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- ON THE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS
OF THE FIRST INITIAL BOUNDARY-VALUE PROBLEMS
FOR PARABOLIC EQUATIQNS

PO ACHMIITOTHYHY IMOBEIIHKY PO3B’S3KIB
IEPIINAX MOYATKOBHAX KPAMOBHX 3AJ[AY
JLJT ITAPABOJITYHHX PIBHSTHB

We consider the first initial boundary-value problem for a strongly parabolic system on infinite cylinder
with non-smooth boundary, We prove some results on the existence, uniqueness and asymptotic behaviour
of solutions as ¢ — +co.

PosmanyTo Nepuy nouaTkopy kpafiopy samavy ans cunbdo napaBoniumel cneTemi Ha HexinueHmomy
usAingpi i3 vernagkow mextio. Joseaeno AeAki peaynsTaTH Npo ICHYBAHHA, CAHHICTL T ACHMITTOTHYHY
MODARRHKY POAB"AIKID NPH £ — oo,

1. Introduction. The theory of general boundary-value problems for elliptic systems
with smooth and non-smooth boundary is nearly completely considered in [1, 2]. The
strongly parabolic systems on a bounded set Qr = £l x [0,T], &t € R™, with non-
smooth boundary were studied in [3, 4]. However, the boundary-value problem for
a parabolic system on cylinder with non-smooth boundary has been rarely consid-
ered. O. A. Ladyzhenskaya [5] showed some sufficient conditions for the existence and
uniqueness of a gencralized sclution to the first boundary-value problem for strongly
parabolic systems on a finite eylinder Q. The smoothness of generalized solutions for
a parabolic equation of order 2 is considered in [6]. The general boundary-value problem
on the finite cylinder for a parabolic system in the sense of Petrovski is studied in [7],
where the author obtained some results on the uniqueness of a solution in the Sobolev
weighted space. In [8), the second boundary-value problem for a parabolic equation of
order 2 in infinite cylinder £}, = £I x [—00, +00) is considered. Some results on the
asymptotic behaviour of solutions as ¢ — --oo was shown in that paper.

Suppose that £} € BR" is a bounded domain with its boundary 8. Letus introduce
some notation: O = O x [0,b], Ts = 88 % [0,5], Nleo =0 x [0,+00), e =80 x
®[0,00); == {(21,....20)€ & u(z,t) = (ui(z,2),...,u,(x,¢)) is a vector complex
function; & = (a1,...,an), & € N, |a] = 20, o D* = 8ol /82 .. 8z,
|D%ul2 = T 1 D%l dx = dz;...dzn, vy = (Buy /o, ..., 80w, f019);
&m{ﬂ} is the set of infinitely differentiable functions having their supports compactly
embedded in ; HY(Q) — the space consisting of functions u(z) which have gener-
alized derivatives D®*u; belonging to La(f2), |a| =4, 1 <i <5 and

£ F |
lullfreey = Y. [ 3 1D%uf?dz < oo;
| x| =3 0 fm=]

H(f) is the completion of C*°(£) in the norm of H(Q); HE*(Qr) is the space
consisting of functions wu(z,t) such that D%u; € La(Qr), &w/8 € La(Qr),
lel <8 1<i<s 1<j<k, withthe norm
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£ k
lelfresan = 2 f |D*ul?dzdt + ) f |wgs |2dzdt;

ledl=0 g =1 fip

H%%(1x) is the space consisting of functions u(x,t) with the norm

[
”“lli’hﬂtﬂ.ﬂ = Z |Dnﬂlﬂdﬁﬁﬂ;

lecl=0 .

ﬁ*-*{ﬂr} is the completion of C°°((p) in the norm of HO*(Qr); H™%(Qr) =

a
= {ntat) € Fm0(@r) : e 1) = 0}.
onsider the differential operator

i m
L(z,t,D)= Y DPay(z,t)D?+ 3 ap(z,t)D* +a(z,t),
Ielilal=1 Ipl=1
where auq, ap, @ are (g x g)-matrices, a,, = {-1}""""“:1;',,, and their elements are
bounded complex functions on {1... Moreover, for every non-zero vector £ € R™ and
n € C* we have

D apg(, t)€PEi >0 V(z,t) € ooy (0
|7l lg|=m
where £P = £5' ... 68, 9 =¢0 ... &0,
We set et
Bluv)= Y (- f ape D DPudz
[pllgl=1 n
and

T
Bj(u,u) = B(u,u) + 2Re » [ apD uildz.
Irl=1
The following lemma is proved in [9].

