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LIE-ALGEBRAIC STRUCTURE
OF (2+1)-DIMENSIONAL LAX-TYPE INTEGRABLE
NONLINEAR DYNAMICAL SYSTEMS

JII-AJITEBPAT9HA CTPYKTYPA
(2+1)-BUMIPHHMX IHTEIT'POBHHX 3A JIAKCOM
HEJIHIMHUX JTUHAMIYHUX CUCTEM

The Hamiltonian representation for a hierarchy of Lax-type equations on a dual space to the Lie algebra
of integral-differential operators with matrix coefficients, extended by evolutions for eigenfunctions and
adjoint eigenfunctions of the corresponding spectral problems, is obtained via some special Blacklund
transformation. The connection of this hierarchy with Lax-integrable two-metrizable systems is studied.

Buaiieno 1ramilnTonoBe soGpadcenis Juis iepapxil pinnsns tamy Jlakca na cnpsiKeHoMy NpocTopi
anebpu Ji inrerpo-jidbepenuiasmimx onepaTopis is MaTpuunHMu KoedilienTaMH, posUIHpeHol eBo-
Jnortiero Birackux hynKIif BiINOBI/HHUX CNEeKTPaJIbHHUX 3a/[ad, 3a JIONOMOI0I0 eAKOro CleliasIbHOro
nepernopemsi Bexoynjia. docnijpkeno ap’sisok 1iiel iepapxii 3 inrerposuums 3a JlakcoM ABOMETpPH-
3ORAIHMH CHCTEMAMM.

1. Introduction. Since the paper of M. Adler [1], which had been treated an
one-dimensional differential operator algebra, there was understood that a wide class of
Lax-integrable Korteweg — de Vries-type nonlinear dynamical systems in partial
derivatives [2— 5] could be described by means of Lie-algebraic technigques.
Especially, it was shown that all of them are representable as coadjoint orbits of some
Lie groups. The analog of a mentioned above construction for a class of matrix affine
groups with central extensions was represented in [4, 6—8], where its relations with the
momentum mapping and %R-matrix approach had been stated. But the extending
problem for the Adler’s construction in the case of a multi-dimensional differential
operator algebra still stands open. Some preliminary results in this directions was
obtained by L. Nizhnik [9] and A. Prykarpatsky [10].

In the article we suggest a new approach to the partial solving of this problem based
on the notions of a Backlund transformation [4, 11] and a tensor product of Poisson
structures on a dual space of an one-differential operator algebra [12, 13]. By use of
the invariant Casimir functionals’ property under the Backlund transformations we
construct a wide class of Lax-integrable (2 + 1)-dimensional dynamical systems and for
the first time represent them as a compatibility condition of three some special linear
first order differential equations, called here a triple linear Lax-type representation.

2. The general algebraic scheme. Let G:=C~ (Sl; ‘Q) be a Lie algebra of

loops, taking values in a matrix Lie algebra 9. By means of % one constructs a Lie
algebra @ of matrix integral-differential operators [1, 10]:
a:= E a; &,
j<e
where the symbol &:=09/dx signs the differentiation with respect to the independent
variable xe R/2nZ = S'. The usual Lie commutator on ‘:91 is defined as:

[G,b] := dob — boa

©_n

forall @, be G, where “o” is a product of integral-differential operators, taking
the form:
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5 a8 a“"a“b
aob = .
ag ol OE% 9x™

On the Lie algebra 9 there exists the ad-invariant nondegenerated symmetric
bilinear form: :

2n
@b) := [ Tr(@ebydx, (1)
0

where Tr-operation forall @ € % is given by the expression:
Tra := resESp& = Spa_,,
and Sp is the matrix trace. With the scalar product (1) the Lie algebra G s
transformed into a metrizable one. As a consequence, its dual linear space of matrix
integral-differential operators @* is identified with the Lie algebra, that is G =4
The linear subspaces ‘§+ c% and 4 c % suchas

. n(@) <<es - —
(§+ = {a:= E ﬂjE_\J:aj E(Q;j=0an(&) )

i=0

{3 = 2 U+l)bj: b_} E@,J’.EZ_I_},

are Lie subalgebras in % and 4 = ‘§+ @® 9_. Because of the splitting of % into
the direct sum of its Lie subalgebras one can construct a so called Lie — Poisson

structure [1, 4, 5, 7, 8] on @*, using the special linear endomorphism % of G:
P -P ~

