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BCS MODEL HAMILTONIAN OF THE THEORY
OF SUPERCONDUCTIVITY AS A QUADRATIC FORM"

MO/IEJILHIIA TAMIJIbTOBIAH BKIII
TEOPII HAIIIPOBITHOCTI SIK KBAJTPATHYHA ®OPMA

N. N. Bogolyubov proved that the average energies (per unit volume) of the ground states for the BCS Hamil-
tonian and the approximating Hamiltonian asymptotically coincide in the thermodynamic limit. In the present
paper, we show that this result is also true for all excited states. We also establish that, in the thermodynamic
limit, the BCS Hamiltonian and the approximating Hamiltonian asymptotically coincide as quadratic forms.

M. M. Borosnofion jlonin, wo cepepul enepril 1ma oo of'emy ocuoBumX cTaiiy Uit ramMiasroniana
BKII ra anpoxenmyiodoro ramiisromniana y Trepyojuananmiviil 'paneni acuMmroTHuo sGiraoTses. Y janii
pofori mokasano, wWo nei pesylisrarT Mae micne i U yeix sByjpxennx cramis. Bojinowac seranonlieno,
o ravisyronian BKIT 1 anpoxeumyrounii raMisinronian y repmojinamivnii 1panuni acammrotnyino s6i-
IRIOTBES SIK KBJIpaTHyri (hopMiL.

Introduction. Consider the model BCS Hamiltonian [1] for a system of electrons located
in acube A centered at the origin of coordinates with periodic boundary conditions:

B = Z oty + Vngb(p PVt = Hon + Hra- (1)
o pr
Here, p is a quasimomentum, p = %n, n=(ny,ne,n3),ni €2,1=1,2,3, Z isthe
2
set of all integer numbers, &, = ;;m — i, m is the mass of an electron, p is the chemical
potential, L is the length of the edge of the cube, V = L3 is the volume of the cube

A, ¢(p,p') is the 11’1Le1acuon potential, and 1,{; and 15 denote the operators of creation
and annihilation of an electron with momentum p and spin ¢ = %1, § = (p,o). For
simplicity, in the interaction Hamiltonian Hy 5 we use the notation.p,p’ for (p,1) and
(p;!l)) —-p and _PI for ('_'p"_'l): (_pl":_l)'

The potential ¢(p,p’) is a piecewise-continuous 'Funct'ion'of (p,p'), concentrated in
= !
;;m—,u]<w,’ ‘%—#] <w,w>0.
Consider the approximating Hamiltonian introduced by Bogolyubov [2]:

"
a layer near the Fermi surface

Happr,a = Z“f’ﬁgp":bﬁ + Z cp¥p¥_p + Z -C:iﬂfi’-p'% =i (2)
7 P P
where

1 1
=50 b0y, =50 d(0.0)ApAy,
p' . p.p!

Ap = (88, Dph_p83) = (68, Y-ptipdS) = Uptp,
(3)

¢ = [T Cur +vidto_.
k
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uk-\/l(l I
S - = T |1 k= et T |
2 VeR+ i 2 Ver+cg
|0) is a vacuum, 14x]0) = 0, and @ is the ground state of the approximating Hamilto-
nian.
The self-consistency equation

1 1 .
=y ;ﬂp’p’)‘q”’_: V;;%, P vy (@

where uy, vy, are defined according to (3), coincides with the condition of the minimum
of energy for the ground state of the Hamiltonian Hy 5 = Happr A

(60, Han ) = 2 Z:'U &+ 17 Z B (p, P')pUpUp Ups (5)
P
with unknown uyp, v, such that uf, "H"p ='1. Itis known that the minimum of functional
(5) is realized on wuy, vy defined by (3), and ¢, are a solution of equation (4).
Denote by ¢g the state

: * %
o = [ T(ur +vrtbrb_p)l0), (6)
= .
with unknown g, v such that u.;‘nl—-uL = 1. Let us calculate the energy of Hy on ¢g.
‘We have

(¢0, Hado) = 2 Z UpEp + v Z &(p,p )upypup"”p % Z o(p, .'P)'U;- (7)

.y’
Note that, in the classical work [1] (see also [3]), the last (third) term % > o(p.p)v;
. i ¥ . . be p

absent.

The calculation of a condition for the minimum of functional (6) for (¢o, Hady)
reduces to the solution of an equation of the fourth order with respect to vg‘ The latter
problem turned out to be so complicated that the author refused to solve it. If we assume
that the potential satisfies the condition ¢(p,p) = 0, then functional (7) coincides with
functional (5), i.e., (¢o, Hado) = (¢§, Ha,a¢§), and the conditions for the minimum of
functlonals (5) and (7) coincide and, hence, ¢§ = ¢o. Note that the condition o(p,p) =
= 0 is not restrictive from the physical point of view because [ ¢(p,p')dpdp’ does not
depend on the behavior of ¢(p,p’) on the hypersurface p = p’ of }ower dimension.

Bogolyubov [2] proved the fundamental equality

Jim = [(do, Hado) ~ (65, Hand)] =0, ®)

without explicit calculation of ¢y and even without the assumption that ¢g is sought
in the form (6). (We have solid reasons to assert that, in [2], ¢p is given in the form
(6), and up, v are determined from the condition of the minimum of functional (7) with
¢(p,p) # 0, though we failed to prove the existence of the minimum.) If ¢(p,p) = 0,
then ¢p = ¢f§ and -

(¢0, Hado) = (65, Hadg) = (48, Ha,n45) (9)
forany A.
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Accordlng to the arguments presented in [4 — 6], the ground state @§ 1is the exact
ground state of the BCS Hamiltonian H, in the limit as V — oco.

In [7—10], we proved that ¢§ and the excited states are asymptotically exact eigen-
vectors of Ha. Moreover, we established the existence of one more ground state of Hjy
and its excitations. We used in [7—10] certain Hilbert space that turns into the Hilbert
space of translation invariant functions, in the thermodynamic limit.We have been able
to prove existence not only averages of Hj over the ground and excited states but also
existence of the ground and excited states in the thermodynamic limit. In given paper we
use the usual Hilbert space and prove only existence of averages of Hj.

‘We introduce the operators '

* *
p = upwp - 'F’p"p—p: Qp = up'{ibp - 'i-’_p'ff)_p,: p; =_ (pr 1)1 —N= (_p: _1):
(10)
. * *
Cp = UpW_p +Up¥Pp, . Ap = Uptpp + 'Up"xbp:
where i, 'U,, are determined according to (3). These operators a a, together w1th the
operators w 1, satisfy canonical anticommutation COndIth]‘lS The state ¢§ is a vacuum

for ap, a_p, ie., aipd§ =0. ‘We form the excited statas
n+m T
H Op; ]___[ G, & 88 (11)
i=1 j=n+1
where, among (p,},_ 1 thcm may be oper ators with spm =L Wc cstabllsh the following
theorem.
Theorem 1. The equalities

n+m n+m
V—-DD ? ( H Qlp; H Q:PJ a‘f’a ¢0 ! (HA a. A') H Op; H C!pj&’_.p, QSO)
=1 J=n-+1. j=n+1l
1 1 n+m n+m
= Vl-Jf»nou % {2"—' Z Z B(Pi, ) thp; Vp, U VU, +

i=n+1 j=1
n4mn+m
1
‘+‘ E E d’(pup‘g)umvmumvpj"{-'
i=1l j=1
+m n4m,
1 T

P Do D BB gy 3 S ¢'(p,p)ﬁ;§} =0 (12

1—n+1 J=n+1 (p);-‘:p,.
hold for arbitrary finite n and m, and for m and m that tend to oo together with V
n 4+ 2m)? ;
but so that lim (—-t-—-—-)—- = 0. Here, U, = vy, for p# (p);‘:::',_l and By, = —Up,

—oa V2
forn+1<ji<n+m.

If ¢(p,p) = 0, then equality (12) holds even without the factor it for arbitrary
finite n and m, and for n and m that tend to oo together with V but so that
lim (n+2m)* G

V—oo ’
The following formula, which determines the energy of excited states, is true:

n+m n-+m
(Ham H D:P_TQ—P; QI)DlHA H CQip; H apja—m@i’o) . (@8: H;\.ng) =

=1 Jj=n+1l i=1 Jj=n+1
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n+m n+m n4+m
= Z:E +2 Z EPJ + 2 z Z ¢(pt:pj)upuvpnuPJvP;+
j=n+1 1—n+1 j=1

1 n+mn+m

+ v Z Z Gf’(Pnpj)umvpt“m”p:"'

i=1 j=1

n+m n+m

+ — Z Z ¢ p“pj)u?,vp,_%,vp,

1.-n+1j n+1
n+m n+m .
+— > ¢, pi)up, — Z é(pi, pi)vp,- (13)
1.—'n-|-1 i=1

It follows from (13) that the energy of excited states asymptotically tends to Z:; 1 Bpit
+2y i By, as V — 0.