Lemma 1. If ap, satisfy (1) and ap, are continuous on {lq whenever [p| =
= |g| =m then there exist positive numbers po, p1, Ao, M1 such that

(=1)™B(u,u) 2 pollullfrmay — rollulltzm, ()
(=1)™Bi(u,u) 2 pallulfrm iy — Mlluliage (3)

Jor all we H™().
2. The existence of generalized solution. In this section we consider the existence
and uniqueness of a solution of the problem

(-1)™"1L(z,t, D)t — w = f(z,1), (z,%) € oo, (4)
such that .
u(z,0)=0 on 0, &)
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&u
o
where v is the unit outward normal to 8.
Definition. A function w(xz,t) is called a generalized solution of (4)-(6) in
H™Y Q) if u(z,t) € H™ (o), u(2,0) = 0 and for all T > 0, ulz,t) sat-
isfies the following integnal identity on Sy :

lr, =0, j=0,....m=1, (6)

(—1)”*“1_[ [ 5> (~1)rlap, DDy + > ap DPuff + ouf] | dedt—
i ;

g Lellal=1 Ipi=1
- f wfdzdt = f fAdzdt ¥ne A™°(Qr), n(z,T)=0. (M)
O {1y

Theorem 1. If a,, are continuous on $l., whenever |p| = |g| =m and

day, Bag :
< < =
|_5!: v Ty 1<|pl, lgl<m, p=-const,

then problem (4)—(6) has at most one generalized solution in H™(Qg).

Proof. Suppose that problem (4) - (6) has two solutions u;, uz and d:nuttc u(z,t) =
= u; (%, t)—uz(z,t). Forany T > 0 and b€ (0,T), we define n(z,t) =f wiz, T)dr
for 0=t <b and n(z,¢) =0 for b <t < T. One can see that ’

m(z.t) =u(z.), 0<t<b,  7z.t)e H™(Qr)
and by identity (7), we have

(—-1)m-1 [ > (~1)Play, DI DPn+ > apDPned| dadt +
1, Lipllal=1 lpl=1
(1)t f anefidzd - f nuefidadt =0, ®
N s

Let a; =a— {—1}_‘“11! ., where Ay is a positive number satisfying (3). Thus,

E—l}"‘“‘f[ S (—1)Play, DIn,DPy + (—1)™\nefi +
i

Izllgl=1

m
+ Z ap DPmy + ﬂ-l']‘tﬁ:| dzdt — f’?uﬁdﬂ:dﬁ ={. (%)
Ip|=1 iy

Thus, the integration of the real parts of (9) gives

2 f iml“dxdfﬂ—l}”‘[ >, = f apg(, 0) D(z, 0) DPy(z, 0)dz +
3 1Y [Plalg|=1 0
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+ 2Re Z fa,{:s 0)DPn(z,0)n(z, 0)dz| + A1 f[:; (z,0)|%dz =

Ipl=1 &

£}
=(=1™1] > (-1}'Fla—gtﬂﬂﬂnﬂ_mgd.m+
g, Iellgl=1

+(-1)™"12Re f {

Since ‘%’". 57;'; are bounded, by Cauchy inequality and (3) we obtain

[B_uz DPri + npﬂ”ﬂ??f] + a;nm} dzdt.

Irl=1

17el1 200y + 1, O)2rmgey < C(&) 3 f |DPrlPdedt + el (10)

[pl=0 iy
i
(2. mey SC 3 [1paiasas. an
Ipl=0 &,
Setting
u mn
e = f Dou(z,rdr, 0<t<b, J@H)=3 f [vp(z, &) Pd,
& Ipl=0 p
we have
b
a-onaw sc [ s, be [ﬂ, %c:] . (12)
0

By Gronwall - Bellman inequality, one has J(t) = 0. Thus, (10}, (11) lead to m; = 0,
ie, u; = us ¥t € [0,1/2C). Using the same argument as before for functions u;,
ug on [1/2C,T], we can show that u; = ug Vt € [1/2C,1/C]. Continuing in this
fashion, after finite number of steps, we can prove that u; = uy Wt € [0,T]. Since
T >0 is arbitrary, u; = ug ¥t € [0, 00). This completes the proof.