R = 2 = Pitg = @i? Pi@:}:=

For any smooth by Frechet functionals v, L€ & (‘@*) the Lie—Poisson bracket on
@* is given by the expression:

wda® = ([vr®, Vud],) @

where [ € %* and for all a, b e G the R-commutator has the form [6—8]:
[a. 6] - [Ra, b] + [a Rb]. @)

subject to which the linear space G becames a Lie algebra too. The gradient
Vy(f) e % of a functional YE QB(‘Q*] at a point e % with respect to the scalar
product (1) is defined as
‘ sy() := (Vx(d),3I),
where the linear space isomorphism @ = G* is taken into account.
The Lie—Poisson bracket (3), associated with the R-commutator (4), gcncrates

Hamiltonian dynamical systems on % with Casimir invariants ye I(9"), satisfying
the condition:

[Vvi@)i] = o, &)
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as the corresponding Hamiltonian functions. Due to the expressions (3) and (5) the
mentioned above Hamiltonian system takes the form:

L .= [awy(i] = [vr.d.1], (©)

being equivalent to the usual commutator Lax-type representation [2—5]. The relation-
ship (6) is a compatibility condition for the linear integral-differential equations:

If = M, (7

af _ vy i '
% VY. (Df, (8)

where A € C is a spectral parameter and the vector-function fe W(Sl; IBI) is an

element of some matrix representation for the Lie algebra % in some functional
Banach space HL.

Algebraic properties of the equation (6) together with (8) and the associated
dynamical system on the space of adjoint functions f* & W‘(Sl; ]EII):

‘% = ~(vvd). £, ©)

where f* e W* is a solution to the adjoint spectral problem:

%k

I*f* = vs,

being considered as some coupled evolution equations on the space 4* @ W@ W is
an object of our further investigations.

3. The tensor product of Poisson structures and its Backlund transformation.
To compactify the description below we will use the designation of the gradient vector

T
Wi, 7 7 = (g—jg—;g}

for any smooth functional ye QZJ(@* ewWae W*)‘ On the spaces @* and wWo W
there exist canonical Poisson structures [5, 11, 13] :

5 . 8, [[5—1() ,I] - Pl,f] (10)
ol Sl /s 8l +
atapoint [ € %* and
T T
{éﬁ; 57} Ay [E:f_ _§1J an
§ ) & of

at a point (}. f') e Wow correspondingly. It should be noted that the Poisson

structure (10) is transformed into (6) for any Casimir functional ye I(@*). Thus, on

the extended space 4* @ W@ W™ one can obtain a Poisson structure as the tensor

product ©:=0®J of the structures (10) and (11).
Let us consider the following Backlund transformation [4, 11]:

CLrf) B (Lrr)Ff=r7=r) (12)

generating on 4*®W@®W" a Poisson structure © with respect to variables
(!, f, f*) of the coupled evolution equations (6), (8), (9).
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The main condition for the mapping (12) to be define is the coincidence of the

dynamical system
dl df df
(d: dr’ dr] -ovy(l. £. £') 3

with (6), (8), (9) in the case of y e [(@*), i. e. when the functional vy is taken to be
not dependent of variables ( 5 f‘) e WOW". To satisfy that condition, one should

find a variation of some Casimir functional ye I (@’) at 81 =0, taking into account
flows (8), (9) and the Backlund transformation (12):

o770 = () (G 7 >}

ol ﬁfJ (&),

(& )f o))+ (&), >J

((f ] [“f ]
)+ G

- Baeter)+ (Lretow) -
) * &
( Ls(ret e f")) ( 4 az), (14)
where ye I ( A*)‘ As aresult of the expression (14) one obtains the relationships:

8| ;_, = e ® "),

I
1l

or having assumed the linear dependence of [ and T e €* one gets right away that

[ =1+ f'0f". (15)
Thus, the Backlund transformation (12) can be now written as
(Lrr) 2 ((=i-f'ef 1. 1) (16)

The expression (16) generalizes the result, obtained in the papers [12, 13] for the Lie

algebra G of integral-differential operators with scalar coefficients. The existence of
the Backlund transformation (12) makes it possible to formulate the following theorem.