The following theorem is true.

Theorem 2. The states

s ni+ma
Hapl H o.rpu o:_pJf 100,

j=n1+1

fig+ma
P2 = Ha' H cxp:cx_pzqﬁo,

i=l j=na+1

where nq # nNg, M1 F Ma, OF N F N, My = mg, or My = mng, My F Ma,
my + me = 3, remain orthogonal after the action of the Hamiltonian Hpy on one of
them, ie,
(@1, Haha) = 0. (14)
I my = mg, ny = ng, but (p)n, # P)ny 08 (P})my # (PF)my, M1 +ma 2>
> 4, then equality (14) is true. In the case where ny = na, (p} )njl = (p)ny, M1+
+ my = 2, (p})m, # (0})ms, We have Vlim (¢1, Hap2) = 0; if mq +mg =1, then
—+00
1
Jim_ (61, Haga) =0.
Using Theorems 1 and 2, we prove the following main theorem.
Theorem 3. The following equality is true:

i _(ch‘H&pkH&p;a—pfﬁf’us(ffn— Han)%

Voo V

i=1 Jj=
X Zc” Hap Hapna_p éo)
i=1
il 1 n+m n+m
SR BTN S ST
k1 i=n+l j=1
1 n+m n-+m
+?Z z ‘ﬁ(Pi:Pj)uPs”Pfumvm"l‘
i=1 j=1
n+m n+m 1 .
A Y D MmNttt Y ]+
1—-n+l F=n+1 p#E(P)n
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+ 3501 30 D Bt sl 560 2) (g +020d) =0, (19)
kl ns

where

Z IC};L‘E < 00, Z Ic'm]z <00, Z lekt| < oo, Z ]C"Tsl < 00.
&l kil kil 7

It follows from Theorem 3 that, for ¢(p,p) = 0, equality (15) holds even without the
factor i This means that, as V — co, the Hamiltonians Hy and H, a asymptoti-
cally coincide as quadratic forms for fixed n and m.

Theorem 3 can also be generalized to the case where states with different n, m
and n/, m' are present on the left-hand side and the right-hand side of (15) [see for-
mulas (3.21)—(3.23)]. .

Finally, we describe the structure of the present work.

In Section 1, wé give known facts about the ground state and excited states of Hj
that are necessary for what follows. We also present expressions that were not taken into
account before in [1, 3].

In Section 2, we prove that, as V' — oo, the approximating Hamiltonian and the BCS
model Hamiltonian asymptotically coincide as quadratic forms on the ground state and
excited states.

In Section 3, we present complicated calculations necessary for the proof of the main
theorems.

1. BCS model Hamiltonian of the theory of superconductivity. 1.1. BCS Hamil-
tonian. Consider the Hamiltonian of system of electrons enclosed in the cube A with
the center in the origin of coordinates with periodic boundary condition

* 1
Hy = Z"Pp.a":p?b?,a e v Z Op1+pa,pa+pe P (P2, P3) X
e P1491,P2,02,P2,08,P4,04
E 3 E ]
XWp, 01 Vpa,00 ¥pa,0s Vpa,oas Ep = ‘zp?{ - Hy (1.1

where o = =1 is the spin of electrons, g is the chemical potential, and m is the mass
- ; 27 , :
of electrons, p is discrete quasimomenta p = T(nl,ng, na),n; C Z,1=1,2,3, L is
the length of the edge of the cube A, ¢ is potential.
*

Note that the operators ., 9, , satisfy the canonical anticommutation relations

* *
{wpl.a’i"‘lbpg 0'2} Pl,ﬂzd-cri.a':: {T'bm,ﬁl:wpmﬂ} = {1'{)331,01?1’{)372,02} =0. (1'2)

The model Bardeen — Cooper — Schrieffer (BCS) Hamiltonian [1] can be obtained from
the general Hamiltonian (1.1) if one substitutes the following product of two Kronecker
Symbols 6y, 4p,,00ps+p,,0 instead of the Kronecker symbol dp, 45, potp, and also sub-
stitutes the Kronecker symbols 28, 100,,—1005,~10+,,1 under the sign of summation
over spins o1,09,03,04. Then the BCS Hamiltonian has the following form

*
Hy = Wy ep¥po+

by

1
+_f Z 5?1'P'Pz;ﬂapa'i'pd,ﬁaﬂ‘l,159'2:"150‘:3,—159‘4,1 x

P1,01,P2,02,P38,73,P4,04

. * *
% QS(pg,Pg)ﬂ)m o1 w?z o2 Vps o8 Ypa,ou =
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—Z%spwwVZme,, Vgt = Hon+ Hra,  (13)

p.p’'

where we use the following denotation
p= (_P, G—): p= (pl 1); i = (_p: '_1)

and summation over § means summation over the quasimomenta p = 2%(?11,?12,?13)
and spin o = #£1.

In the Hamiltonian BCS only electrons with opposite momenta and spin interact.

1.2. Ground state of the BCS Hamiltonian and variational method. —Now we
proceed to construction of the ground state ¢§ of the BCS Hamillonian. We choose ¢§
in the following form

¢ =11 (1 i fk":bk':i'—k) |0) =

k

Z} Fra ---fk,.";'k;;i'—kl ;’L;’—k 10) =

o]

2
n=0kys...#k,
oo

b3

1 * *
=3 = Y fue Suba o B b, l0) (1.4)
Li# #I‘-n
I
where f(k) is real unknown function, in Z «+- the summation is carried out over
) k. #kn

all k; # ... ¢ ky, and the points ky 5 ... # k, that differ only by permutation are
indetified. The quasimomenta k in (1.4) takes arbitrary values %(nl,ﬂg,ng), n; C Z,
1=1,2,3, |0) is the vacuum.

Calculate (¢g, #8) by using anticommutation relation (1.2)

(¢6,48) = O [T (1 + firrine) TT (1 + A ) 10) =
K %
= OITT (1 + fwv—sn) (1 + it ) 0) =
k

= (O TT (1 + fiw-sthn + i + F2b-stbyb_s. ) 10) =

k
!

“T+R) =Y ¥ AR Z > fh AR 1)

k n=0ky#...5k, T ki FEka ‘

In (1.5) we used the following formulas
* % * *

[tb-kfwkf.tbk‘kb_k} = Ok — Yp¥rOrkr — Y, W—k0kk

(1.6)
* *
(O]4—rtpe|0) = 0, (Olpp_pl0) =0

that follows from anticommutation relations (1.2) and from the definition of vacuum

¥r|0) = 0, ¥_4|0) = 0.

In what follows we will use normalized to unity ¢§

ISSN 0041-6053. Ykp. mam. aypu., 2004, m. 56, N* 3
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4 1;1 (1 + fk";’.&:’j’—k) |0)
@ mep)
!

=11 (‘“k +vm}3k1}3_k)lﬂ), (1.7)
k

where
1 Ir
Up = ——, VT e,
Vit Vit 77
For the sake of simplicity we will preserve for normalized ground state (1.7) the same
denotation ¢§, namely

u? +vf =1. (1.8)

¢ =TT (ws +obeto) 0) (1.9)

k

Now calculate the average energy (¢§, Ha¢d) of ground state ¢§ (1.9). Calculate
first (¢f, Ho,adg). By using formulas (1.6) one obtains

(48, Hoad§) = O TT (e +vetpoitinr) 3o (Vb + ¥ p¥-s)
g a |

11 (uk + Uk’};k&;-—k) oy => ¢ T] (‘U»;:f i Uk"ﬁb-k*%f) 11 (Uk + vk;f)k@—k)a
k P k'#p k#p (1.10)

2Up€p (u‘p 4 U‘pw—p'ybp) ;}JP‘IE_?,]O) = Z H(ui + T".ch)zvpe-m

P k#p

* ok 2
(Olva—pwp‘ibp'lf)—pl{]) o= z vagp_
i P
Consider the following part of the Hamiltonian of interaction Hy

1 ® &
7 2 9@ Wbyt
p#p’ '
and calculate its average over ¢g. One obtains

(453'1 %’ Z ¢'(P:P’)i‘£'p12'_p¢—p’¢p* qf’g) =

p#Ep

= O T (e + vt ) 5= 3 60,0 Woyh_phprthr
k!

p#Ep’
x T (s + vewthy ) 10) =
k

*

= % > ¢, 0wy (0] T (ch +ﬂkf¢—k“¢*k*) 11 (ura 4 Uk'sz'k‘ii’_k) |0} =

p#p’ kis#p k#p!
1 * %
v Z é(p, p')vpvy H (uﬁ ¥ 'UE) (o] (’“’p‘ + ”p"’x[’—P"‘:bP’) (“P e ”P"lbp%b—p) |0) =
p#p’ k#p#p’
1
= 2 #(@.0 upvpupuy. (111
p#Ep’

And finally calculate the average
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o 1 il
b In (%, gé(p,p)wpw_pw_pwpgﬁg) =
P }

= SO (e + 0w 00,10y

:

xg(uﬁvkw £)l0) szqzs(p,p)ﬂ (w2 +92) x
k#p

% (0] (t + 5=ty (Vb p¥py) (ttp + 059, ) 0) =

) .
=3 D ¢(@:0)}. (1.12)
p
Summing up expression (1.10)—(1 17) one obt'\ins

(48, Had$) = 2Zv et 3 3 (0B uptipgty + o D(p,p)v

p#Ep’
=2 viep+ v Z (0, PV itptipr Vg + = Z ¢(p,p)u;§. (1.13)
P Ppf P

Note that the first two terms in (1.13) diverge as V' when the volume V tends to infinity
because

11m [ Zv £p + 73 Z(ﬁ(p P )upup:vpvp] =

PP’
=2 [ ) (—5’; ~)do+ [ $0 N I o (114)

for smooth u(p, )u(p), ¢(p,p’). The last term in (1.13) tends to [ ¢(p, p)vi(p)dp and
is finite. (Note that for continuous p € R® we use the denotation u(p), v(p).)