Now we prove the following theorem as a result on existence.

Theorem 2. Suppose that ap, are continuous on §les whenever |p|.= |g| = m,
there exists a A > 0, afiinction B(t) € Ly(0,+00) such that fe* € Ly(Qy,) and

{552

where Ao is determined from (2). Then problem (4)—(6) has a generalized solution
u(z,t) € H™(Que) satisfying

lapl, la = (=1)™(X + ).u}Ii} < B(t) ¥(t,z) € Qoa,

lulFma .y < CllfeI2, @.)-
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Proof. Suppose that {p(z)}g2; C H™(Q) is orthorormal in Ly(f) and its
linear closure is ﬁ‘“{ﬂ). For each natural number IV, let us consider the function

N
u(z,8) =3 O (t)ex(a),
feml

where C¥(t) satisfies CJ' (0) =0 and

f [u{“'ﬁ+ f: (—1}"‘+""nmﬂ“u”ﬂfw+ﬁ~uu”ﬁ] dz+

i [ellgl=1
iy
+(-1)™ ( 3 a,DPu? +anu”)ﬁdr=
0 Ipl=1
=-/_fﬁdz:, T 3
1]

with ap = a — (=1)™XI. Put vV(z,t) = uN(z,t)e’. Multiplying (13) by
e"‘f—tl:céu[:}e’*‘ , then taking the sum in £ from 1 to N, one obtains

f|ﬂf13d:t+/ i [{_UMIFI%DMH".DP-UP' +Jm1:”;§] dx4-
!

0 lellql=1

+J:—1}"‘f [ i a, DPvN ol + (ao —(—ljmkﬂv”?]dm =- ffc"*?dm-
Fy]

n Lirl=1
(14)
Since apg = (—1)PHelg? | we have
m
zml 3 (—1)Plag, DWWV DPuY + (—1}*“.)..;.1:”1;?] -
I#llgl=1
a m
=§( S (=1)Play, DWW DruN 4 (—1)™X]o™? | -
2l lgl=1
m
- 3 (- 5;:" DN DN, (15)
Iplslal=1

By integrating the real parts of (14) in ¢ from 0 to ¢ and using (15), we get

nf|uf-'|=d:ndt +
e

ISSN 0041-6053. Vep. smam. scypis, 2003, m. 55, e &



1148 MWGUYEN MANH HUNG, TEAN THI LOAN

+ i [{—I}mﬂﬂawfm t) D% (z,8) DPuN [z, ) + dov™ (=, i}[i] dr =
o lellgl=1

b L
> {—I}mHPI%"-D*u“DFuFdz -
f1, Ielilal=1

m
—(=1)™2Re ﬁf [ > a,DPuol 4+ au”ﬁﬁ]a:zdz- 2Re f fertul drdt,
: . Lipl=1 e

where @ = (ag — (—1)™Al).
By (2) and the Cauchy inequality, we obtain

2 [ ¥ Pdsdt + pollo™ (2, mqey <

1

<Cile) j BOI" (2, )13 oyt +
v}

[}
+e [l Pzt + Cate) [ 1741yt
e o

Therefore,
[ 1ot Pzt + 10" (2. ) ey <
LT
13 (=51
< Cs [ BEIY (@O eyds+ Cu [ 171 i (16)
o [i]
So we get

L
" (2, )| 3m ey < Ca fﬁffJ||ﬂN{$-t}|J§f—¢n]ﬂ + Callfe* )
o

By Gronwall - Bellman inequality, we have
o™ (2, )3y < Cull FE (13, (e Jo B, an

Thus,
o™ (@, )3y < Coll f 112,00y,

M u (z, M iay < Collfet 12260,y
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ON THE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS ... 114%

