for \mathcal{X} : that is a function satisfying the following conditions:

a) $\mathcal{X}(f)_y < 0$ for all y that are not contained in a closed orbit;

b) $df_y = 0$ if and only if y is a point on a closed orbit.

We will call f self-indexing if $f(y) = \lambda$ whenever y belongs to a closed orbit of index λ .

There are two types of closed orbit: twisted and untwisted. An untwisted closed orbit σ of index λ of a nonsingular Morse–Smale vector field \mathcal{X} is said to be in the standard form if there are local coordinates $\theta \in S^1, x_1, \ldots, y_1, \ldots, y_{n-\lambda-1}$ on tubular neighborhood of σ such that

$$\mathcal{X} = x_1 \frac{\partial}{\partial x_1} + \ldots + x_\lambda \frac{\partial}{\partial x_\lambda} - y_1 \frac{\partial}{\partial y_1} - \ldots - y_{n-\lambda-1} \frac{\partial}{\partial y_{n-\lambda-1}}$$

on this neighborhood. If \mathcal{X}_0 is a nonsingular Morse – Smale vector field on M^n then there is an arc in the space of smooth vector field on M^n , \mathcal{X}_t , $0 \le t \le 1$, such that \mathcal{X}_t is Morse – Smale for all $0 \le t \le 1$ and closed orbits of \mathcal{X}_1 coincide with the closed orbits of \mathcal{X}_0 and are in the standard form [2].

In what follow we will consider nonsingular Morse – Smale vector fields having only untwisted closed orbits.

Conversely, if a manifold M^n admits a round Morse function $f: M^n \to \mathbb{R}$, then there exists a nonsingular Morse – Smale vector field \mathcal{X} on M^n , such that closed orbits of index λ of \mathcal{X} coincide with singular circles of index λ of the function f. By definition a function f on M^n is said to be a *round Morse function* if its singular set K(f) consists of disjoint circles and corank of the Hessian is equal to one: $\operatorname{corank}_{x \in K(f)} f = 1$ (see [3]).

It is known that under a small perturbation of a round Morse function f, each singular circle of index λ splits into two nondegenerate critical points of indexes λ and $\lambda + 1$. And conversely, if $g: M^n \to \mathbb{R}$ is a Morse function having two independent (see [3]) critical points x_1 and x_2 of g of indexes λ and $\lambda + 1$ respectively, then these points can be replaced by one singular circle of index λ . Therefore, for the construction of nonsingular Morse – Smale vector fields on a manifold M^n with zero Euler characteristics we may use Morse functions.

Definition 10. The *i*-th Morse S^1 -number of a manifold M^n is the minimum number of closed orbits of index *i* taken over all nonsingular Morse – Smale vector fields on M^n with untwisted closed orbits. This number will be denoted by $\mathcal{M}_i^{S^1}(M^n)$.

Theorem 4. Let M^n , $n \ge 6$, be arbitrary closed smooth manifold with zero Euler characteristic and with $\pi_1(M^n) = \pi$. Then the *i*-th Morse S^1 -number of the manifold M^n is equal:

$$\mathcal{M}_{0}^{S^{1}}(M^{n}) = \mathcal{M}_{n-1}^{S^{1}}(M^{n}) = 1,$$
$$\mathcal{M}_{1}^{S^{1}}(M^{n}) = \mathcal{M}_{n-2}^{S^{1}}(M^{n}) = \mu(\pi) - 1,$$
$$\mathcal{M}_{i}^{S^{1}}(M^{n}) = \rho(\chi_{i}^{a}(M^{n})) =$$
$$= \widehat{S}_{(2)}^{i+1}(M^{n}) + \rho \left[(-1)^{i} \sum_{j=0}^{i} (-1)^{j} \dim_{N[G]} \left(H_{(2)}^{j}(M^{n}) \right) \right]$$

for $3 \le i \le n-4$.

Proof. Let \mathcal{X} be a nonsingular Morse – Smale vector field on M^n such that all closed orbits of \mathcal{X} are untwisted. Let also $f: M^n \to \mathbb{R}$ be a round Morse function corresponding to \mathcal{X} and $g: M^n \to \mathbb{R}$ be an ordered Morse function obtaned by small pertrubation of f. Using g we can construct a handle decomposition of M^n and from this decomposition define the free chain complex over $\mathbb{Z}[\pi]$:

$$(C_*, d_*): C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} \dots \xleftarrow{d_n} C_n.$$

It is clear that

$$\chi_{i}^{c}(M^{n}) = \chi_{i}^{a}(C_{*}, d_{*}) \leq \chi_{i}(C_{*}, d_{*})$$

for $3 \le i \le n-4$. The condition $n \ge 6$ allows to construct a handle decomposition $M^n = \bigcup H_i^i$ of M^n such that the free complex over $\mathbb{Z}[\pi]$

$$(C_*, d_*): C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} \dots \xleftarrow{d_n} C_i$$

corresponding to this handle decomposition satisfies the following conditions:

a) $\mu(C_0) = 1;$

b) $\mu(C_1) = \mu(\pi) - 1;$

c) f-rank $(d_{i+1}(C_{i+1}, C_i) = 0$ and is additive for $3 \le i \le n-4$.

Using diagram technique from [3] and Theorem 3 we can construct from this handle decomposition $M^n = \bigcup H_j^i$ a round Morse function and therefore a nonsingular Morse – Smale vector field \mathcal{X} such that the numbers of untwisted closed orbits of \mathcal{X} satisfy the conditions of theorem. Homotopy invariance of the *i*-th Morse S^1 -number of M^n for i = 0, 1, n - 1, n - 2 and $3 \le i \le n - 4$ easily follows from previous discussions.

Theorem 4 is proved.

The calculation of $\mathcal{M}_2^{S^1}(M^n)$ and $\mathcal{M}_{n-3}^{S^1}(M^n)$ seems to be a difficult problem.

Acknowledges. I am grateful to the referee for constructive remark that allow to clarify the paper.

I also thank S. Maksymenko for useful discussions.

- Gontareva I. B., Felshtyn A. L. Analog of Morse inequality for attractor domain // Vestnik Leningrad Univ. - 1984. - 7. - P. 16-20.
- Franks J. The periodic structure of nonsingular Morse Smale flows // Comment. math. helv. 1978. 53. – P. 279 – 294.
- Sharko V. V. Functions on manifolds: algebraic and topological aspects // Transl. Math. Monogr. Providence: Amer. Math. Soc. 1993. 131. 193 p.
- Sharko V. V. New L²-invariants of chain complexes and applications // C*-algebras and Elliptic Theory. Trends Math. – 2006. – P. 291 – 312.
- Cohen J. Von Neumann dimension and homology of covering spaces // Quart. J. Math. 1979. 30. P. 133–142.
- Lück W. L²-invariants: theory and applications to geometry and K-theory // Ergeb. Math. und Grenzgebiete. – Berlin etc.: Springer, 2002. – 44. – 620 p.
- Cockroft W, Swan R. On homotopy type of certain two-dimensional complexes // Proc. London Math. Soc. - 1961. - 11. - P. 193 - 202.
- Kirby R. C., Siebenmann L. C. Foundational essays on topological manifolds, smoothings and triangulations // Ann. Math. Stud. – 1977. – 88.

Received 15.02.2007