Thus the average (1.13) is expressed in terms of functions up and wvp that satisfy
condition u? + v} = 1. We determine them from the condition of minimum of the
functional of the average energy (1.13). (Note that in the classical BCS paper [1] the last
third term has been omited at the very beginning without explanation.)

To minimize expression (1.13), we represent it in terms of independent variables, say,
in terms of vy. We have

(¢0, Hrg) = ZEepv + VZqﬁ(p )1 = v3/1 = vy + 5 Zé(p,p)vp

P
_ (1.15)
By differentiating (1.15) with respect to v,, we obtain the condition of minimum of the

average energy
1 j : =
46?”? _ o 2? ;(ﬁ(p,p )'\Ir‘ 1- ‘Ughf 1-— ‘Up,'Upr—
1 " .
2? Z qb(p,p")-—-—’f-—; 71— 'ug,vp'up: + -ﬁé(p‘ p)-‘ug =0.
' if1—=v3

‘We omit the last fourth term that tends to zero as V' — oo (see discussion in the end of
this subsection).

After evident simplification, this equation takes the form (without the last term)

ISSN 0041-6053. Y&p. sam. ;xypi., 2004, m. 56, N2 3
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spvmx‘l 92 4 ( ) Z:;ﬁ(p p')4/1 = vl vy = 0. (1.16) -

Denote by ¢p Lhe followmg functlon

ep = VZqﬁ(pph/lwpmp (1:17)

then equation (1.16) is reduced to algebraic equation for v,

eptpy/1 — 3 + (% - 'Ug) ¢p = 0. (L16)

This equation has the following solution

Up = }- 1—- or 2 1+ Ep

with does not exceed one. Note that expression (1.15) and equation (1.16) are invariant
with respect to the replacement v, — —v,. Equation (1.16”) is invariant with respect to
the replacement v, — —vp, ¢ — —Cp. ' ' '
Now investigate the exact equahon with the last termi.
It follows from (1. 13) the following equation of minimum of (Q’JO,HAQ'JO) (without

neglcctlng of the term — z o(p, p)'u )

P”L"p*‘g“zqﬁ(??,zﬂ)w —v?\/l——vz,fup,_
1, . :
7 Zé(p'p!)ﬁm%%’ + *T_;(f’(??}P)vg = 0.
o' —Up ¢ :
After obvious simplification this equation takes form

1. a1 ' 1 3 /
Eptpy /1 —v2 4 (E - 'up) 7 ;¢(p,p’)1 /1 - V2 vy + Vr;ﬁ(p,p)'up 1—v2=0.
Denote, as above by ¢, the following expression (see (117))
. 1 . — .
e =37 2 8(0,0)y/1— vy
TR F O
then equation of minimum is reduced to the equation

1 1
Eppy /1 —v2 + (5 —vg) cp+~17¢(p,p)vgﬁ1—ug =0

. . ! : L s
that is equation of fourth order with respect to v2 and with small parameter 72 in a

(1.18)

P
coefficient of vg'. On formal level last equation is reduced to equation (3.16") as V' —
— co. But arigorous proof of this assertion is connected with very cumbersome calcu-
lation.

We will not give very cumbersome proof of above formulated assertion because we
will use not restricted, from physical point of view, the following assumption about po-
tential ¢(p,p). Namely, we will use the following modification of our potential

ISSN 0041-6053. Y&p. mam. s#ypin., 2004, m. 56, N¢ 3
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¢(0,7') = (1 = bpp YWpwWy (1.19)

or a linear combination of terms-(1.19). With this assumption all the terms with ¢(p, p)
will disappear and we will have the classical BCS theory with respect of the ground state
¢g. Above mentioned assumption (1.19) has been also used in [5].

1.3. Equation for cp. Inserting cxpmssmn (1.18)4n (1.17) one obtains the following
equation for ¢

(1.20)

Zcb(p,p) \W

(obtajning equation (1.20), we put , /c2 = —
In (1.20) we pass to the limit ¥V — oo and replace summation over p’ by integration.
As aresult we obtain

o n_ 1 e(p') /

c(p) / 6P 553 NI dp (1.21)
where, us usual, the functions &(p), c¢(p) depend on continuous momenta p. We obtained
a nonlinear integral equation for the function ¢(p). This function is known as the gap.
An explanation of this terminology will be given in the next subsection.

The nonlinear integral equation for the gap has a unique different from zero solution
for a general potential ¢(p,p’) satisfying certain condition [11]. We will construct some
approximate exact solution of equation (1.21). Namely consider potential ¢(p,p’) which
is constant in certain layer of the Fermi sphere

72

; P
w W
gW <0,9g<0,W >0, if o

p'Z
%—# < w —,u.‘<w,w>0,

d(p,p') =

0 if p orp’ donot belong to these layer, and g is coupling constant.

Show that equation (1.21) has a solution independent on momentum c¢(p) = ¢. The
constant ¢ satisfies equation :

)
cde
g =g [ e 1.22
v /2\/£2+c2 i
—i) .

where a new constant w contains all numbers that are in (1.21) and appear after integra-

tion over the spherical variables. Note that in (1.22) |p’| was replaced by its mean value

12
in the layer % — p| < w and this mean value was included in w.

Integrating equation (1.22) one obtains

2 = Arsh? and o= (1.23)
gw c ok (_ )

It follows from (1.23) that the gap ¢ is nonanalitical function of coupling constant g, and
has a singularity at g = 0. (Remark that if one puts c:2 = +c, then equation

1 1
Cp =17 ¢(p,p)—
V; B 53: "{‘Cg.r

has not solution for considered potential gw < 0.)
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1.4. Excited states. Consider a state

*
w * % *
Po = um #6 = H up + V¥ i | ¥p, [0)- (1.24)

o kD1
In this state all electrons with momenta k # p; are in pairs with momenta *+k and

opposite spin and the electron with momenta —p; and spin —= is taken away. This
state is called a one-particle excited state. It is easy to check, repeating the calculation
from the Subsection 1.2 that the state ¢+ is normalized to unity, and orthogonal to ¢§,
ie. (¢p,,85,) =1, (5, ¢5,) =0.

Calculate the average energy of the excited state ¢,,. Repeating the calculation per-
formed for (@&, Ho¢g) one obtains

(¢p. Hadp,) = €p, + Z 2epv; +
17?511‘1

+— > 60, ' Vuptprtptp: + 52 § " $(p, p)vi. (1.25)
pipl P#EP1 .
P ¥FP1

This formula has obvious physical meaning. The average energy of the one-particle ex-
cited state ¢7 consists of the kinetic energy of a free electron with momenta p;, the
kinetic energy of the pairs with momenta p # p;, and the potential energy of the pairs
whose momenta are not equal to p;.

Consider the difference between the average energies of excited and ground-states,
ie. (é;, " HA¢;1) - ((If'g: HAQSS'}

It follows from (1.13) and (1.25) that

' 2
(qé;l IHA¢31) = (¢8| Hﬁ¢8) T E'Pl(l = 21’]31 S ? qu(pllp)up‘lupvplvp +
r

1
+ -f(b(pl,pl)'ugl (1-— 21}31) e, (1— 21)31) — 2Cp Up, Vp, - (1.26)

Note thal we used definition (1.17) of cp, put \/% = —¢p, and neglect the last third
term, that is zero for ¢(p,p) = 0.

The first two terms in (1.26) are finite in the termodynamic limit V' — co and the
second term becomes an finite integral. The third term tends to zero as V' — oo and we
neglect it (or it is equal to zero if @(p,p) = 0).

Substituting expressions (1.18) for v, and uy into the two first terms in (1.26) and
neglecting the last third term one obtains

(95;1 ) Hﬁqb;;) =" (@531 HA¢8) = v/ 53?51 =+ 6%1 = EPJ.' (1-27)

Expression (1.27) gives the disintegration energy of the pair with momentum p;. It
follows from (1.27) {h'lt this energy cannot be less than |c,| that is greater than zero for
131

2m

. is separated from the average energy of the ground state by the gap [cp, |.