Hence, .
lu® (2, ) | rmo () < Coll Fe*l1E,c0,)- (18)
Multiplyi acf) .. . : .
plying (13} by o taking the sum in £ from 1 to IV, and integrating in

t from 0 to £, we obtain

f[‘u; uff + z (— 1}m+IF|anunNDpﬂN + Agu” Uy }ri'rdf+

&, Ipllal=1

+{~—-1]'“[( Z a,,DFuNu?+ agu u") dedt = —ff;.?"rdz:dt (19}

[p|=L

Hence,

20w 12,00+

[ pis {—1}m+l”|ﬂwfﬂ‘-t)D"U"(‘-'i-f}_D-”“-”(¢=ﬁ}+r‘mlluﬂimrﬂllzli¢-

Iel.lal=1
= ]
= 3 (- ._éf'wmuw de di—
i, Iellgl=1

m P N NN » u :
_{_}‘BRB-[{MZBIRPDH + apu™u ]dmdt Em/ftdzdt

By Cauchy inequality and (2) we obtain
||“: ||;..,(n Y+ [ (=, f]‘H.::m.[n} = .D1||u l@m.am:} <+ D2||.I"||L{m}-
Thus,

llg’ ||L.,m¢;| < Dyflu® |3, oiagy + Dallf ||L,{nq = ||“: HL,:n,,]. =
2
< Dyl[w” fpmogany + DallfliZam. S

< Dylfu" s + Dallfe L =)
According to (18), we obtain .
¥ II3, ) < (CeD1 + Da)llfe* 1T, .- (21)
Thus, (18), (21) imply
llw¥ [ Frmsqay < Clfe*ILynuny (22)

where C does not depend on NV
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Since the sequence of functions {u’} is uniformly bounded in H™!(fle), we
can take a subsequence which is weakly convergent in H™!({l,,) to some function
u(z,t). We will prove ﬂmt u(z,t) is the solution of (4)-(6). Since u® {:: 0) =10
Ve and uM(z,t) € H™ L(Q) , it follows that u(z,0) = 0, u(z,t) € H™ L{far).
For any T > 0, multiplying (13) by de(t) € H*(0,T), de(T) = 0, taking the sum in
£ from 1 to N and integrating in ¢ from 0 to £, we obtain

f ul fdzdt +
fip
+(-1)™ [ i {—1:|leaﬂmu"ﬁﬁ;+{—nw”ﬁ}dm+
Qg =lpllgl=1

+{—1}“‘j [ i n,.D"u”ﬁ+aqu”ﬁ] dzdt =

|pl=1

=— [ fidzdt. (23)
i

The above equality is true for any function n € My, where My is the set consisting
of functions which have the form 3NV di(t)wi(z), di(t) € H(0,T), di(T) = 0.
Since {u”} is weakly convergent, passing to the limit as N — oo in equality (23).
We get

[plilgl=1

: f ugfidzdt + (—1)™ f [ i (-1}Iﬂamnvurw_n+(—nmuﬁ]dmdc+
(i

T

+(—=1)™ f [ z . DPuf] + aouf | dedt = ffﬂdﬂl‘-ﬁ- (24)

Ip|=1

o

Since M = U%_, My is dense in H™9(Q}r), it follows that (24) holds for any
function 5 € H™O(Q7), n(z,T) =0, ie., u(z,t) is a generalized solution of (4)—
(6). Moreover, the weak convergence of {u”} and (22) imply that

lu(z, e}l ama(nn) = |Iu (2, )llzrmr ) < CllFE N Latrn)-

The theorem is proved.
3. Asymptotic behaviour of solutions. We now consider the asymptotic behaviour
as £ — co of generalized solutions of the first boundary-value problem

{—l:lm_]L{::,t,D]_u-m = f(z,1), (25)

where (z,t) € {1, such that

ISSN 0041-6033. Vkp. sam. wcypw., 2003, m. 55, Me 8
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u(z, t)|emo = p(z) € H™(0), (26)
a7
ﬁrmzn, j=0,...,m—1. (27)

Theorem 3. Suppose that
1) @pq are continuous on {le, whenever |p| = |q| = m;

a
2) [%%’ < 1<lpl, lgl S m, p= const;

3) there exist Ay > Az > 0 and a function B(t) € L1(0, +o0) such that fe't e
€ Ls(0, 4+c0), and

Bapq | |dap
m‘“{l Bt H&t

sla = (=1)™ (Ao + Jm}![} < B(t) V(i z) € Qe

Then problem (25)—(27) has a generalized solution u(z,t) in H™(0,). More-
aver, we have
ult,z) = p(z)e™™* +o(e”FY) as t— o0,

Proof. We set v(xz,t) = u(xz,t) — p(x)e~*!. Then problem (25)—(27) can be
written as