Theorem 1. The dynamical system on 4* ®@ W®W", being the Hamiltonian
with respect to the canonical Poisson structure o: T*(‘@* ewe W*) -
3 T('@" ewe W*) and generated by the evolution equations:

d - 7z ~% 5
di' [Vr.@.1] - [7r@.1),. il_:= ;Y %=_5_;’

where ye 1(4*) is a Casimir functional at [ € 4*, connected with 1 € G* by
(15), is equivalent to the system (6), (8) and (9) via the constructed above Backlund
transformation (16).
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By means of simple calculations via the formula (see [4])
6 = B'Op™*
where B:T(@"@WOW') — T(4° @ W@ W") is the Frechet derivative of (16),
one brings about the following form of the Poisson structure @ on Towew s

a(f,f,f*):
&y i 8*»( oy
[[Bf):[ [ 5J - Sf of 5o oF
vy(i. £, £) =% g}—[g}'jf . an
5y . (7Y
-+

that makes it possible to formulate the theorem.
Theorem 2. The dynamical system (13), being Hamiltonian with respect to the

Poisson structure © in the form (17) and a function ye [ ((@*), gives the inherit-

ed Hamiltonian representation for the coupled evolution equations (6), (8), (9).
By means of the expression (15) one can construct Hamiltonian evolution equa-

tions, describing commutative flows on the extended space G OWOW" ata fixed
element [ € 4*. Dueto (17) every equation of such a type is equivalent to the system

d_ g,

dr,
df T
— = [f, 18
= f (18)
dar’ —
o ,
dat ¢

generated by involutive with respect to the Poisson bracket (10) Casimir invariants
Yy € I(‘Q*), ne N, taking the standard form:

&

l"’ I
u+l )

Yo =
at [ e 9*.
The compatibility conditions of the Hamiltonian systems (18) for different ne N

can be used for obtaining Lax-integrable cquations on usual spaces of smooth 2m-
periodic multivariable funcucms that will be done in the next section.
4. The Lax-integrable Davey—Stewartson equation and its triple lmear

representation. Choose the element [ € 9* in an exact form such as

o 1 0 0 u
o sl o
0 -1 -u 0
where u, I € S(SE;C) and 9 =gl(2; C). Then
§  # [fl&*‘ff fﬁé“fi}
[ [ + :

= L - (19)
LER  RE A
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%

where f= (fi,fii)r, f
conjugation. Below we will study the evolutions (18) of vector-functions ( -+ f*) €
€ W(SI; Cz) @ W*(SI;CZ) with respect to the variables y =t; and t=1, atthe
point (19). They can be obtained from the second and third equations in (18), having

put # =1 and n =2, as well as from the first one. The latter is the compatibility
condition of the spectral problem

T . .
= (J’}‘, A ) and “~” can mean the complex or related with it

o =20, (20)

where @ = (@, ®,)" e W(Sl; Cz), A € C is some parameter, with the following
linear equations:

% = [®, 1)
ae -
= = I’o, (22)

arising from (18) at n=1 and n=2 correspondingly. The compatibility of equations
(20) and (21) leads to the relationships:

3 . Om .
a_;‘ = —2£%, a—;‘) = —2£'5, (23)
A _ M _ A _ A g
dy  ox 4z dy  ox fa
 _ B, . Wb _ P,
—ay = —ax + ufi, S = o + ufy .

Analogously, replacing te R by it e iR, i>=-1, one gets from (20) and (22):

d ( 2%u du %
- (Frotas o)) & --(ZFvmtaress) o
a(fifi )_a(flfl*) _ 1d(um) _ a(f2f2)+a(f3f;) (25)
dy ax 2 dy - ox ay )

_(2f2£+ui)f3—-g—-zfl},

4 _ *s[aa;fz (2ffs +uu)f'—%f1’]

The relationships (24), (25) take the well known form of the Davey—Stewartson
equation [3, 14—16] at & € S(SI;C) being the complex conjugated to u € S(SI;C).