One can also obtain excited state by applying to ¢§ the operator of annihilation. For
example,

all p; from layer < w. This means that average energy of the excited state

029, = 22245 = TT (e +udids) o, l0)

ke
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One can easily repeat the calculation performed for @5 . Note that states @3 with differ-
ent p are orthogonal (it will be shown in Section 3).

Introduce the many-particle excited states

- * * *
w'ﬂl . ﬂl"?m w“pm‘l-l . w‘?m-l-n QSS o

upl up'm u“pm—l—l u"‘pm-i-u
* *

* * * %
= wm e wpmw—ﬂm-l-l e w‘pm-ﬁ-n H (uk o ﬂkwkﬂ:’_k) [0) (1.28)
. kEPIFE e FE—Pmin
with p; #p;, 1 <i<m,m+1<j<m+n.

These states are orthogonal and normalized (o unity. The difference between the av-
m-+n

erage energy of these states and the energy of the ground state is equal to Z Ep,. We

omit the corresponding calculation absolutely analogic to the one performie_dl above for
¢5, and remark that the terms that tend to zero as V' — co are neglected (see for details
Section 3, formula (3.4)).

Note that the excited state with pairs of the operators of creation of electrons with
opposite momenta and spin are not orthogonal to the ground state. For example for the
state

*  ®

By —py = b e L K| (‘Uk + vké’k"'}’—k) J’p11;—p1]0)

o Kty
one has
(6p1,p,+ $3) = Vp, -

We will introduce proper excited states of pairs in the next section.
2. Approximating Hamiltonian. 2.I. Ground state as a vacuum for operators
of annihilation of quasiparticles. Introduce the following operators
* *

ap =Upth, — UpPp, ap = Up¥p — Up¥_p » @.1)

a_p =upP_, + Vp¥p, a_p = UpP_p + Vpt,
where the functions wu,, v, were defined by formulas (1.18), and we use denotation p =
= (p,1), —p = (—p, —1). Note that the functions u,, v, do not depend on spin.

Tt is easy to show that the operators &,,, (7 &_p, ar_p satisfy the following canonical
anticommutation relations '

{Qp“é:p,} = 0py ,pa> {am:apz} = {am:am} =0,

(2.2)
* *
{C‘f—pua—m} = 5?1-172: {Q—P::Q—m} = {a—Pi ) 3"“132} =0

and the operators o, 5,, anticommute with o_p, &_,,, i.e., the operators with opposite
spin anticommute.

The operators (2.1) are linear combination of the operators of annihilation and creation
of electrons and they are known as the operators of annihilation and creation of quasi-
particles.

Let us show that the ground state ¢§ is a vacuum for the annihilation operators o,
a_p. Consider ap¢§, a_pdg. We have '
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apdg (“p"‘:‘:'p - ""p';{;—p) H (Uk + ‘vk;bm’;uk) [0) =
k

= (upptop — ptph_y) T] (e + vsthib_i ) 10) =0, 23)
. k#tp
a_pdf = (_up'”p;’p +up”p"j"p) H (uk +1’k"’£k'§"—k) |0) = 0.
' k#p

Now calculate &,,qﬁg, &_pqsg. ‘We have

Op = (u.p'lz-p - ’upvb—p) H ('U-k +Uk12k';£’—k) |0) =
k ;

= ('“*3 + '”g) "E’p II (”“’*k Gy vk;zk;z—.k) |0) = ‘*:E'p 11 (Uk + 'Uk"zk':é-_k):
. 7 2.4)

a—pﬁbg = (U‘P{Z—p + 'U:D'Kbp) H (uk + Uki’kg)—k) |0) =
k

= (ug 3 Ug) 12_3, H (uk + vm};k@_k) 0) = ‘IZ'—p H (uk S 5 ﬂk';k‘lz—k) [0).
. k#p . ’

ks#p

The state &pqﬁg, &_pqﬁg are normalized to unity.

Obviously that the states &p¢§, &_p@g with different momenta or spin are orthog-
onal. This property can be proved using representation (2.4) or using anticommutation
relations (2.2) and the fact that ¢§ is the vacuum for ap, cv_p. For example,

(Gops 85 &0 88) = (88, o pa 86) = — (5, o291 85) = 0.

Consider the following state

&p&—pqsg = (Up"zp - Uﬁ"l?—r-r) (up’z—p + 'Up'ﬁbp) H (uk + Uk;"k";—-k) [0) =

k

= (“ﬁ":‘:’p = 'UPWLP) ';‘“:P H (uk + vk&k;&"k) j0y=
] k#p

= (whbp—w) [T (e +wddi)). @9

k#p
Now calculate (&p&_pqﬁg, @) in terms of the operators 1y, *;’)k, Yok, 12_;6. We have
(Gppdh, 93) =
= (01 (upt-sthp — vp) T] (urr +vtosotbns) T (s + vathith_sc ) 10) =

k'stp k

= ] (”-'-k-‘ +’ka'!,b~k*'¢k*) (up'kb—p% - ‘Up) 11 ('U-Jc +’Uk';z'k';3—k) |0) =
k

E'#p

= (0] TT (uer + vertbsete ) Capvp = g) T (s + iy ) 10) = 0.

E'sp ks#p

* #* - . . P
In terms of the operators oy, o, cv—p, ik this calculation is a trivial one
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* *
(opa-pdG, 65) = (5, @—popd) = 0.
By using the operators of creation of the quasiparticles apa_,, one can construct the

orthonormal basis of excited states

* * * - a
Cpy v -o apma"‘pr-!‘i oy C‘_’Pm-i-n ¢0 (2'6)

without any restriction on momenta. The property of orthogonality can be easy checked
as above.

In what follows for the sake of simplicity we will suppose that potential ¢(p,p’) is
separated kernel '

#(p,p") = gwpwy Q.7

where the function w, > 0 is a continuous function with support in layer of the Fermi
2

sphere -2%1- — | < w, w >0, and g is coupling constant g < 0. Note that it is easy to
generalize all results for potential ¢(p,p’) = gwpwp (1 — bp,p7).
2.2. Approximating Hamiltonian. Consider the following Hamiltonian

Hyp = Z:leﬁspwﬁ + cprv,bp'qb_p + cz WpW—pWp — g iPvrI (2.8)
P P P

where constant ¢ will be defined later from the condition of minimum of the energy of
ground state of the Hamiltonian Hj 4.

This Hamiltonian has been proposed by Bogolyubov [2] and is known as the approx-
imating Hamiltonian.

‘We proceed to diagonalization of the approximating Hamiltonian. Recall that a Hamil-
tonian is called diagonal one if it consists of the sums of products of creation and anni-
hilation operators with the same mornenta and spins. To do this we apply the canonical
U'ansformatlon of the operators wp, Pp, 1};_p, 1)_p and express them through the opera-
tors ap, Otp, Ct—p, —p given by formulas (2.1) but with unknown real u,, and v, which
satisfy the condition ug + u;f’ == 1

From (2.1) we obtain

* * .

*
Yp = UpQp + VpQp, Yp = Upltp + VpQ—p, (2.9)
s ® & .
Y_p = UpQ_p — VpCip, Yop = UpQep — VpCip.

= *
It is easy to check that the operators 1, ¥p, Y_,, P—-p salisfy canonical anticommuta-
tion relations.
Substituting (2.9) in Hg 4 (2.8), after elementary but cumbersome computation , one
obtains

P

Y TP
+apt_p [—epupup + %w,,(uf, - vg)} +
+e—pop [_EP“P'UP * %wp(uﬁ e "-’3)] } *

+Z(£;v§ — CwpUyYp) — g1V (2.10)
#
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The Hamiltonian H, » will be diagonalized if the coefficients of the operators &ﬁa_p
and a_pag in (2.10) are equal to zero:

ety + Swp (w2 —3) =0,  uwl+vd=1 @.11)

. The last equation coincide with equation (1.16') with —cw, instead of ¢, and it has
solution (1.18) with ¢p = —cw,,.
Substituting (1.18) in (2.10) one has, as in (1.25),

Hon = 3 Bylgon +V [ 3 [op ~ By] = 97¢] = 3 Byl + OO,
P P P

(2.12)
B, = \/&} + .

. Note that ground state for the approximating Hamiltonian H,  is the vacuum for the
operator o, i.e. ¢§, and the energy of the ground state, according to (2.12) is C(c)V.