{—IJ’"‘ILL:z,tTD)u — v = flz,t) + gt [(ul}mL(z,t,D]fp - J.;rp(:‘t:)], (28)
where (z,t) € g, such that

v(z,0) =0 on £, 29

2ol =0, j=0,..,m-1 (30)
|

Consider g(z,t) = f(z,t) + e~ 2¢[(=1)™L(z,t, D) — Ap(z)]. It is easy to see
that ge*st & La(f1..) . Thus, by virtue of Theorem 2, problem (28)~(30) has a gener-

alized solution v(x,t) € H’“rl(nm}. Furthermore, by the same proof for Theorem 2,
as N — oo, inequality (16) implies that

lle***v(z, )| 7may < C1, (1)

I(e***v(z, 8))el.a,.) € Ca. .(32)
It follows from (313, (32) that

e [llv(@, )liE,q) + 1DV, DlIE, | < Cre=™,

[=+]
fﬂj‘"]Wt{‘-‘?-ﬂliiﬂn}df <
0
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oo

< ﬁ[ e2t]|(Pty(z, )2, oy di+

[+
+ f A%s*’*llv{m.tj]ﬁ,{mdt < Ca.
o

Thus,

o3
f ghat [n'ﬂ:{ﬂ:- f}ui,m} + ||‘Jl:$ufﬂ|i,{m + || Dw(z, t)[li,m},]dt < oo
b

By virtue of the Nash inequality [10], this gives

[o(z,t)] < Ce=#t as t— oo

This implies that the generalized solution w(z,t) of problem (25)—(27) satisfies the
inequality

|u(z, t) — e~Mtp(z)| < Cem .

The proof is completed.

Kondpamsen B, A., Oneiinux O, A, Kpaseuis 3a0a4m LIS YPABHEHHA © SACTHLIMH MPOHIBOTHEIMI B
Hermagxnx ofnacrax /f Yemex mat. payk. — 1983, - 38, suin. 2. - C. 3=T6.

Hazapos C. A, lnawengecruii 5, A, IRANANTHYECKHE 33784 B 0BRACTAX © KYCOYHO-THAOROH rpa-
HHuel, — M.: Hayea, 1991, - 336 ¢

HMadwxcencroan O. 4. Kpacawe 3agedn saremarHyeckodi duzuxn, — M.: Haywa, 1973, - 407 c.
Hazyen Mans Xyne, O magrocrs pewenns sanaun Juprxne gng renepSomnusckrx cuotes s ofinac-
TAX ¢ KOHHYSCKHMH WIH Yrnosssu Toskamn f Joxn, AH CCCP. - 1998. =362, Ne 2. - C. 161 = 164,
Madpveerexan O, A. O HecTAUMOHAPHLD. CNEPATOPHLX YPABHEHHIN H HX NPRIOKSHHAX K naHel-
HEIM 3amavem maTesmaTHeeckol guankn i Mar, cb. = 1958, - 45, Mo 2. - C, 123-158.

Hoan Ban Hzox, AcumMnromska pewennii Kpacnulx 30084 ong NapaGonmuqeckHx YparHeHHH BEToporo
NOPAIKE B ORPECTHOCTH YIIOBOH ToUKH rpanHun  Beerd. Mock. yi-Ta. Cep. MET. H Mex, — 1984,
=Me 1. =C, 34-36.

Yan 3yl Xo, Sewun I H. Kpagesie 3anayn nna napaBonH-ecks cCHETEM NESBRONH{HEpeHUHANEHEX
ypasnern# & Jorn, AH CCCP. = 1971, = 198, e |. = C., 50=53.

Apedioes B, K., Koudpamees B, A. Acamnmomaueckos nopsaenue pewennii sTopoii xpaceoif samasm
ana wenHHefinsix napaSonnueckux ypasuenuft & Onthdepenu. ypasnennr. = 1993, = 29, Me 12, =
C. 21042116,

Duxepa [T Teopesbl CYLUECTROBAHKA B TEOPHH ynpyroeTh. — M.: Mup, 1974, < 157 .

MNagh J. Continuity of solwtions of parabolic and elliptic equations & Amer, J. Math, — 1958, — 80, -
B 931984,

Al

Rexceived 14.09.2001

IS5N 0041-6053. Viep. sam. oecypre, 2003, m, 53, he &



	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034