The compatibility for every pair of equations (20), (21) and (22), which can be
rewritten as the first order linear ordinary differential ones in such a way:
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A T il
Rl 4 F& (26)
dx * *
i A 0
A0 —f
L e @n
dy & *
h -5 0
. 3
Reafl o e Mg
ao 10u 2 * 9
a0 gl Lo a3 a5 -22 | 28
PT L 28}1 fafa o ay : (28)
+ Of « of " "
g agefa gpftgg
dy dy

where @ = (@), ®,, ®;)" € W(S';C?), provide its Lax-type integrability. Thus, the
following theorem holds.

Theorem 3. The Davey — Stewartson equation (24), (25) possesses the Lax re-
presentation as the compatibility condition for (26) and (27) under the additional
constraint (23), arising naturally from the equations (26) and (27).

In fact, one has found above a triple linearization for a (2 + I)-dimensional dynami-
cal system, that is a new important ingredient of the Lie-algebraic approach to Lax-type
integrable flows, based on the Backlund-type transformation (16) developed in this
work. It is clear that the similar construction of a triple linearization like (26) —(28) can
be done for many other both old and new (2+41)-dimensional dynamical systems, on
what we plant to stop in detail in another work under preparation.

5. Conclusion. As it is well known, there existed by now only two regular enough
algorithmic approaches [4, 5, 9, 10, 17] to constructing integrable multi-dimensional
(mainly 2 + 1) dynamical systems on functional spaces. Our approach, devised in this
work, is substantially based on the resulis previously done in [11, 13], explains
completely the computational properties of multi-dimensional flows before delivered in
works [5, 15, 16]. As the key points of our approach there used the canonical
Hamiltonian structures naturally existing on the extended phase space and the related
with them Backlund transformation which saves Casimir invariants of a chosen matrix
integral-differential Lie algebra. The latter gives rise to some additional Hamiltonian
properties of considered extended evolution flows before studied in [5, 13] making use
of the standard inverse scattering transform [2, 3] and the formal symmetry reduction
for the KP-hierarchy [15, 16] of commuting operator flows.

As one can convince ourselves analyzing the structure of the Backlund-type
transformation (16), that it strongly depends on the type of an ad-invariant scalar

product chosen on an operator Lie algebra ¢ and its Lie algebra decomposition like
(2). Since there exist in general other possibilities of choosing such decompositions and

ad-invariant scalar products on @, they give rise naturally to another resulting types
of the corresponding Backlund transformations, which can be a subject of another
special investigation. Let us here only mention the choice of a scalar product related

with the operator Lie algebra % centrally extended by means of the standard Maurer —
Cartan two-cocycle [4, 7, 10], bringing about new types of multi-dimensional
integrable flows.

The last aspect of the Backlund approach to constructing Lax-type integrable
flows and their partial solutions which is worth of mention is related with
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Darboux — Backlund-type transformations [18] and their new generalization recently
developed in [19-21]. They give rise to very effective procedures of constructing
multi-dimensional integrable flows on functional spaces with arbitrary number of
independent variables simultaneously delivering a wide class of their exact analytical
solutions, depending on many constant parameters, which can appear to be useful for
diverse applications in applied sciences. _

All mentioned above Backlund-type transformation aspects can be studied as
special investigations, giving rise to new directions in the theory of multi-dimensional
evolution flows and their integrability,

1. Adler M. On a trace functional for. formal pseudo-differential operators and the symplectic struc-
tures of a Korteweg — de Vries equation // Invent. math. — 1979. — 50, N® 2. — P, 219-248.

2. Lax P. D. Periodic solutions of the KdV equation // Communs Pure and Appl. Math. — 1975. — 28,
—P. 141-188.

3. Saxapoa B. E., Monaros C. B., Hosursoa C. I1., Numaeackuii JT. J1. Teopus coymronon. Meroj
obparioit sajjaun / IToj pejt. C. IT. Honukona. — M.: Hayka, 1980. -319 c.

4. Prykarpatsky A. K., Mykytiuk I. V. Algebraic integrability of nonlinear dynamical systems on
manifolds: classical and quantum aspects. — Dordrecht etc.: Kluwer Acad. Publ., 1998. — 553 p.