2.3. Coincidence of the energies of ground states of the model BCS and the approx-
imating Bogolyubov Hamiltonians. It follows from (2.8), (2.12) that the energy of the
ground state ¢§ of the approximating Hamiltonian

Han —Z'l,b s,,‘gb,,+czwp1,bpw_ +cpr1,b oWp — g VI =

= Z Eyopap + C(e)VI (2.13)
b € L

is equal to

1 B :
Ce)V = V[v ;(EjJ —Ep)—g lcz] , By = /€2 + 2wl

and constant ¢ should be determined from condition of minimum of C(c) with respect

2

to c?. This condition is (for wp = w = const for ;’—-m = ,u.‘ < w)
2.14
Vg Z !52 + 22 @14

or in the thermodynamic limit
2
1=-9 . S
2 &2 + Aw?

| -1 <w

For some conditions imposed on w, g equation (2.14) has a unique solution [11].
Now consider the energy of the ground state ¢§ for the model BCS Hamiltonian Hy .
According to (1.15)—(1.20) we have

(¢8, Hadl) = QZ&‘FU + ngPmp:upvpupmpf Vngpwp vy &

=5

= 2263’1"? +ch,up1}p =
b2 P
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2

g 1 c;‘;
-3 (e HE -

v \/£2+c§ \/62+c§ €2+ ¢l
1
- (ep— Bp) + = (2.15)
; ’ ? 2; &2+ 2

(we neglect the term il; 9y wpw,,u:) :
P

Now take into account that ¢, does not depend on p, i.e. ¢ = —cw and satisfies

equation (1.20)
cw=—g— >y w
4 z \ !52 + c2w?

which coincides with condition of minimum of C(c) (2.14).
Taking into account (1.20) and (2.15) we finally obtain

(88, Hadd) = S(ep — Bp) — g~V (~—g2 )
> \/ €2 + Pw?

= (ep— Bp) — g7 'c?V. (2.16)
P

Thus the energies of the ground state ¢§ for the model Hamiltonian BSC Hj and the

: -y e 1
approximating Hamiltonian H, s coincide if one neglects the term —g prwpv_ﬁ.
2.4. Approximating Hamiltonian as quadratic form of model Hamiltonian BCS.
Formulation of results. Consider the following approximating Hamiltonian

Happrd = ) ‘E)ﬁep% +> cp@p;}_p + > ey — g VI 2.17)
where ’ ’ ’
Ap = (88, Dp_p$8) = (83, V=¥ 8) = sy,
cp = -é—, Z ¢(p, ') Ap, (2.18)

gﬁICZVI = Zﬁb(P:p VApAp, ¢(p,p') = GWpWy' .
p.p’

There is the following motivation of definition of approximating Hamiltonian. Con-
sider again the model BCS Hamiltonian (1.3) and represent it in the following identical
form

. 1 " * %
Hp = Happr,a + v Z¢(P:P )('Pﬂf"-,: - Ap) (?f’—-p”fip’ = Ap’)- (2.19)
e’

It follows from (2.19) that Hyppe,a = Hy if one neglects the last term in (2.19). The
approximating Hamiltonian is obtained from the model BCS Hamiltonian if one replaces
consequently one of the operators {EJP‘(Z___’,, _pp by the operator A,I, where A,
is equal to the average of these operators over the ground state, and adds the operator
—g~1e?VI. Note that cp, defined according to (2.18), coincides with ¢, in the previous
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subsection, defined according to (1.17) and in both cases they are determined from the
condition of minimum of (¢g, Hp¢g).

Now calculate the average of Happy over ¢§. Repeating the calculation performed
for (@&, Hp¢%) one obtains

(68, Happr,a®8) = 2> 026, +2)  cptipvp — g~ 1PV =
P P

2 1
=2 E 1’;%533 + v z $(p, P )upVpp vy — v Z G(p, ") UpUpUpr vy =
P

.y’ r'
1 1
=23 upep + 37 > 600 Vupvpupuy = (95, HaS) — 3 D ¢(0,0)5,
b »p' P
(2.20)
1 : 1
(¢5, Hrdg) = 22”3510 o v Z‘Ib(ﬂapl)up“pup’vp’ + v Z 95(1—":}3)1"; e
b »ip’ b

=C(c)V + %r- Z qﬁ(p,p)v;‘

Thus the averages of H, s and Hy over the ground state ¢f coincide in the follow-
ing sense

1 1
Jim = [(48, Had$) — (¢5, Haua¢B)| = Jim = S Apap=0. Bab

In (2.21) we used that: lim . Z d(p,p)vd = | ¢(p,p)vi(p)dp is finite for potential
Ve—oo V = P

1
¢(p,p’) with compact support. We used the factor — in (2.21) because the both terms
diverge as V' when ¥V — co. But one can cancel the equal divergent terms and use the

factor % with arbitrary ¢ > 0, § < 1 and therefore

. 1 ; . 1711 o4
Jim = [(48, Had®) - (68, Hondd)] = Jim = [ PRLCES (#)] =0.
Remark. Bogolyubov has proved the following fundamental equality

Jim = [(60, Hado) — (65, Han#8)] =0, (222)

where ¢q is the ground state of the model BCS Hamiltonian H,. He has been able to
prove this equality without determination exactly ¢q. (We have reason to believe that ¢g
is equal to (1.9) with ug, vy that satisfy equation (1.16) but with the term %4&(}5,;0)1;2. )

We have proved that ¢§ (1.12), with ug, v (1.18) and ¢, (1.19), (1.20), is the
ground state of Hy only for states (1.5)—(1.9), i.e. coherent states, and for the po-
tential ¢(p,p’) such that ¢(p,p) = 0. In this sense we have repeated the Bogolubov
result (2.22).

We are able to generalize this equality to general excited states. Namely let
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n

m
* *
H Cip; H apj -p; %0 =

=1 =1
= H ’J)p, ]_—_[ (1‘[‘?,'1ppj w—pj - UP;‘) H (Uk == vk¢k1p—k) |0)
i=1 j=1 k#(P)n#(P)m

be a general excited state with n excited electrons and m excited pairs then

n m

lim — (H Qp; H O‘m‘:‘—m G, (Ha — Ha,a) H &p ap’ a_p’%) =2

Voo ¥ fe=1 i=1 =1
(2.23)

for arbitrary finite n and m. Proof of (2.22) is presented in Section 3.

In Section 3 it is also proved that different excited states are asymptotically orthogonal
to the action of the Hamiltonian H, on them. This means that equality (2.22) is also true
for finite linear combination of the exited states. Namely

n+m
V_'m v (ZCMHQ k H o Ia_pléu,(HA‘—‘Haﬁ) X

=1 J=n+1
n+1m
XZC"SH% H ap;a_quﬁo) g (2.24)
t=1 j=n+1
where summation with respect k, | and r, s is carried out over finite numbers.

3. Approximating Hamiltonian as quadratic form of model BCS Hamiltonian.
3.1. Asymptotic coincidence of averages of model and appmxxmatmg Hamx!toman
Proof of Theorem 1. Consider a sequence of excited states O’m G-y o:m i

Y apn @6, ..., and calculate the averages of H, s over these states
(ap1¢(]| a.Aapl‘f)o) (&P C‘Pn‘?so: ahapi * ‘apnég)r-' L

The excited states are eigenvectors of Hy
Hn,Aam ¢g = (Epl + G(C)V)&Pl égi LI :Ha.ﬁ&m ok a?n ¢3 o=
- (E Siaa +Epu -I-C(c}V)&m -
Cle)V = Z%pv +v Z ¢ (2, P ) UptiyUpUp!

Py
(see Subsection 2.4) and therefo:re

(&px $5, Hn,Aa'pl ¢'3) = By, + C()V,..., (am s &p,. #6s Ha.Aam ik &pn ﬁf’g) =
= EPI + it + EPu + C(C)V

Our aim is to calculate the averages of the model BCS Hamiltonian Hp over the
excited states and to compare them with the corresponding averages of Hj 4.
We have already calculated the average (see (1.25))

(a?’l QSS: Hﬁapl ¢3) =
= Epl 265, V2 — 2(:3,1&;3,11.-,_,1 +C(e)V +

P1¥p1

4 — Z ¢)(p p)?)4(p) + ‘35(371:?1) Upy P‘. =

P-‘;“Pl
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== Eﬁ -{-G(C)V-f- — Z ¢'(P 1‘9 4(?) o e ?5(,'91’191) Uy m

mém
‘We have

i .lim %fomqﬁo, (Ha = ,A)Ofm@”o)}

lim {V Z ¢(p,p)ﬂ4(p) + ¢(PL!P1)UP1 ‘p;} =__0_ e (31

V—l-m Vv
PFEPL

. :
because hm V2 Z é(p, p)v(p) = 0. We can also put in (3. I)factor i with aIT:ﬂ

P#EPL
tary ¢ > O instead of —117 Note that both terms, in (3.1)‘::_11*3 equal to‘z_ero i
¢(p,p) =0. -

Now-Gonsider the general case of excited states Gy ... Qp, ¢§ (Pi # —pj) an
calculate the following average :

(G- é‘rp;ass, Hidig, o - 8, 83) =
*® *®
= Oy, By, T (o +oetbtp),
K'#(p)n

: * 1 oW ' W i *I
(ngwﬁtbﬁ = Vv Z (P, pr)tbpw—pq’b"?ﬂ’bp’)wm tee wpn x
P

X H (ﬂr;e +£?Uk'§‘z.’k’§1—k)|-0):
ks (p)n »

&= ZEW e Z 21:’36‘;', e

i=1 p-—,é('p}“

1 g
b YD b et o L S> steamis o
PP #(P)n . :Jaéﬁp)n o

= Zsp,(l 2v )+22v &p —

=1

" .
— 1
-2 Z Z ¢ (Pis P)Up; Up, up'UJJ + Z $(p, 0’ JupUplip vy +
i=1 P

P;P

<l

\‘4]
e

- .
Z‘ﬁ(?z:?a)“m”p;“pﬂp, Z ¢(p, P)'” =
J=1 p#(p)n

. n

=5 [e(p«.)cl — 20%(ps)) — 2%‘%‘%] FOEV+5 3 #oipYo

i=1 p#(p)n

T n -
Z Z (Pi,Pj)up@vp;upjypj =

< I

= ZE o C(C)V Z @ (p, p)v Z Z ¢(p.i:1'3j)um”?eum Ué’j'

i=1 (D) n i=]1 =1

fdll—t
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If follows from (3.2) that

Vh—?m é‘ [(0‘?1 A EG,A)&pl ‘v .gxa“d}g)] -

1t
- 1}1—?;: 1% [ Z $(p,P)vp 5 Zzﬁf’(ﬂ!m)%‘%‘umvm} =0 (33)
i =1 7=1

p#E(P)n

2
for arbitrary finite n and even for n such that Vlim % = 0. Note that for arbitrary
—00
finite n equality (3.3) also holds if instead of factor = one puts % with arbitrary
and even for n such that lim —= =0
—+00

'2.
0<bs<1 i )

It follows from (1.13) and (3.2) that
(G - B 88, HaGip - - i, sﬁ»s) — (43, Hadg) =

= ZE — -—-Zgﬁ(p,,p,)'u = Z Z¢5(P==P:)“p Up; Up; Up; - G4

1=1 j=1

™
The right-hand side of (3.4) tends to » _ By, as V — oo.

i=1
Consider a general exited state of n pairs

*

- - -
a __
Otpy Ay + o+ Olp, Olp, PG =

= f[ (ui’i:f;m"}—m . vpi) H g (uk & vk.i}k{z,_k) I9)=
i=l

k#(p)n

7 * %k
=TT (% + ooy l0), 3.5)
k
where in (3.5) figx = up, U = vy for k # (D)n, flp; = —Vp;, Up; = Up, 1 =1,...,M.
One sees from (3.5) that the excited state with 7 pairs is a “ground” state with functions
ik, Ux. One can use the result obtained for ground state (1.13)

] *  ® & * % * * a) _
(api Qpy - Op, Op G5, HACH Qp, ... Qp & p,.ﬁbo) =

= ZZE?" v z¢@sp )“"pvpupm?’ + v qu(p,p)v4(p)

'

Z 2spv + Z?-Ep, Z ¢ (0, 0" YupVptip vy +
p#(P)n p#(?)n
P'#(P)n

Y5 O G mYuvp(—unp) +

i=1l " p#A(P)n

n 1 .
+> v > (pi ') (—upsvp, Jupvp +
=1l p'#(p)n
1—1 i=1

o Z Z G (i P5)Up; Vps Upy Vp; + '1,1_.»- z ¢(p, P)ﬁ; =
P
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2 1 !
= ZQEP'UP 4 -V—Z @(p, p") UpUplipr Uy +
“\
P n,p
™ T 1
s Z 2ep, (ugi - U;i) -2 Z?Z (f’(p’p‘.)upvpup"vp" -
i=1 =1

*ZZ > 6(pir 2V tkpy U, vy +

1-1 o

+ ZZ¢(p‘lpJ )u}?{”mu?jvp: v Z ¢(p, p)

1.—1 d=1

C(e)V +2 Zepx (1—202) — 4Zc(p1)up Up; +

=1

ZZ@(Pi:Pj)upiﬂmuijm + ?Zé(p,p)ﬁ: =
i=1 =1 »

<la=~

n

n n
= C(c)V Z ZZ (phpj)“mvmupjvpj i

i=1 i=1 j=1

Z P)s. (3.6)

P
If follows from (3.6) that

1 * * * * o * * *
a a =
vh_r.%o v (&m Copy -+ - Op, O, B, (HA — Ha,A)0p, O, -+ - Op, Op, %) =

1
= IE}.Q % |:V ZZ qf)(p‘&lpj’)% s Up; Up; Vp; + '[_[' Xp:‘ﬁ(p’p)ﬁ;} =0 _(3'7)

=1 j=1
2

for arbitrary fixed n and even for n such that hm ﬁ = (. Note that equality (3.7)
V—too .

o : 1 1
also holds if instead of factor — one puts Ve 0<d<1.
Now consider the generalest state of n electrons and m pairs

n-m * P ;
H Qp; H ap.:r a—pJ’ ¢0 = l"b?’l e an H (ﬁk + ﬁkwkq’b—‘k) |0)’
i=1 j=n+1 k#(p)n
(P)n = (}91; 5 )Pn):
=g =0 Tor & (Bapgseoos Patings

Up=—v, Vp=ur for k=p;, n+l<j<n+m,

and calculate the average

n+m n+m

(Ham H ap;;a—p_,‘?sn:HAHam H apja_Pj¢0) =
j=n+1 i=1 J=n+1
= (Olps Yo T] (T + Btpoitin) x
K@)
£ * * *®
XHtp, -+ By, [] (5 + by 10) =
k#(p)n
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—Zt‘.p‘—l— Z 292 nEp +

=1 P#E(PIn
1
+? Z é(p, P)upupup*vp + 7 Z ‘]ﬁ(P:.'P)'U
(,0")#(P)n P?é(P)n.
n+m
- stu —202)+2 > (1 —207) +
i=1 J=n+1
—E—ZZepv + % v 2?5(?9:}'9 JUpUpUp Vpr —
PP
‘n.+'m n4m
-2 Z 2(35(%13)%«%{%”? 2 Z Zﬁﬁ (i P)tp; Vp; UpVp +
i=1 1.—.11+1 P
1 n+m n+m n-i-mn—i—m
+2'1;; Z Z ¢(ps, pj)tp, Vp, s Up; Up; + v Z Z @5(19:;?:)“?.%;“?;”?;
i=n+1l j=1 i=1 j=1

n+m nt+m

+“— Z Z G(Ps, P3 ) tip; Vp; tp; Vp; + % Z ¢(p, )Ty =

z--n-l-l J=n+1 P#E(P)n
n n+m n+m
=Y ep(1—202)+2 > &,(1—202)+Cle)V -2 Z e(pi)tp; Vp, —
f=1 J=n+1 i=1
+m n+m n4m
-2 Z C(p;)up Up; E= ZV Z Z ¢(p=!pJ)HP|UPiUPJUP: +
i=n+1 i=n+l j=1
n+mn+m n+m n4+m
+ Z Z B (i, 25 ) tps Vpy Up; Vp; + Z Z B(Pi> P5)Up; Vp; Up; Vp; +
i=1 j=1 :—n+1j-n+l
n+m
+— > ¢(p,p)is ZEm +2 > BEp +C(V +
P#(P)n i=1 j=n+1
1 n+m n+m n+mn+m
+2— Z z G(Pi, Pj ) Up; Vp; Up; Vp; + Z Z ¢ (Ps, Pj ) tp; Vp; Up; Up; +
1—n+1 J=1 =] §=1
1 n+m n+m
+V Z Z QS(Pi:pj)up;vp;uijm z é(p, p)” (3.8)

i=n+1j=n+l ?#(p)u

It follows from (3.8) that

n n+m n+m

(H&r. ap:“"?:¢0'HﬁHaP4 H o‘iﬂ:"‘-m¢ﬂ) — (#5, Hrgg) =
i=l J=n+1 j=n+1
n n-+m 1 n+m n+m
= ZEPI +2 Z EP: + 2_ Z Z l;ﬁ(P;,}Jj)up s Up; Up; Up; +
=] j=n+1 |—n+1 J=1
1 n+m n+m 1 n+m nim
+? z Z G(Ds, ) Up; Vp; Up; Up; + v Z Z ¢(pi, Py ) thp, Vp, U, Vp,; +
i=1 j=1 i=n+1j=n+1
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n+m n—i—m *
+— S ¢(ps,pi)ud, - Z bEop)vp. . (38)
: . r—n+1
It also follows from (3.8) that _
n+m v ﬂ+m
‘}E’n ?[(Ham H a?;:a--mqbor(Hﬁ = u,A)Hap H apja’-p,fﬁu)} =
i j=n+1 =1 jendl

n+m -n.+m

= lim -—-|: L z Z Qf’(pupj)umvpf%jvpi

Vooo V
- a=n+1 =1

1 n+m n+m
T‘f Z Z ¢(P::PJ)“P:“P:“P:“F:

) i i=1 j=1 y
1 n+m ntm :
+— Z Z ¢(pup})upi UPauPJUPJ ? Z gf{(lj,'p)ﬁg] = (3.9)

'&—‘."H-l J=n+1" pE(P)a -

- _

for arbitrary fixed n, m and even for n, m such that th w = 0. The last
el . t ] —+0a

equality also holds if instead of factor fl; one puts VJ’ 0<déd<1, and .%Fl—:j_?