5. Blaszak M. Multi-Hamiltonian theory of dynamical systems. — Berlin; Heidelberg: Springer, 1998.
—345p.

6. Cemenoa-Tan-Lancruii M. A. Yro rakoe R-marpun@ // @ynKiwon. anajius 1 ero npur. — 1983.
—17, N4, -C. 17-33.

7. Pelivan A. T., Cenenos-Tan-Lanckui M. A. Cordraconamisie ckobky [Tyaccona JIIs JNAKCOBLIX
ypasiiennit u KiaccHueckne R-marpunet /f San. nayy. cem. Jlemunrp. omi-nns Mar. un-ta AH
CCCP.— 1987. —164.—C. 176—188.

8. Oevel W. R-structures, Yang — Baxter equations and related involution theorems // J. Math. Phys. —
1989. - 30, N*5,. —P. 1140-1149.

9. Huasnuw J1. J1. OBparible sa)(aun paccesimms JUis 1'unepbosinyeckix ypasuenuif. — Kuens: Hayk.
Jymka, 1991. -232 c.

10. Prykarpatsky A. K., Samoilenko V. Hr., Andrushkiw R. I., Mitropolsky Yu. O., Prytula M. M.
Algebraic structure of the gradient-holonomic algorithm for Lax integrable nonlinear systems. I //
J. Math. Phys. — 1999. —35, N2 4, —P. 1736-1777.

11. Oevel W., Strampp W. Constrained KP hierarchy and bi-Hamiltonian structures // Communs Math.,
Phys. — 1993, —157. - P. 51 -81.

12. Mpumyaa M. M. Jli-anreGpaiuna crpykrypa iirrerposnux neJiinifimx juiaMivimx cucreM Ia
poswupennx ynknionansiux muorosuiax // Yxp. mar. xypm. — 1997, — 49, N® 11. —
C. 1512-1518.

13. Mpurapnamensiuil A. A. Crpykrypa inrrerposnmx noTokis Jlakea iia HeJloKalibluMx MHOTOBHJLAX:
Junamivii cuereMu 3 JUKepedamu ff Mar. merojm ra dis.-mex. noss. — 1997, — 40, N* 4. —
C. 106-115.

14, Kyauw [1. [T., Junosckuii B, [. O raMuinyrolionolt Mirrepnperaiyi MeTojia aberpakiiol sajaun
s ypasuerst Issu — Crioapreona // 3am. nayy. ce. Jlenmmnp. orji-1ms Mar. un-ra AH CCCP.
—1987. -161. - C. 54-71.

15. Konopelchenko B., Sidorenko Yu., Strampp W. (1+1)-Dimensional integrable systems as symmetry
constraints of (2+1)-dimensional systems // Phys, Lett. A, - 1991, - 157. - P. 17-21.

16. Canoiiaenco A. M., Caaoiinenko B. I., Cudopenxo 10. M. lepapxist pinismin Kajjomiena—
Tlersiawmiii 3 nejoKaymIMME 1’ siasmi: GaraToBUMIpI ysaraliblemnis Ta Touli poas’ 4aKn pejry-
KoBalMX cHerem // YKp. Mar. sxypit — 1999, =49, N2 1. - C. 7897,

17. Manaxoa C. B. Meroji o6pariioit 3ajia4H PACCESIHI M JEYMEPIILIE SBOJIOIHOIIILIE YPaBIIeI s //
Yenexu Mar. nayk. — 1976. — 31, N2 5. — C. 245-246.

18. Matveev V, B,, Salle M, I, Darboux—Blacklund transformations and applications. — New York:
Springer, 1993, - 230 p,

19. Nimma J, €. C. Nonlinear evolution equations and dynamical systems (NEEDS'94) / Eds
V. G. Makhankov, A, R. Bishop, and D. D. Holm. — World Sci. Publ., 1994,

20. Hpurapnameskuil A. A., Caawilaenro A. M., Canoilaenko B. I'. CrpyxTypa Ginapumux nepe-
‘Tnopens Tuny Jap6y 1a ix sacrocysamst 8 Teopii cositonin // Ykp. mar. xypn. — 2003, — 55,
N*12.-C. 1704-1719.

21. fpurapnamcosuii A. A., Canmolinenso B. I'. Crpyxrypa Ginapnuux nepernopeus THny Hap6y it
epMiToBO-CcrpsiKelHX Jepenmiainbimnx oneparopin /f Tam xxe. —2004. — 56, N2 2. - C. 271 -275.

Received 24.02.2003

ISSN 0041-6053. Yip. smam. sypie., 2004, m. 56, N* 7



	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082