— 0 as V — oo. o .
If ¢(p,p) = 0 then equalities (3.3), (3.7) and (3.9) hold even without the factor
namely for arbitrary finite n > 0, m >0

n4m . n-+m ‘
‘.}f-l;léa [(H Cip; H Ocpj O.-.;u,ﬁi)ox (Hh Ha,A) H Api. H an“*Pjéo)] G

3
-V‘

1 j=n+41l . f=n+41
. n—{—m ﬂ+??1 ' ‘
I:--;/hm { v Z Z Gﬁ(PuPJ)um”p:“mUm +
—00
i=n+41 j=1

1 n+mn+m

+ Z Z (P, Pj) Up; Up; U, Up; +

i=1- _;l...;l ' .
1 T-Fm 'n.+m
+— Z Z qb(pt,p, umvmup:vm} =0. .., _(-3‘10)
) 1. n-1j=n+1 -
Equahry 3 10) also holds 1f n,m tend to oo touethez with' V' in such a way that
T £ 4
V—co Vv ’ -

3.2. Orthogonality of excited states to another excited states after action of model
Hamiltonian. Proof of Theorem 2.. We have shown that excited states are eigenvectors
of the approximating Hamiltonian and therefore excited states after action of the approx-
imating Hamiltonian are again orthogonal to all different excited states. We are going to
prove that this property of excited states is still true in asymptotic sense for the model
Hamiltonian, . ;

First consider the following different cxclted states ap, qﬁo, C‘m ‘f’o Wlth 71 9& pg and,
for the sake of simplicity, w1th the same spm +1. Let show that states am @5, Hﬁamqﬁc
are orthogonal as well as’ am o8, am ¢g.

Calculate the average
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(8208, Hadp85) = Ol [T (we +vitpethr) x

k's#pa

[Zwﬁep«mvzfﬁ@p o gyt |, T] (e osnb_i)|0) =

p.p’ k#p1

= (Oltps T (urs +vmtbothir) [epu by, [T (e +onti_p)l0) +
k'#pa k#py
* L * ok 1 ’
+ 30 2t by [ (s +utbiboi)l0)] + 5 S0 40 )upvp X
PFEPL k#p1#p gv:&m :
P¥FMn

x(Olp, [] (Uk*+ka¢—kf¢kf)§)m IT (e +oedp_i)[0) =
k'skpastp ksps#p'

= OlbpaUps o | (ur +oetboptbie)ep [] (ur +vrddb_i)l0) +

k'#paFp1 k#p1

£ *
+0Wp, [ (ur + okt ) Yopy D, 2650p0,%_p X
k' #EpaFm pEPL

* ok 1
x JI (ue+ved_)I0) + 35 > 60,2V upvp (Olp, X
k#p1#p P#p2
P #p1
* w* »
x ] (e +oedbedor)vp¥op  [] (ur+vededop)0) =0 (3.11)
k'#Epa#p1#Ep k#p1#p’

because _p, H (ur + Uk)';;k'lz_k)lﬂ) = 0. Using the same arguments one can prove
k#p1
that (Gep, 83, Cip #8) = 0 if p1 # pa.
Note that the average (3.11) is also equal to zero if some wups, vy and ug, v, are
replaced by @y, Uy, Uy, Dp. This means that the equality (3.11) is true if one consider
the following excited states

my m?
* * & * * % %
Cipy H Qp, Qip? @5, Qpy H Qp; Ct—p, B
i=1 =2

with m1 >0, mg > 0.
If is obvious that the equality i is still true if mstead of &p, and &, One puts some

products of operators of creations Ha,, and H ap; and the sets (p)n, and (p)n, d
=1 j=1
not coincide.
Calculate the following average with py # po

* % o ® % a) _
(a}?n C—pa ¢0 ) Hﬁapxa—m ¢0) —

= (Ol(umw-—mwm - Upz) H (uk' “f‘vk"ﬁb—k"":bk’) x

k' #pa

* * * *
x(Ho,a + Hr,n) (umwmw_m - 'Um) 11 (uk + ’Ukwk"‘b—k) 0} .
k#py
Show first that the term with Hp 4 is equal to zero. It is equal to the following expression
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(’Bl(um"p—mwﬁa == 'U:Dz) H (ukr + 'Uk’w—k”abk’) x

k!#pa
X {?’Eplupl.;:)pl ;;)—Pl ]___[ (uk o vk’l}k‘;’—k) oa
k+#p1
+ Z (“m";pl;b_pl - Um)%p'“p‘:bp%z—-p H (Uk + vm?)m};_k)}lﬂ) =
PFEPL ks#p1#p .
= (0] (ups¥—pa¥pa — Vps) H (urr + vpP_pirr) X
. k'#pa
x { ('U'Pa + VUp, %Epg;i'—pg)2aplupl 12;:11};—;;1 H (uk = Uk':p(k?})—-k) +
: T k#pipe
+ Z (“m;;m':(b—pl - 991)2539'11131:2';;';’--? (“:oz + ”ﬁzamg}—m) X

PEPLIFP2

* *
x L (vet omidon) F10)+ (01t — ) %
k#p1#pa
. * * * *
X H (ukj + 'Uk’¢—k’¢k’)2€p2”pzwm¢mm (uﬂl¢p1w—p1 = vﬁ) ><
k' #pa

x T (ws+vwbadoi ) 0) =0, ¢

k#p1#pa
The first two terms are equal to zero because
*
(0] (UPE w—pnwm - UP:) (um + 'Upzwpg w—pz) |0> =0,

and the last third term is equal to zero because

. ) * %
. (Ol (u'm + Up, Ypy wm) (“:ox wpl 1:!"—}:1 2 1”301) !0) =0.
Now, for the sake of simplicity we put ¢(p,p’) = w(p)w(p’), and calculate
(&m&—Pzégs.ﬂl.ﬁapxa—mqﬁg) ==

= (0] (um'fxb—'m'ﬁbm = 'Um) H (Uk»‘ + Uy'!j’),,k:'-‘,by) X

k!#pa

1 . * #* * * &
X5 2 Wttt gthop s (o U ¥y = Up ) [T (s +0utbeo_y ) 10) =

v k#p;

= (0] [’U-m %wm 11 '(ukf +'uk*¢'—k'¢'k’) +

k'#pa

+%Z WpUp ].__[ (uk' s vk'w“k'wk’) (“ml[’—mwm - UP:):| X

p#pa k' #Epastp

x ['wplum H (uk + vk':j()k'(;v_k) -+-

k#p
- * * *
+(um 'Kbpl":b—pl o 1”:01) pr’f"p’ H (uk + Uk"!’k"xb—k)} |0) =
P'#p1 k#p1#p’
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— 2,2 ,1 2.5
= Vwmwp, Up, upz-{——vwmwmvm Upy - (3.13)

Note that we used the same equality as in (3.12).
Finally, we have,

e a b I« a 1 2 L 2 .2
(apza—méﬂ!HAama“mqﬁo) T/wplwpﬂuﬁ1up2 + prlwpzvplvpg

This means that crpga_m qbo, H, Aama_mqﬁo are asymptotically orthogonal as
V — co. ;

Show that the states ¢g, HaQp, Ct—p; Qp, C—p, @3 are also asymptotically orthogonal
as V — oco. We have

(63, HAlp; Gy Cipy &, 68) = (0] [ (was + visp— wy) x
kr‘

[prspww Vprwp»wpw_pw- wp] .

7.’

X(upl ;Zpl'"ib—m v?l)(um":‘bpgw—-pg U}Jz) H (u’k + Uk'i)bk'i!) L)IO)

k#p1#p2
o 2 2 .9 2 S
= *?(wpzvmwmum + Wp, Usy, Wy, Yy, )- (3.14)

‘We have omited a calculation analogic to (3.13), use that contribution of Hp a is
zero, and the equality

(01(vpW—ps Wp; + p, ) (Up; ¥, Yps — ¥p;)|0) = 0.
And at last consider the states ¢3, Hatp, &—p; #§. We have

(98, Hpltp, v, 88) = (OI'H(‘U-J.:' + Vgt x

[Qupleplwp,w—p. H (ur + w.%ﬂ') ;.)10) + .

k#p1
+ Z zﬁpgpwpw_p(upﬂ:'m 'w—'pl - Upl) H (u‘k o i Ukwkw—k)io) R
S 21 PFPL
Z QS(}U,_’P )%Tﬁ'_pﬂp (u'j?l ”‘Ppl TJb—pl UPL) H (ug + ”W.'(Pk%b k)m)
p,p'#pl P#P1
Zqﬁ(p Py ptipy [ (s +vibih )10>] =
k#p1

= 2, Upy Upy + V > ¢(P1,P)(""Um)'“‘p’%1“p +

p'EM
5 0O et tp (3.15)
i P -
If follows from (2.14) that
.1 % W
Jim (88, Habip,&-p,88) = 0. (3.16)
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ma
Consider states H Q1 a_p: 6, H C}:pna’_pz ¢§ where some p coincide with P;m
Je=l Jj=1
‘We connect the pairs with pj, to @§, as aresult, one obtains a new state ¢§ in which
instead of Upt , Vpl OME puts Upt = —Upt , Upt = Up} - Consider the states
my ma
* * “a * #* Ta
1—_[ Qip, 1 Qp;10G, H Cp2 & p3 i
J=1,i#Jjo J=1,3%do

2yma x
with different (pJ Ge=1,5d0 (pj =1, jskdo" F?r these states all previous results are true.
(Of course, there can be more than one such 7p.)
. . * #
Show that the average of H, over ¢§ with three or more pairs of operators ap, &—p, ,

- * *

* .
QpyCtpy s Qlpy @—py aTe equal to zero. For example, consider
a *® L * * * * a -
(‘?50 » HACtpy Q—py Oy &y a'ps Ciepy ¢0) =

= (0] H(“’"’ + Uk Pi) [Zspﬂ)ﬁ”‘f)ﬁ 7 prwp’!bp ~p¢~p”f4’p':l
pp’

-

x (upl"}:plw—m = ”?1) (‘”‘?z %aw_m = vm)(ups wpgw—-pa = 'Ups) X
X H (uk + vkq?)ka,b._k) [0). (3.17)

k#pi1#pa#ps

* *
Note that Hop, can act and change no more than one of the operators (up, ¥, % _p, ~
—wp,), ¢+ = 1,2,3. The operator Hp can act and change no more than two of the

* *
operators (Up;¥p, % _p, — Up;), © = 1,2,3. Then one of the unchanged operators, say,
* *
(um'f,bmu‘)_m — vm) together with the operator (up, + Vp,¥—p,%¥p,) on the left-hand
side of (3.17) will be equal to zero according to the identity
* *
(OI (up:, + vp, "‘:b—pl iﬁm) (upz. %Jﬂ—pl = ﬂpl) [0) =0,

and we have

(958: Hﬁapl &—Px a”ﬂza—m &?s &—Ps 453) =0. (3'18)
The same arguments give us that
(apaa—ps #0, Hﬂam&vm apz&—p:a ‘353) =0. (3.18")

Recall that equalities (3.18), (3.18’) is still true if on the. left- and right-hand side of
ny

it the products of the operators of creations Hap ; H Gip, Wwith different (p;)il;,
i=1 j=1

(pj)72, arepresent. The proof was given at the very begfnning of this section for arbitrary

numbers of pairs an the left- and right-hand side of (3.18), (3.18").

If ny = ng and (p;)i2; are equal to (p;)72, but my +mz > 3 then the or-
thogonality follows from (3.17)—(3.18"). If 1 < m; + mas < 2 then these states are
asymptotically, orthogonal as it follows from (3.13, (3.14). For m; + mg = 1 we have
formula (3.16).

Thus we have proved that different orthogonal excited states of the ground state ¢§
are asymptotically orthogonal if the Hamiltonian Hj acts on one of them and formulas
(3.11)—(3.18") are true.

ISSN 0041-6053. Ykp. mam. sxypi., 2004, m. 56, N2 3



336 _ D. YA. PETRINA

3.3. Estimate of average of Hx — H, a over general excited states. Proof of The-
orem 3. For arbitrary fixed n,m deﬁne vectors
n n+m
rm *® £

- Seullan 11 gttt

=1 =n+1

n-4m
m=2 H Sor T Grplpydt

8 j=n+l

and calculate the fbllowing average using (3.9) and (3.11)~(3.18")

1
T (87" (Ha — Ho,a)$5"™) =

n+m
(ch! HQ H apj&—pgqbg: (Hf\ = Ha,A) bl

=1 j=n+1

n+m
X Chs H%‘" I dpyas; ‘?50)

™8 =1 j=n+1

QIH

n+m n+m

- ?kzakzciz [2‘% Z Z B(Pis 5 ) Up; Up; Up; Vp; +
¥

i=n-+1 j=1
1 n4+m n<4m
V Z Z G (Pi, P5)tp; Vp; Up; Vp; +
t=1 F=]
1) n+m n4m 1
~4
5 D0 D B nUptin e+ D ¢(p,p)vp]
1—'n+13=n+1 - p#(P)n
= 5m,lzzckzc,.,5(pk)ﬂ pf}u (p1,22) (Ul upy + Vi) = 1. (3.19)
kl ns

(If some _'pgﬂ coincide with p3 then, as in Subsection 3.2, we have to consider 53
instead of #¢ and (p})7%; ;4 do notcoincide with (p§)72; ;sjo-)

We omited index k for p;, p; with 1 <4 <n,1 < j <n andindex I for p;, p;
withn+1l<i<n+m,n+1<j7<n+m in the first term.

In proving (3.19) we used (3.8), (3.9) and (3.11)—(3.13).

Now estimate I, for the case ¢(p,p’) = wpwy, |wp| < w. From (3.19) one obtains

1
1] < V2 > ik [2w2 (n +2m)? + 73 Zwﬁ] +
kil ' P
1
* +ymma 305 amc[2w? <
kil ns
3 3
1 2, 1 g 2
< o [2w3n 2m)? 4 T ] { 5 e } {z 1l } +
: P k,l k,l
1
+ﬁ5m,12w2 D ler] > Ieks)- (3.20)
Kyl

It follows from (3.20) that
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lim I =0
V—oo
if .
D oleml? <o, D ldulP<oo, D leml<oo, > lck| < oo
k,l E,l kL T8

> : ¢ s 2m)?
for arbitrary finite . and m and even for infinite n and m such that Vh‘m m%n_)_ =
— 00

= 0. (For general potential one has to put in (3.20) sup |¢(p,p’)| instead of w? and

(mp")
1 . i !
7 Z |¢(p,p)| instead of o Z wﬁ.)
?

Remark. Suppose that ¢(p,p) = 0. It is not restricted condition imposed on po-
tential ¢(p,p’). Indeed, the integral [ ¢(p,p")dpdp’ does not change if ¢(p,p) =
because the hyperflane p = p' is of lower dimension in R® x R3. For such po-
tential the term v z o(p, p)ﬁ;‘ in (3.19) is equal to zero. The rest of terms in

p#E(P)n
(¢1,(Hp — nA)s;b-s) tend to zero as V — co for arbitrary finite m and n even
without the factor —. '

According to (3.19), (3.20) we have for finite mn and n

T n-4m
g, (62 - ) = i, (STl on 1T et
i=1 j=n-t1
n4+m )
(H — Ha,) Zcr.; Ha? 11 Gwass sbo) =0. (321)
=1 j=n+1
Note that (3.21) is still true if n and m tend to infinity together with V' in such a

= 9 2
way that lim M)— =0.
V—oo

In (3.19) we considered states with equal number n of the operators &pi and equal
number m of the pairs of operators E“xp jc't_pj. Now consider the following states

ni ni+m;y
T21,M1 * H * * a
¢1™ = e [ ape Ot &t 5,
kL i=1 j=ni+1
na+ma
‘n.g me * ® a
' E & H Qpr H Qps O ps B (3.22)

i=1 J=na+1l

with ny # ng, M1 # Mma, or n1 ?5 Ng, M1 = Mg, OF N1 = Ng, M1 7 Ma, M1 +ma >

> 3, and Z lexi|? < oo, Z le's]? < 0.
Kl ™
The average of Hy — H, p over these states are equal to zero in the limit V' — oo.

Indeed, all the terms in the states ¢7"'™! and ¢5>"™* are orthogonal eigenvectors of
H,,n and therefore

(6™, Hop95™) =0.
We have also that
(¢TH™, Hag3>™2) = 0.
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The last equality has been proved in Subsection 3.2.
In the case 11 = na, (P)n; = (P)ng, M1 + Mo = 2 we have

Jim (727, Hgg™ ™) =0

according to (3.13)—(3.14).
Thus for general states ¢7*'™* and ¢52'™? (3.22) with 1 < m; + mgy we have

lim (§72™, (Ha — Hon)52™) =0.

V—oo

Ifin #7*™ or ¢5*™ one has my +mg = 1, then, according to (3.16)

. .]; TL1,1M] _ T2,z )
Jim = (#10™, (Ha — Hap)$5™) =0,

It is easy to generalize above obtained results for linear combination of states ¢} 1

and ¢g?™2.
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